GVI in Function Spaces

Gaussian Measures meet Bayesian Deep Learning

Veit D. Wild* , Robert Hu* and Dino Sejdinovic

Department of Statistics

 $25^{\rm th}$ of May 2022

Outline

1. Background Bayesian Deep Learning Variational Inference in Function Spaces Generalised Variational Inference Gaussian Measures on Hilbert Spaces

- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Contents

1. Background Bayesian Deep Learning Variational Inference in Function Spaces Generalised Variational Inference Gaussian Measures on Hilbert Spaces

- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Let $\mathcal{D}:=\big\{(x_n,y_n)\,|\,n=1,\ldots,N\big\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

Let $\mathcal{D}:=\big\{(x_n,y_n)\,|\,n=1,\ldots,N\big\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

• Supervised Deep Learning:

$$\mathbf{Y} = \mathbf{f}(\mathbf{x}) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

Let $\mathcal{D}:=\big\{(x_n,y_n)\,|\,n=1,\ldots,N\big\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

• Supervised Deep Learning:

$$\mathbf{Y} = \mathbf{f}(\mathbf{x}) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

• Bayesian Neural Network: Sample $W \sim p(w)$ and obtain random function F(x; W) as prior.

Let $\mathcal{D}:=\big\{(x_n,y_n)\,|\,n=1,\ldots,N\big\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

• Supervised Deep Learning:

$$\mathbf{Y} = \mathbf{f}(\mathbf{x}) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

- Bayesian Neural Network: Sample $W \sim p(w)$ and obtain random function F(x; W) as prior.
- Predictions for arbitrary $\mathbf{x}^* \in \mathcal{X}$ follow from Bayes rule:

$$p(y^*|\mathcal{D}) = \int p(y^*|w) p(w|\mathcal{D}) \, dw \tag{2}$$

$$= \int p(y^*|f(x^*;w))p(w|\mathcal{D}) \,dw \tag{3}$$

Why Bayesian deep learning instead of standard deep learning?

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*;w))p(w|\mathcal{D}) \,dw \tag{4}$$

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*;w)) p(w|\mathcal{D}) \, dw \tag{4}$$

• Bayesian posterior can be used for uncertainty quantification

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*;w))p(w|\mathcal{D}) \,dw \tag{4}$$

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*;w))p(w|\mathcal{D}) \,dw \tag{4}$$

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*;w))p(w|\mathcal{D}) \,dw \tag{4}$$

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

• Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(\mathbf{y}^*|\mathcal{D}) = \int p(\mathbf{y}^*|\mathbf{f}(\mathbf{x}^*;\mathbf{w})) p(\mathbf{w}|\mathcal{D}) \, \mathrm{d}\mathbf{w}$$
(4)

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

- Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]
- Langevin Dynamics [Welling and Teh, 2011]

Variational approach:

Variational approach: Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$.

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

• The parameter space for w is large and the posterior multimodal.

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

The parameter space for w is large and the posterior multimodal.
 → challenging for sampling based approaches

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

- The parameter space for w is large and the posterior multimodal.
 → challenging for sampling based approaches
- Variational approaches often introduce strong assumptions for tractability.

Variational approach:

Let $q(w)=q(w;\nu)$ be a distribution with unknown parameters $\nu.$ Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

- The parameter space for w is large and the posterior multimodal.
 → challenging for sampling based approaches
- Variational approaches often introduce strong assumptions for tractability.

 \longrightarrow do we still capture enough of the true posterior? [Foong et al., 2020]

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

- The parameter space for w is large and the posterior multimodal. \rightarrow challenging for sampling based approaches
- Variational approaches often introduce strong assumptions for tractability.

 \rightarrow do we still capture enough of the true posterior? [Foong et al., 2020

• What priors on the function space are induced by p(w)?

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

• E an infinite dimensional (Polish) function space

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{\mathrm{F}}, \mathbb{P}^{\mathrm{F}} \in \mathcal{P}(\mathrm{E})$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Challenges:

• How to specify priors on infinite dimensional function spaces?

