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Bayesian Deep Learning

Let D :=
{
(xn, yn) | n = 1, . . . ,N

}
⊂ X × Y be data.

• Supervised Deep Learning:

Y = f(x) +N (0, σ2), (1)

where f is a neural network f(x) = f(x;w) with parameters w.
• Bayesian Neural Network:

Sample W ∼ p(w) and obtain random function F(x;W) as prior.
• Predictions for arbitrary x∗ ∈ X follow from Bayes rule:

p(y∗|D) =

∫
p
(
y∗|w

)
p(w|D) dw (2)

=

∫
p
(
y∗|f(x∗;w)

)
p(w|D) dw (3)
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Bayesian Deep Learning

Why Bayesian deep learning instead of standard deep learning?
• Bayesian model averaging may improve predictive performance:

p(y∗|D) =

∫
p
(
y∗|f(x∗;w)

)
p(w|D) dw (4)

• Bayesian posterior can be used for uncertainty quantification

Problem: p(w|D) is intractable! Approximations required.

Sampling based approaches:
• Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]
• Langevin Dynamics [Welling and Teh, 2011]
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BDL: Weight-Space inference

Variational approach:
Let q(w) = q(w; ν) be a distribution with unknown parameters ν. Learn ν
by maximising

L(ν) := Eq(w)

[
log p(y|w)

]
− DKL

(
q(w), p(w)

)
, (5)

which is (often) tractable. Use q(w; ν) ≈ p(w|D).
Problems:

• The parameter space for w is large and the posterior multimodal.
−→ challenging for sampling based approaches

• Variational approaches often introduce strong assumptions for
tractability.
−→ do we still capture enough of the true posterior? [Foong et al.,
2020]

• What priors on the function space are induced by p(w)?
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Variational Inference in Function Spaces

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019,
Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

L = EQ
[
log p(y|F)

]
− DKL

(
QF,PF), (6)

where QF,PF ∈ P(E) with:
• E an infinite dimensional (Polish) function space
• P(E) the space of Borel probability measures on E

Challenges:
• How to specify priors on infinite dimensional function spaces?
→ Gaussian measures on Hilbert spaces

• The KL-divergence is (in general) intractable in infinite dimensions
and may even be infinite [Burt et al., 2020].
→ use generalised variational inference in infinite dimensions!
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The Rule of Three [Knoblauch et al., 2019]

Find posterior as

q∗(w) := argmin
q∈Q

{
Eq(w)

[ N∑
n=1

ℓ(yn,w)
]
+ D

(
q(w), p(w)

)}
, (7)

where:
• Q is a set of tractable pdfs
• ℓ is a loss function
• D an arbitrary divergence
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GVI in Function Spaces

• Idea: Use rule of three in infinite dimensional function spaces
• Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional

parameter spaces
• We can target

L := −EQ
[
log p(y|F)

]
+ D

(
QF,PF), (8)

for inference where D is an arbitrary divergence.
• How to define priors and variational measures PF and QF in infinite

dimensions?
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Gaussian Measures on Hilbert spaces

Let
(
Ω,A,P

)
be a probability space and

(
H, ⟨·, ·⟩

)
be a Hilbert space.

Definition (Gaussian Random Element)
A random mapping F : Ω → H is called Gaussian random element (GRE) if
and only if

⟨F, h⟩ : Ω → R (9)

is a scalar Gaussian variable for every h ∈ H.
The mean element of F is defined as

m := E[F] :=
∫

F(ω) dP(ω) ∈ H (10)

and the (linear) covariance operator C : H → H of F is defined as

C(h) :=
∫
⟨F(ω), h⟩F(ω) dP(ω)− ⟨m, h⟩m, h ∈ H. (11)
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Gaussian Measures on Hilbert spaces

By properties of the Bochner integral:

⟨F, h⟩ ∼ N
(
⟨m, h⟩, ⟨Ch, h⟩

)
, (12)

for any h ∈ H. Write F ∼ N (m,C) for a GRE with mean element m ∈ H
and covariance operator C.

• C : H → H of a GRE is a positive self-adjoint trace-class operator.
• For arbitrary m ∈ H and arbitrary C positive, self-adjoint and

trace-class there exists a GRE such that F ∼ N (m,C).

Definition (Gaussian Measure)
Let F ∼ N (m,C) be a GRE. Then P defined as

P(A) := PF(A) := P(F ∈ A) (13)

for any (measurable) A ⊂ H is called a Gaussian measure.
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Model description

Recall the generalised loss:

L := −EQ
[
log p(y|F)

]
+ D

(
QF,PF) (14)

Gaussian Wasserstein Inference:
• E = L2(X , ρ,R) :=

{
f : X → R |

∫
|f(x)|2 dρ(x) < ∞

}
with ρ input

distribution on X
• P := PF ∼ N

(
mP,CP

)
• Q := QF ∼ N

(
mQ,CQ

)
• D(·, ·) = W2(·, ·) with W2 given as Wasserstein-distance

with:

CPg :=

∫
k(·, x′)g(x′) dρ(x′), CQg :=

∫
r(·, x′)g(x′) dρ(x′) (15)

for all g ∈ L2(X , ρ,R) where k and r are trace-class kernels.
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Regression

For regression:

p(y|F) :=
N∏

n=1

p(yn|F) :=
N∏

n=1

N (yn |F(xn), σ
2), (16)

where σ2 > 0.
The Wasserstein distance is tractable [Gelbrich, 1990]:

W2
2(P,Q) = ∥mP−mQ∥22+ tr(CP)+ tr(CQ)−2 · tr

[(
C1/2

P CQC1/2
P

)1/2]
, (17)

where tr(·) denotes the trace of an operator and C1/2
P is the square root of

the positive, self-adjoint operator CP.
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Approximation of Wasserstein distance

Let ρ̂ := 1
N
∑N

n=1 δxn and notice that

∥mP − mQ∥22 =

∫ (
mP(x)− mQ(x)

)2 dρ(x) (18)

≈ 1

N

N∑
n=1

(
mP(xn)− mQ(xn)

)2 (19)

Further:

tr(CP) =

∫
k(x, x) dρ(x) ≈ 1

N

N∑
n=1

k(xn, xn) (20)

tr(CQ) =

∫
r(x, x) dρ(x) ≈ 1

N

N∑
n=1

r(xn, xn) (21)
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Approximation of Wasserstein distance

The last term can be approximated as

tr
[(

C1/2
P CQC1/2

P

)1/2] ≈ 1√
NNS

NS∑
s=1

√
λs
(
r(XS,X)k(X,XS)

)
, (22)

where XS := (xS,1, . . . , xS,NS), NS ∈ N with:

XS,1, . . . ,XS,NS

ind.∼ ρ̂ (23)

r(XS,X) :=
(
r(xS,s, xn)

)
s,n (24)

k(X,XS) :=
(
k(xn, xS,s)

)
n,s (25)

and λs
(
r(XS,X)k(X,XS)

)
denotes the s-th eigenvalue of the matrix

r(XS,X)k(X,XS) ∈ RNS×NS .
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Final Loss: Regression

The final loss:

L = L + Ŵ2 (26)

with:

L :=
N
2
log(2πσ2) +

N∑
n=1

(
yn − mQ(xn)

)2
+ r(xn, xn)

2σ2
(27)

Ŵ2 :=
1

N

N∑
n=1

(
mP(xn)− mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (28)

+
1

N

N∑
n=1

r(xn, xn)−
2√
NNS

NS∑
s=1

√
λs
(
r(XS,X)k(X,XS)

)
, (29)
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Final Loss: Properties

• L is tractable for any mP,mQ, k and r
• One evaluation of L requires:

– N evaluations of mQ and mP

– NS · N evaluations of r and k
– O(N + N2

SN + N3
S)operations for the eigenvalue problem

• One evaluation of L in batch-mode requires:
– NB evaluations of mQ and mP

– NS · NB evaluations of r and k
– O(NB + N2

SNB + N3
S) operations for the eigenvalue problem

−→ very scalable for typical NS,NB << N, e.g. NS = NB = 100
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Recovering Other Methods

• Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

mQ(x) := mP(x) +
M∑

m=1

βmkm(x) (30)

r(x, x′) := k(x, x′)− kZ(x)Tk(Z,Z)−1kZ(x) + kZ(x)TΣkZ(x), (31)

where β = (β1, . . . , βM) ∈ RM and Σ ∈ RM×M are variational
parameters. Further Z = (Z1, . . . ,ZM) with {Zm}M

m=1
iid∼ ρ̂.

• Decoupled SVGPs [Cheng and Boots, 2017]: Same kernel r as in
SVGP but mean

mQ(x) := mP(x) +
Ñ∑

n=1

βnkn(x), (32)

where Ñ > M.
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GWI-net

Use neural net for posterior mean
• Let L ∈ N be the number of hidden layers.
• Let Dℓ, ℓ = 0, . . . ,L + 1 be the width of layer ℓ with D0 := D.
• Define g1(x) := W1x + b1 and further

hℓ(x) := ϕ
(
gℓ(x)

)
, (33)

gℓ+1(x) := Wℓ+1hℓ(x) + bℓ+1 (34)

for x ∈ X where ϕ is an activation function.
• Define

mQ(x) := gL+1(x) (35)

for x ∈ X .
and the SVGP kernel r in (31) for the posterior covariance.
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Toy Examples: GWI-net

Figure 1: : Training data : Unseen data : Inducing points
We use N = 1000 equidistant points and add white noise with ϵ ∼ N (0, 0.52).
The plot shows mQ(x)± 1.96

√
V[Y∗(x)|Y] where V[Y∗(x)|Y] is the posterior

predictive variance given as r(x, x) + σ2.
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UCI Regression

Dataset N D GWI FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GPSVGP DNN-SVGP
BOSTON 506 13 2.8±0.31 2.27±0.06 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 3.24±0.09 2.64±0.06 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 1.81±0.19 0.91±0.12 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -0.86±0.38 -1.2±0.03 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 3.35±0.22 2.74±0.02 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.84±0.04 2.87±0.0 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.02 0.76±0.08 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 2.37±0.55 0.29±0.1 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.25±0.08 -6.76±0.1 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
Mean Rank 5.5 2.06 2.22 3.33 4.94 7 6.11 4.83

Table 1: The table shows the average test NLL on several UCI regression datasets. We
train on random 90% of the data and predict on 10%. This is repeated 10 times and we
report mean and standard deviation. The results for our competitors are taken from Ma and
Hernández-Lobato [2021].
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Classification

FMNIST CIFAR 10
Model Accuracy NLL OOD-AUC Accuracy NLL OOD-AUC
GWI-net 93.25 ±0.09 0.250 ±0.00 0.959 ±0.01 83.82 ±0.00 0.553 ±0.00 0.618 ±0.00
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER et al. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

Table 2: We report average accuracy, NLL and OOD-AUC on test data for 10 different
train/test splits.
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