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Translation-invariant kernels

Suppose that Φ : R→ R is continuous and integrable.

Translation-invariant kernel
A positive-definite kernel  : R × R→ R is translation-invariant if

 (G, H) = Φ(G − H) for all G, H ∈ R.

 (G, H) = f2 21−a

Γ(a)

(√
2a |G − H |
_

)a
Ka

(√
2a |G − H |
_

)
(Matérn)

 (G, H) = 1
1 + (G − H)2/_2 (Cauchy)

 (G, H) = exp
(
− (G − H)

2

2_2

)
(Gaussian)
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Reproducing kernel Hilbert spaces

Let Ω be a set.

Reproducing kernel Hilbert space
Every PD kernel  : Ω ×Ω→ R induces a unique reproducing kernel
Hilbert space � (Ω) of functions 5 : Ω→ R. The RKHS is equipped
with the inner product 〈·, ·〉 and the associated norm ‖·‖ .

Restriction of an RKHS
Let Ω ⊂ R. The RKHS � (Ω) is a restriction of � (R):

5 ∈ � (Ω) ⇐⇒ there is en extension 54 ∈ � (R) s.t. 54 |Ω = 5 .
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Constants in the RKHS

Recall that we assume Φ : R→ R is integrable and  (G, H) = Φ(G − H).

Lemma [standard]

� (R) ⊂ !2(R)

Corollary
Non-trivial constant functions are not elements of � (R).

When are constant functions in � (Ω) if Ω ⊂ R is a bounded
interval?
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Length-scale estimation and flat limits

In Gaussian process interpolation, the maximum likelihood estimate of the
length-scale _ > 0 is

_ML = arg min
_>0

[
.T _ (-, -). + log det _ (-, -)

]
,

where . ∈ R= are the observed data at points - = {G1, . . . , G=}.

Theorem [Karvonen & Oates 2022]
Suppose that
• The data are constant, in that . = (2, . . . , 2) ∈ R= for some 2 ∈ R;
• 1 ∈ � (Ω) for some interval Ω that contains the origin.

Then
_ML = ∞.

Karvonen & Oates (2022). Maximum likelihood estimation in Gaussian process
regression is ill-posed. arXiv:2203.09179.
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Locality

Tentative Definition I — locality via constant functions
A translation-invariant kernel  is local if 1 ∈ � (Ω) for some
bounded interval Ω ⊂ R.

Tentative Definition II — locality via bounded support
A translation-invariant kernel  is local if � (R) contains a function
supported on some bounded interval Ω ⊂ R.

Tentative Definition III — locality via length-scale
A translation-invariant kernel  is local if � (R) does not depend on
the length-scale _.

Example: Matérns are local by any of these definitions, Cauchy and
Gaussian by none.
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Analyticity

Analytic function
A function 5 : R→ R is analytic with convergence radius A > 0 if for
every G0 ∈ R the function is given by its Taylor series at G0:

5 (G) =
∞∑
==0

5 (=) (G0)
=!

(G − G0)= for all |G − G0 | < A.

Theorem [Sun & Zhou 2008, Theorem 1]

If  is a translation-invariant kernel of the form  (G, H) = i((G − H)2)
for an analytic function i with convergence radius A > 0, then every
function in � (R) is analytic with convergence radius 1

2
√
A .

Sun & Zhou (2008). Reproducing kernel Hilbert spaces associated with analytic
translation-invariant Mercer kernels. Journal of Fourier Analysis and Applications.
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Globality

Analyticity implies globality or non-locality.

Theorem [Sun & Zhou 2008, Theorem 3]
If  is an analytic translation-invariant kernel and Ω ⊂ R is any
interval, then � (Ω) = � (R):

5 ∈ � (R) ⇐⇒ 5 |Ω ∈ � (Ω).

Corollary
If  is an analytic translation-invariant kernel and Ω ⊂ R is any
interval, then 1 ∉ � (Ω).