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{\mathrm{F}}, \mathbb{P}^{\mathrm{F}} \in \mathcal{P}(\mathrm{E})$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 - \rightarrow Gaussian measures on Hilbert spaces

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 → Gaussian measures on Hilbert spaces
- The KL-divergence is (in general) intractable in infinite dimensions and may even be infinite [Burt et al., 2020].

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] - \mathbb{D}_{KL} \big(\mathbb{Q}^F, \mathbb{P}^F \big), \tag{6}$$

where $\mathbb{Q}^{\mathrm{F}}, \mathbb{P}^{\mathrm{F}} \in \mathcal{P}(\mathrm{E})$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 → Gaussian measures on Hilbert spaces
- The KL-divergence is (in general) intractable in infinite dimensions and may even be infinite [Burt et al., 2020].
 → use generalised variational inference in infinite dimensions!

Find posterior as

Find posterior as

$$q^{*}(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_{n}, w) \right] + D(q(w), p(w)) \right\},$$
(7)

Find posterior as

$$q^{*}(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_{n}, w) \right] + D(q(w), p(w)) \right\},$$
(7)

where:

Find posterior as

$$q^{*}(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_{n}, w) \right] + D(q(w), p(w)) \right\},$$
(7)

where:

• \mathcal{Q} is a set of tractable pdfs

Find posterior as

$$q^{*}(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_{n}, w) \right] + D(q(w), p(w)) \right\},$$
(7)

where:

- \mathcal{Q} is a set of tractable pdfs
- ℓ is a loss function

Find posterior as

$$q^{*}(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_{n}, w) \right] + D(q(w), p(w)) \right\},$$
(7)

where:

- \mathcal{Q} is a set of tractable pdfs
- ℓ is a loss function
- D an arbitrary divergence

• Idea: Use rule of three in infinite dimensional function spaces

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces
- We can target

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \big[\log p(\mathbf{y}|\mathbf{F}) \big] + \mathbb{D} \big(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \big), \tag{8}$$

for inference where $\mathbb D$ is an arbitrary divergence.

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces
- We can target

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right), \tag{8}$$

for inference where $\mathbb D$ is an arbitrary divergence.

• How to define priors and variational measures \mathbb{P}^F and \mathbb{Q}^F in infinite dimensions?

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. **Definition (Gaussian Random Element)**

A random mapping $F:\Omega\to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $\mathbf{h}\in\mathbf{H}.$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. **Definition (Gaussian Random Element)** A random mapping $F : \Omega \to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h \in H$. The mean element of F is defined as

$$\mathbf{m} := \mathbb{E}[\mathbf{F}] := \int \mathbf{F}(\omega) \, \mathrm{d}\mathbb{P}(\omega) \in \mathbf{H}$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. **Definition (Gaussian Random Element)** A random mapping $F : \Omega \to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h\in H.$ The mean element of F is defined as

$$\mathbf{m} := \mathbb{E}[\mathbf{F}] := \int \mathbf{F}(\omega) \, \mathrm{d}\mathbb{P}(\omega) \in \mathbf{H}$$
(10)

and the (linear) covariance operator $\mathcal{C}:\mathcal{H}\to\mathcal{H}$ of \mathcal{F} is defined as

$$C(h) := \int \langle F(\omega), h \rangle F(\omega) \, d\mathbb{P}(\omega) - \langle m, h \rangle m, \, h \in H$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. **Definition (Gaussian Random Element)** A random mapping $F : \Omega \to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h\in H.$ The mean element of F is defined as

$$\mathbf{m} := \mathbb{E}[\mathbf{F}] := \int \mathbf{F}(\omega) \, \mathrm{d}\mathbb{P}(\omega) \in \mathbf{H}$$
(10)

and the (linear) covariance operator $\mathcal{C}:\mathcal{H}\to\mathcal{H}$ of \mathcal{F} is defined as

$$C(h) := \int \langle F(\omega), h \rangle F(\omega) \, d\mathbb{P}(\omega) - \langle m, h \rangle m, \, h \in H.$$
(11)

By properties of the Bochner integral:

 $\langle \mathbf{F}, \mathbf{h} \rangle \sim \mathcal{N}(\langle \mathbf{m}, \mathbf{h} \rangle, \langle \mathbf{Ch}, \mathbf{h} \rangle),$ (12)

for any $h \in H$.

By properties of the Bochner integral:

$$\langle \mathbf{F}, \mathbf{h} \rangle \sim \mathcal{N} (\langle \mathbf{m}, \mathbf{h} \rangle, \langle \mathbf{Ch}, \mathbf{h} \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

By properties of the Bochner integral:

$$\langle \mathbf{F}, \mathbf{h} \rangle \sim \mathcal{N} (\langle \mathbf{m}, \mathbf{h} \rangle, \langle \mathbf{Ch}, \mathbf{h} \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

• C : H \rightarrow H of a GRE is a positive self-adjoint trace-class operator.

By properties of the Bochner integral:

$$\langle \mathbf{F}, \mathbf{h} \rangle \sim \mathcal{N} (\langle \mathbf{m}, \mathbf{h} \rangle, \langle \mathbf{Ch}, \mathbf{h} \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

- C : H \rightarrow H of a GRE is a positive self-adjoint trace-class operator.
- For arbitrary $m \in H$ and arbitrary C positive, self-adjoint and trace-class there exists a GRE such that $F \sim \mathcal{N}(m, C)$.

By properties of the Bochner integral:

$$\langle \mathbf{F}, \mathbf{h} \rangle \sim \mathcal{N}(\langle \mathbf{m}, \mathbf{h} \rangle, \langle \mathbf{Ch}, \mathbf{h} \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

- C : H \rightarrow H of a GRE is a positive self-adjoint trace-class operator.
- For arbitrary $m \in H$ and arbitrary C positive, self-adjoint and trace-class there exists a GRE such that $F \sim \mathcal{N}(m, C)$.

Definition (Gaussian Measure) Let $F \sim \mathcal{N}(m, C)$ be a GRE. Then P defined as

$$P(A) := \mathbb{P}^{F}(A) := \mathbb{P}(F \in A)$$
(13)

for any (measurable) $\mathbf{A} \subset \mathbf{H}$ is called a Gaussian measure.

Contents

. Background Bayesian Deep Learning Variational Inference in Function Spac Generalised Variational Inference Gaussian Measures on Hilbert Spaces

- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Recall the generalised loss:

 $\mathcal{L} := -\mathbb{E}_{\mathbb{Q}}\big[\log p(y|F)\big] + \mathbb{D}\big(\mathbb{Q}^F, \mathbb{P}^F\big)$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] + \mathbb{D} \big(\mathbb{Q}^F, \mathbb{P}^F \big)$$
(14)

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right)$$
(14)

Gaussian Wasserstein Inference:

• $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \left\{ f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \right\}$ with ρ input distribution on \mathcal{X}

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right)$$
(14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \left\{ f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \right\}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right)$$
(14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \left\{ f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \right\}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right)$$
(14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty\}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$
- $\mathbb{D}(\cdot, \cdot) = W_2(\cdot, \cdot)$ with W_2 given as Wasserstein-distance

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(\mathbf{y}|\mathbf{F}) \right] + \mathbb{D} \left(\mathbb{Q}^{\mathbf{F}}, \mathbb{P}^{\mathbf{F}} \right)$$
(14)

Gaussian Wasserstein Inference:

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty\}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$
- $\mathbb{D}(\cdot, \cdot) = W_2(\cdot, \cdot)$ with W_2 given as Wasserstein-distance

with:

$$C_{P}g := \int k(\cdot, \mathbf{x}')g(\mathbf{x}') \,d\rho(\mathbf{x}'), \qquad C_{Q}g := \int r(\cdot, \mathbf{x}')g(\mathbf{x}') \,d\rho(\mathbf{x}') \tag{15}$$

for all $g \in L^2(\mathcal{X}, \rho, \mathbb{R})$ where k and r are trace-class kernels.

For regression:

$$p(y|F) := \prod_{n=1}^{N} p(y_n|F) := \prod_{n=1}^{N} \mathcal{N}(y_n \,|\, F(x_n), \sigma^2), \tag{16}$$

where $\sigma^2 > 0$.