Proof. 5 ≡ 1 is analytic but 5 ∉ !2 (R) ⊃ � (R). Thus 5 |Ω ∉ � (Ω). �

Example: Gaussian and Cauchy are analytic and hence global.
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Fourier characterisation

Let
5̂ (C) =

∫
R
5 (G)4−8GC dC

be the Fourier transform.
Theorem [standard]
Let  (G, H) = Φ(G − H) be a translation-invariant kernel. Then � (R)
contains every function 5 ∈ !2(R) such that

‖ 5 ‖2 =
1
√

2c

∫
R

| 5̂ (C) |2

Φ̂(C)
dC < ∞. (1)

To prove that 5 : Ω→ R is an element of � (Ω) for Ω ( R, one thus
has to construct an extension 54 ∈ !2(R) which satisfies the Fourier
decay condition (1).
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Examples of Fourier transforms

 =Matérn

Φ̂(C) ∝
(
2a
_2 + C

2
)−(a+1/2)

 = Cauchy

Φ̂(C) ∝ exp(−_ |C |)

 = Gaussian

Φ̂(C) ∝ exp
(
− _

2C2

2

)
Note: Exponentially decaying 5̂ =⇒ 5 is analytic
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Moment determinacy

The Fourier transform Φ̂ of  defines the spectral measure U(C) = Φ̂(C) s.t.

 (G, H) = Φ(G − H) =
∫
R
48 (G−H)CU(dC).

The spectral measure has the moments

2= = Φ
(=) (0) = 8=

∫
R
C=U(dC).

The Hamburger moment problem for U is said to be determinate if there is no
other measure with the moments (2=)∞==0.

Theorem [Dette & Zhigljavsky 2021, Theorem 1.1]
Let Ω ⊂ R be any interval. If the Hamburger moment problem for U is
determinate, then 1 ∉ � (Ω).

Dette & Zhigljavsky (2021). Reproducing kernel Hilbert spaces, polynomials,
and the classical moment problem. SIAM/ASA Journal on Uncertainty Quantification.
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Beurling–Malliavin for translation-invariant kernels
A fact of Fourier analysis: If 5 has bounded support, 5̂ cannot be too small.

Beurling–Malliavin for kernels (tentative)
Let Ω ⊂ R be a bounded interval. Then 1 ∈ � (Ω) if there is a
Lipschitz function l : R→ [0,∞) and a constant U > 0 such that

4−l ( b ) ≤ U Φ̂(b) for all b ∈ R (BM-1)

and ∫
R

l(b)
1 + b2 db < ∞. (BM-2)

Example: Φ̂(b) = (1+ b2)−? for ? > 1/2. [l(b) = log(1 + b2) ?]
Example: Φ̂(b) = exp(− |b |V) for V ∈ (0, 1). [l(b) = |b |V]
Non-example: Φ̂(b) = exp(− |b |V) for V ≥ 1. [l(b) = |b |V & |b |]

Beurling & Malliavin (1962). On Fourier transforms of measures with compact
support. Acta Mathematica.
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Orthonormal basis of an RKHS

Basic Result
Let � be an infinitely countable index set. If the RKHS � (R) is
separable and (k<)<∈� is any orthonormal basis of � (R), then

 (G, H) =
∑
<∈�

k<(G)k<(H) for all G, H ∈ R.

Theorem [Tronarp & Karvonen 2022, Theorem 1.1]
Let  (G, H) = Φ(G − H) be a translation-invariant kernel. If (i<)<∈� is
an orthonormal basis of !2(R) and ℎ s.t. | ℎ̂(C) | = Φ̂(C)1/2, then

k<(G) =
∫
R
ℎ(G − g)i<(g) dg

form an orthonormal basis of � (R).

Tronarp & Karvonen (2022). Orthonormal expansions for translation-invariant
kernels. arXiv:2206.08648.
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Orthonormal basis for Matérn-a

ka,<(G) =
1
√

2_
a!

√
(2a)!

a+1∑
:=0

(
a + 1
:

)
(−1): i<+:,_(G)︸      ︷︷      ︸

Laguerre func.