Regression

For regression:

$$p(y|F) := \prod_{n=1}^{N} p(y_n|F) := \prod_{n=1}^{N} \mathcal{N}(y_n \,|\, F(x_n), \sigma^2), \tag{16}$$

where $\sigma^2 > 0$. The Wasserstein distance is tractable [Gelbrich, 1990]:

$$W_2^2(P,Q) = \|m_P - m_Q\|_2^2 + tr(C_P) + tr(C_Q) - 2 \cdot tr \left[\left(C_P^{1/2} C_Q C_P^{1/2} \right)^{1/2} \right], (17)$$

where $tr(\cdot)$ denotes the trace of an operator and $C_P^{1/2}$ is the square root of the positive, self-adjoint operator C_P .

Let $\widehat{\rho} := \frac{1}{N} \sum_{n=1}^{N} \delta_{x_n}$

Let $\widehat{\rho}:=\frac{1}{N}\sum_{n=1}^N \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{\rm P} - \mathbf{m}_{\rm Q}\|_{2}^{2} = \int \left(\mathbf{m}_{\rm P}(\mathbf{x}) - \mathbf{m}_{\rm Q}(\mathbf{x})\right)^{2} d\rho(\mathbf{x})$$
(18)

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left(m_{\rm P}(\mathbf{x}_n) - m_{\rm Q}(\mathbf{x}_n) \right)^2 \tag{19}$$

Let $\widehat{\rho}:=\frac{1}{N}\sum_{n=1}^N \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{\rm P} - \mathbf{m}_{\rm Q}\|_{2}^{2} = \int \left(\mathbf{m}_{\rm P}(\mathbf{x}) - \mathbf{m}_{\rm Q}(\mathbf{x})\right)^{2} d\rho(\mathbf{x}) \tag{18}$$

$$\frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{m}_{\rm P}(\mathbf{x}) - \mathbf{m}_{\rm Q}(\mathbf{x})\right)^{2} d\rho(\mathbf{x}) \tag{18}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left(m_{P}(x_{n}) - m_{Q}(x_{n}) \right)^{2}$$
(19)

Further:

Let $\widehat{\rho}:=\frac{1}{N}\sum_{n=1}^N \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{\rm P} - \mathbf{m}_{\rm Q}\|_2^2 = \int \left(\mathbf{m}_{\rm P}(\mathbf{x}) - \mathbf{m}_{\rm Q}(\mathbf{x})\right)^2 d\rho(\mathbf{x}) \tag{18}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left(m_{\rm P}(x_n) - m_{\rm Q}(x_n) \right)^2 \tag{19}$$

Further:

$$tr(C_{P}) = \int k(x, x) d\rho(x) \approx \frac{1}{N} \sum_{n=1}^{N} k(x_{n}, x_{n})$$
(20)
$$tr(C_{Q}) = \int r(x, x) d\rho(x) \approx \frac{1}{N} \sum_{n=1}^{N} r(x_{n}, x_{n})$$
(21)

The last term can be approximated as

$$tr\left[\left(C_{P}^{1/2}C_{Q}C_{P}^{1/2}\right)^{1/2}\right] \approx \frac{1}{\sqrt{NN_{S}}}\sum_{s=1}^{N_{S}}\sqrt{\lambda_{s}(r(X_{S},X)k(X,X_{S}))},$$
 (22)

The last term can be approximated as

$$tr\left[\left(C_{P}^{1/2}C_{Q}C_{P}^{1/2}\right)^{1/2}\right] \approx \frac{1}{\sqrt{NN_{S}}}\sum_{s=1}^{N_{S}}\sqrt{\lambda_{s}(r(X_{S},X)k(X,X_{S}))},$$
 (22)

where $X_{\mathrm{S}} := (x_{\mathrm{S},1}, \ldots, x_{\mathrm{S},N_{\mathrm{S}}}),$ $N_{\mathrm{S}} \in \mathbb{N}$ with:

$$X_{S,1}, \dots, X_{S,N_S} \stackrel{\text{ind.}}{\sim} \hat{\rho}$$
 (23)

$$r(X_S, X) := \left(r(x_{S,s}, x_n)\right)_{s,n}$$
(24)

$$\mathbf{k}(\mathbf{X}, \mathbf{X}_{\mathbf{S}}) := \left(\mathbf{k}(\mathbf{x}_{n}, \mathbf{x}_{\mathbf{S}, \mathbf{s}})\right)_{n, \mathbf{s}}$$
(25)

and $\lambda_s(r(X_S, X)k(X, X_S))$ denotes the s-th eigenvalue of the matrix $r(X_S, X)k(X, X_S) \in \mathbb{R}^{N_S \times N_S}$.

The final loss:

$$\mathcal{L} = L + \widehat{W}^2 \tag{26}$$

The final loss:

$$\mathcal{L} = \mathbf{L} + \widehat{\mathbf{W}}^2 \tag{26}$$

with:

$$L := \frac{N}{2} \log(2\pi\sigma^2) + \sum_{n=1}^{N} \frac{\left(y_n - m_Q(x_n)\right)^2 + r(x_n, x_n)}{2\sigma^2}$$
(27)
$$\hat{W}^2 := \frac{1}{N} \sum_{n=1}^{N} \left(m_P(x_n) - m_Q(x_n)\right)^2 + \frac{1}{N} \sum_{n=1}^{N} k(x_n, x_n)$$
(28)
$$+ \frac{1}{N} \sum_{n=1}^{N} r(x_n, x_n) - \frac{2}{N} \sum_{n=1}^{N_S} \sqrt{\left(r(X - X))k(X - X)\right)}$$
(20)

$$+ \frac{1}{N} \sum_{n=1}^{N} r(x_n, x_n) - \frac{2}{\sqrt{NN_S}} \sum_{s=1}^{N} \sqrt{\lambda_s (r(X_S, X)k(X, X_S))}, \qquad (29)$$

The final loss:

$$\mathcal{L} = \mathbf{L} + \widehat{\mathbf{W}}^2 \tag{26}$$

with:

$$L := \frac{N}{2} \log(2\pi\sigma^2) + \sum_{n=1}^{N} \frac{\left(y_n - m_Q(x_n)\right)^2 + r(x_n, x_n)}{2\sigma^2}$$
(27)
$$\hat{W}^2 := \frac{1}{N} \sum_{n=1}^{N} \left(m_P(x_n) - m_Q(x_n)\right)^2 + \frac{1}{N} \sum_{n=1}^{N} k(x_n, x_n)$$
(28)
$$\frac{1}{N} \sum_{n=1}^{N} c_n = 1 - \frac{2}{N} \sum_{n=1}^{N} \sqrt{(1 - 1)^2 + 1} \sum_{n=1}^{N} k(x_n, x_n)$$
(28)

$$+\frac{1}{N}\sum_{n=1}^{L}r(x_{n},x_{n}) - \frac{2}{\sqrt{NN_{S}}}\sum_{s=1}^{L}\sqrt{\lambda_{s}(r(X_{S},X)k(X,X_{S}))}, \quad (29)$$

 $\bullet~\mathcal{L}$ is tractable for any m_{P},m_{Q},k and r

- $\bullet~\mathcal{L}$ is tractable for any m_{P},m_{Q},k and r
- One evaluation of \mathcal{L} requires:

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of $m_{\rm Q}$ and $m_{\rm P}$

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of $m_{\rm Q}$ and $m_{\rm P}$
 - $\rm N_S\cdot N$ evaluations of r and k

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of $m_{\rm Q}$ and $m_{\rm P}$
 - $\rm N_S\cdot N$ evaluations of r and k
 - $\mathcal{O}(N+N_{\rm S}^2N+N_{\rm S}^3) operations for the eigenvalue problem$

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of $m_{\rm Q}$ and $m_{\rm P}$
 - $\rm N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N+N_{\rm S}^2N+N_{\rm S}^3) operations for the eigenvalue problem$
- One evaluation of \mathcal{L} in batch-mode requires:

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $\rm N_S\cdot N$ evaluations of $\rm r$ and $\rm k$
 - $\mathcal{O}(N+N_{\rm S}^2N+N_{\rm S}^3) operations for the eigenvalue problem$
- One evaluation of \mathcal{L} in batch-mode requires:
 - $N_{\rm B}$ evaluations of $m_{\rm Q}$ and $m_{\rm P}$

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $\rm N_S\cdot N$ evaluations of $\rm r$ and $\rm k$
 - $\mathcal{O}(N+N_{\rm S}^2N+N_{\rm S}^3) operations for the eigenvalue problem$
- One evaluation of \mathcal{L} in batch-mode requires:
 - $\rm N_B$ evaluations of $\rm m_Q$ and $\rm m_P$
 - $N_{\rm S}\cdot N_{\rm B}$ evaluations of r and k

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $\rm N_S\cdot N$ evaluations of $\rm r$ and $\rm k$
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - $\rm N_B$ evaluations of $\rm m_Q$ and $\rm m_P$
 - $N_{\rm S}\cdot N_{\rm B}$ evaluations of r and k
 - $\mathcal{O}(N_{\rm B}+N_{\rm S}^2N_{\rm B}+N_{\rm S}^3)$ operations for the eigenvalue problem

- $\bullet \ \mathcal{L}$ is tractable for any $m_{\rm P}, m_{\rm Q}, k$ and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $\rm N_S\cdot N$ evaluations of $\rm r$ and $\rm k$
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - $\rm N_B$ evaluations of $\rm m_Q$ and $\rm m_P$
 - $N_{\rm S}\cdot N_{\rm B}$ evaluations of r and k
 - $\mathcal{O}(N_{\rm B}+N_{\rm S}^2N_{\rm B}+N_{\rm S}^3)$ operations for the eigenvalue problem
 - \longrightarrow very scalable for typical $N_{\rm S}, N_{\rm B} << N, \, e.g. \ N_{\rm S} = N_{\rm B} = 100$

Recovering Other Methods

Recovering Other Methods

• Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

$$m_{Q}(\mathbf{x}) := m_{P}(\mathbf{x}) + \sum_{m=1}^{M} \beta_{m} k_{m}(\mathbf{x})$$
(30)

 $\mathbf{r}(\mathbf{x},\mathbf{x}') := \mathbf{k}(\mathbf{x},\mathbf{x}') - \mathbf{k}_{\mathbf{Z}}(\mathbf{x})^{\mathsf{T}} \mathbf{k}(\mathbf{Z},\mathbf{Z})^{-\mathsf{T}} \mathbf{k}_{\mathbf{Z}}(\mathbf{x}) + \mathbf{k}_{\mathbf{Z}}(\mathbf{x})^{\mathsf{T}} \Sigma \mathbf{k}_{\mathbf{Z}}(\mathbf{x}), \quad (31)$

where $\beta = (\beta_1, \ldots, \beta_M) \in \mathbb{R}^M$ and $\Sigma \in \mathbb{R}^{M \times M}$ are variational parameters. Further $Z = (Z_1, \ldots, Z_M)$ with $\{Z_m\}_{m=1}^M \stackrel{iid}{\sim} \widehat{\rho}$.

Recovering Other Methods

• Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

$$m_Q(x) := m_P(x) + \sum_{m=1}^M \beta_m k_m(x)$$
 (30)

$$r(x, x') := k(x, x') - k_Z(x)^T k(Z, Z)^{-1} k_Z(x) + k_Z(x)^T \Sigma k_Z(x), \quad (31)$$

where $\beta = (\beta_1, \dots, \beta_M) \in \mathbb{R}^M$ and $\Sigma \in \mathbb{R}^{M \times M}$ are variational parameters. Further $Z = (Z_1, \dots, Z_M)$ with $\{Z_m\}_{m=1}^M \stackrel{iid}{\sim} \widehat{\rho}$.

• Decoupled SVGPs [Cheng and Boots, 2017]: Same kernel r as in SVGP but mean

$$m_Q(x) := m_P(x) + \sum_{n=1}^{\tilde{N}} \beta_n k_n(x),$$
 (32)

Use neural net for posterior mean

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \dots, L + 1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$h^{\ell}(\mathbf{x}) := \phi(\mathbf{g}^{\ell}(\mathbf{x})), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $\mathbf{x} \in \mathcal{X}$ where ϕ is an activation function.

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \dots, L + 1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$\mathbf{h}^{\ell}(\mathbf{x}) := \phi(\mathbf{g}^{\ell}(\mathbf{x})), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $\mathbf{x} \in \mathcal{X}$ where ϕ is an activation function.

• Define

$$m_Q(x) := g^{L+1}(x)$$
 (35)

for $x \in \mathcal{X}$.

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \dots, L+1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$\mathbf{h}^{\ell}(\mathbf{x}) := \phi(\mathbf{g}^{\ell}(\mathbf{x})), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $\mathbf{x} \in \mathcal{X}$ where ϕ is an activation function.

• Define

$$m_Q(x) := g^{L+1}(x)$$
 (35)

for $x \in \mathcal{X}$.

and the SVGP kernel r in (31) for the posterior covariance.

Contents

 Background Bayesian Deep Learning Variational Inference in Function Spaces Generalised Variational Inference Gaussian Measures on Hilbert Spaces

- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Toy Examples: GWI-net

Figure 1: \blacksquare : Training data \blacksquare : Unseen data \blacksquare : Inducing points We use N = 1000 equidistant points and add white noise with $\epsilon \sim \mathcal{N}(0, 0.5^2)$. The plot shows $m_Q(x) \pm 1.96\sqrt{\mathbb{V}[Y^*(x)|Y]}$ where $\mathbb{V}[Y^*(x)|Y]$ is the posterior predictive variance given as $r(x, x) + \sigma^2$.

UCI Regression

UCI Regression

Dataset	Ν	D	GWI		EVI	VID DNN	VID ND	DDD	VDO	a = 0.5	EDNIN	EVACT CD
			SVGP	DNN-SVGP	1. 11	VIF-DININ	v ir -ivr	BBB	VD0	$\alpha = 0.5$	PERMIN	EAACTOF
BOSTON	506	13	2.8 ± 0.31	2.27 ± 0.06	2.33±0.04	2.45 ± 0.04	2.45±0.03	2.76 ± 0.04	2.63 ± 0.10	2.45 ± 0.02	2.30 ± 0.10	2.46 ± 0.04
CONCRETE	1030	8	3.24 ± 0.09	2.64 ± 0.06	2.88 ± 0.06	3.02 ± 0.02	3.13 ± 0.02	3.28 ± 0.01	3.23 ± 0.01	3.06 ± 0.03	3.09 ± 0.01	3.05 ± 0.02
ENERGY	768	8	1.81 ± 0.19	0.91 ± 0.12	0.58 ± 0.05	0.56 ± 0.04	0.60 ± 0.03	2.17 ± 0.02	1.13 ± 0.02	0.95 ± 0.09	0.68 ± 0.02	0.54 ± 0.02
KIN8NM	8192	8	-0.86 ± 0.38	-1.2 ± 0.03	-1.15 ± 0.01	-1.12 ± 0.01	-1.05 ± 0.00	-0.81 ± 0.01	-0.83 ± 0.01	-0.92 ± 0.02	N/A±0.00	N/A±0.00
POWER	9568	4	3.35 ± 0.22	2.74 ± 0.02	2.69 ± 0.00	2.92 ± 0.00	2.90 ± 0.00	2.83 ± 0.01	2.88 ± 0.00	2.81 ± 0.00	N/A±0.00	N/A±0.00
PROTEIN	45730	9	2.84 ± 0.04	2.87 ± 0.0	2.85 ± 0.00	2.87 ± 0.00	2.96 ± 0.02	3.00 ± 0.00	2.99 ± 0.00	2.90 ± 0.00	N/A±0.00	N/A±0.00
RED WINE	1588	11	0.97 ± 0.02	$0.76 {\pm} 0.08$	0.97 ± 0.06	0.97 ± 0.02	1.20 ± 0.04	1.01 ± 0.02	0.97 ± 0.02	1.01 ± 0.02	1.04 ± 0.01	0.26 ± 0.03
YACHT	308	6	2.37 ± 0.55	0.29 ± 0.1	0.59 ± 0.11	-0.02 ± 0.07	0.59±0.13	1.11 ± 0.04	1.22 ± 0.18	0.79 ± 0.11	1.03 ± 0.03	0.10 ± 0.05
NAVAL	11934	16	-7.25 ± 0.08	-6.76 ± 0.1	-7.21 ± 0.06	-5.62 ± 0.04	-4.11 ± 0.00	-2.80 ± 0.00	-2.80 ± 0.00	-2.97 ± 0.14	-7.13 ± 0.02	N/A±0.00
Mean Rank			5.5	2.06	2.22	3.33	4.94	7	6.11	4.83		