[< ∈ Z]
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−0.5

0
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ν = 2

0 10 20 30 40

−0.5

0

0.5

ν = 9

Tronarp & Karvonen (2022). Orthonormal expansions for translation-invariant
kernels. arXiv:2206.08648. 13 / 20



Laguerre functions

The Laguerre functions are

i<,_(G) = L<(2_G)4−_G1[0,∞) (G),
i−<−1,_(G) = −L<(−2_G)4_G1(−∞,0) (G)

for < ∈ N0.

For non-negative indices the RKHS basis functions simplify to

k
(a)
<,_
(G) = a!

√
(2a)!

<!
(< + a + 1)! (2_G)

a+1L(a+1)< (2_G)4−_G1[0,∞) (G).
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Orthonormal basis for Cauchy

U<,W=1/_ (G) =
W

2
(−1)< (8G)<
(G2 + W2)<+1

<+1∑
:=0

(
< + 1
:

)
(8G):W<+1−:

(
1 − (−1)<+1−:

)
[< ∈ N0]

V<,W=1/_ (G) =
W

82
(−1)< (8G)<
(G2 + W2)<+1

<+1∑
:=0

(
< + 1
:

)
(8G):W<+1−:

(
1 + (−1)<+1−:

)
[< ∈ N0]

−4 −2 0 2 4
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m = 0 m = 3

m = 1 m = 4

m = 2 m = 5

Tronarp & Karvonen (2022). Orthonormal expansions for translation-invariant
kernels. arXiv:2206.08648.

15 / 20



Orthonormal basis for Gaussian

k<(G) =
(
2
√

2
3

)1/2√ 1
6<<!

exp
(
− _

2G2

3

)
H<

(
2_G
√

3

)
[< ∈ N0]

−8 −6 −4 −2 0 2 4 6 8
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1

m = 0 m = 3

m = 1 m = 4

m = 2 m = 5

Tronarp & Karvonen (2022). Orthonormal expansions for translation-invariant
kernels. arXiv:2206.08648.
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Globally analytic kernels may be problematic

Let

V(G | -=) =  (G, G) −  (G, -=)T (-=, -=)−1 (G, -=)

be the Gaussian process posterior variance given data at = points -=.

Theorem [Karvonen 2022]
Let Ω = [−1, 1] and -= = {G1, . . . , G=} ⊂ Ω be any pairwise distinct
points. If  (G, H) = exp(−(G − H)2/(2_2)) is the Gaussian kernel, then

�_,1=
−1/2

(
4

4_2

)=
=−= ≤ sup

G∈[−1,1]
V(G | -=) ≤ �_,2=−1

(
84
_2

)=
=−=

for certain positive constants �_,1 and �_,2.

Karvonen (2022). Worst-case analysis of approximation in the Hilbert space of
the Gaussian kernel. In preparation.
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Locally convergenc analytic kernels are probably fine

Theorem
Let Ω = [−0, 0] and -= = {G1, . . . , G=} ⊂ Ω be any pairwise distinct
points. If  (G, H) = 1/(1 + (G − H)2/_2) is the Cauchy kernel, then

sup
G∈[−0,0]

V(G | -=) ≤ �_ =−1/2
(
1602

_2

)=
(2)

for a certain positive constant �_.

Proof. Error formula for polynomial interpolation + derivative bound
for RKHS functions + Stirling’s approximation of the factorial. �

Observe: The rhs in (2) tends to zero if and only if 0 < 1
4_.
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Local kernels are fine

Theorem [standard]
Let  be a Matérn kernel. Then

sup
G∈[−1,1]

V(G | -=) → 0 as =→∞

if and only if -= is space-filling, in that

ℎ(-=) = sup
G∈[−1,1]

min
8=1,...,=

|G − G8 | → 0 as =→∞.

More Precise Theorem [standard]

If (-=)∞==1 is quasi-uniform on sufficiently regular and bounded Ω ⊂ R3
and  is a 3-dimensional translation-invariant Matérn-a kernel, then

sup
G∈Ω
V(G | -=) � =−2a/3 .
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Conclusion

• Finitely differentiable kernels are local, analytic kernels are non-local.

• It may be dangerous to use a non-local translation-invariant kernel.

• If you really have to or want to, use Cauchy not Gaussian.
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