Table 1: The table shows the average test NLL on several UCI regression datasets. We train on random 90% of the data and predict on 10%. This is repeated 10 times and we report mean and standard deviation. The results for our competitors are taken from Ma and Hernández-Lobato [2021].

Classification

Classification

		FMNIST			CIFAR 10	
Model	Accuracy	NLL	OOD-AUC	Accuracy	NLL	OOD-AUC
GWI-net	93.25 ±0.09	0.250 ± 0.00	0.959 ±0.01	83.82 ± 0.00	0.553 ± 0.00	0.618 ± 0.00
FVI	$91.60 {\pm} 0.14$	$0.254{\pm}0.05$	0.956 ± 0.06	77.69 ± 0.64	$0.675 {\pm} 0.03$	$0.883 {\pm} 0.04$
MFVI	91.20 ± 0.10	$0.343 {\pm} 0.01$	$0.782 {\pm} 0.02$	76.40 ± 0.52	1.372 ± 0.02	$0.589 {\pm} 0.01$
MAP	91.39±0.11	$0.258 {\pm} 0.00$	$0.864 {\pm} 0.00$	77.41 ± 0.06	$0.690 {\pm} 0.00$	$0.809 {\pm} 0.01$
KFAC-LAPLACE	84.42 ± 0.12	0.942 ± 0.01	$0.945 {\pm} 0.00$	72.49 ± 0.20	1.274 ± 0.01	$0.548 {\pm} 0.01$
RITTER et al.	$91.20 {\pm} 0.07$	$0.265 {\pm} 0.00$	$0.947 {\pm} 0.00$	$77.38{\pm}0.06$	$0.661 {\pm} 0.00$	$0.796 {\pm} 0.00$

Table 2: We report average accuracy, NLL and OOD-AUC on test data for 10 different train/test splits.

References I

- Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media, 2012.
- Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In International conference on machine learning, pages 1683–1691. PMLR, 2014.
- Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688. Citeseer, 2011.
- Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of approximate inference in bayesian neural networks. Advances in Neural Information Processing Systems, 33:15897–15908, 2020.

References II

- Chao Ma, Yingzhen Li, and José Miguel Hernández-Lobato. Variational implicit processes. In International Conference on Machine Learning, pages 4222–4233. PMLR, 2019.
- Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian neural networks. arXiv preprint arXiv:1903.05779, 2019.
- Tim GJ Rudner, Zonghao Chen, and Yarin Gal. Rethinking function-space variational inference in bayesian neural networks. In Third Symposium on Advances in Approximate Bayesian Inference, 2020.
- Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on stochastic process generators. Advances in Neural Information Processing Systems, 34, 2021.

References III

- David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and Mark van der Wilk. Understanding variational inference in function-space. arXiv preprint arXiv:2011.09421, 2020.
- Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized variational inference: Three arguments for deriving new posteriors. arXiv preprint arXiv:1904.02063, 2019.
- Matthias Gelbrich. On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces. Mathematische Nachrichten, 147(1):185–203, 1990.
- Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.
- Ching-An Cheng and Byron Boots. Variational inference for gaussian process models with linear complexity. Advances in Neural Information <u>Processing Systems</u>, 30, 2017.

