# Quadrature in reproducing kernel Hilbert spaces with repulsive point processes

#### Rémi Bardenet

CNRS & CRIStAL, Univ. Lille, France











Figure: Adrien Hardy, Ayoub Belhadji, Pierre Chainais

| PI | an |
|----|----|
|    |    |

Prologue: Determinantal point processes

**Numerical integration** 

Tight interpolation rates in RKHSs

Plan

Prologue: Determinantal point processes

**Numerical integration** 

Tight interpolation rates in RKHSs

#### How do you describe a point process?

- Let  $\mathcal{X}$  be a complete metric space, with  $\mu$  a Borel measure.
- ightharpoonup A point process is a random configuration of points in  $\mathcal{X}$ .



▶ Correlation intensitities  $(\rho_n)$ , are defined by

$$\mathbb{E}\left[N(D_1)\dots N(D_n)\right] = \int \rho_n(x_1,\dots,x_n) \mathrm{d}\mu(x_1)\dots \mathrm{d}\mu(x_n), \quad n\geqslant 1.$$

## How do you describe a point process?

- Let  $\mathcal{X}$  be a complete metric space, with  $\mu$  a Borel measure.
- ightharpoonup A point process is a random configuration of points in  $\mathcal{X}$ .



▶ Correlation intensitities  $(\rho_n)$ , are defined by

$$\mathbb{E}\left[N(D_1)\dots N(D_n)\right] = \int \rho_n(\mathbf{x}_1,\dots,\mathbf{x}_n) \mathrm{d}\mu(\mathbf{x}_1)\dots \mathrm{d}\mu(\mathbf{x}_n), \quad n\geqslant 1.$$

The Poisson process corresponds, e.g., to  $\rho_n(x_1,\ldots,x_n) = \lambda(x_1)\ldots\lambda(x_n), \ \mathrm{d}\mu = \mathrm{d}x.$ 

## How do you describe a point process?

- Let  $\mathcal{X}$  be a complete metric space, with  $\mu$  a Borel measure.
- ightharpoonup A point process is a random configuration of points in  $\mathcal{X}$ .



▶ Correlation intensitities  $(\rho_n)$ , are defined by

$$\mathbb{E}\left[N(D_1)\dots N(D_n)\right] = \int \rho_n(x_1,\dots,x_n) \mathrm{d}\mu(x_1)\dots \mathrm{d}\mu(x_n), \quad n\geqslant 1.$$

▶ A DPP is defined by  $\rho_n(x_1, ..., x_n) = \det (K(x_i, x_j))_{1 \le i, j \le n}$ 

- $\blacktriangleright \mathbb{E}[N(X)] = \int K(x,x) \mathrm{d}\mu(x).$
- ▶ If K(x,y) is the kernel of a projection of rank r in  $L^2(\mu)$ , then  $X \sim \mathsf{DPP}(K,\mu)$  has cardinality r, almost surely.
- ▶ Interaction can be read in

$$\rho_{2}(x,y) = K(x,x)K(y,y) - K(x,y)K(y,x) 
= \rho_{1}(x)\rho_{1}(y) - |K(x,y)|^{2} \leq \rho_{1}(x)\rho_{1}(y) 
y) = \overline{K(y,x)}$$

ightharpoonup For finite  $\mathcal{X}$ , take  $\mu$  to be the counting measure, the correlation intensities read

$$\mathbb{P}_{X \sim \mathsf{DPP}(K,\mu)}(A \subset X) = \det K(i,j)_{i,j \in A} = \det \mathsf{K}_A$$

## Basic properties, assuming existence

- $\blacktriangleright \mathbb{E}[N(X)] = \int K(x,x) \mathrm{d}\mu(x).$
- If K(x, y) is the kernel of a projection of rank r in  $L^2(\mu)$ , then  $X \sim \mathsf{DPP}(K, \mu)$  has cardinality r, almost surely.
- Interaction can be read in

$$\rho_2(x,y) = K(x,x)K(y,y) - K(x,y)K(y,x) 
= \rho_1(x)\rho_1(y) - |K(x,y)|^2 \le \rho_1(x)\rho_1(y)$$

if  $K(x,y) = \overline{K(y,x)}$ .

▶ For finite  $\mathcal{X}$ , take  $\mu$  to be the counting measure, the correlation intensities read

$$\mathbb{P}_{X \sim \mathsf{DPP}(K,\mu)}(A \subset X) = \det K(i,j)_{i,j \in A} = \det \mathbf{K}_A$$

#### Basic properties, assuming existence

- $\blacktriangleright \mathbb{E}[N(X)] = \int K(x,x) d\mu(x).$
- ▶ If K(x,y) is the kernel of a projection of rank r in  $L^2(\mu)$ , then  $X \sim \mathsf{DPP}(K,\mu)$  has cardinality r, almost surely.
- Interaction can be read in

$$\rho_2(x,y) = K(x,x)K(y,y) - K(x,y)K(y,x) 
= \rho_1(x)\rho_1(y) - |K(x,y)|^2 \le \rho_1(x)\rho_1(y).$$

if 
$$K(x,y) = \overline{K(y,x)}$$
.

For finite  $\mathcal{X}$ , take  $\mu$  to be the counting measure, the correlation intensities read

$$\mathbb{P}_{X \sim \mathsf{DPP}(K,\mu)}(A \subset X) = \det K(i,j)_{i,j \in A} = \det \mathbf{K}_A$$

#### Basic properties, assuming existence

- $\blacktriangleright \mathbb{E}[N(X)] = \int K(x,x) \mathrm{d}\mu(x).$
- ▶ If K(x,y) is the kernel of a projection of rank r in  $L^2(\mu)$ , then  $X \sim \mathsf{DPP}(K,\mu)$  has cardinality r, almost surely.
- Interaction can be read in

$$\rho_2(x,y) = K(x,x)K(y,y) - K(x,y)K(y,x) 
= \rho_1(x)\rho_1(y) - |K(x,y)|^2 \le \rho_1(x)\rho_1(y).$$

if  $K(x,y) = \overline{K(y,x)}$ .

For finite  $\mathcal{X}$ , take  $\mu$  to be the counting measure, the correlation intensities read

$$\mathbb{P}_{X \sim \mathsf{DPP}(K,\mu)}(A \subset X) = \det K(i,j)_{i,j \in A} = \det \mathbf{K}_A.$$

#### Theorem (Macchi 1975; Soshnikov 2002)

If K defines a self-adjoint, trace-class operator on  $L^2(\mu)$ , then  $DPP(K, \mu)$  exists iff the spectrum of K in is [0, 1].

- ▶ For instance, take  $K(x,y) = \rho \exp(-\|x-y\|^2/\alpha^2)$  and  $\mu$  Lebesgue.
- ▶ Fourier arguments¹ show that the DPP exists iff

$$\rho(\sqrt{\pi}\alpha)^d \exp(-\|\pi\alpha x\|^2) \leqslant 1,$$





<sup>&</sup>lt;sup>1</sup>Lavancier, Møller, and Rubak 2014.

Let  $K(x, y) = \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)$ .

- **1.** sample  $B_k \sim \text{Ber}(\lambda_k)$ , for all k.
- **2.** letting  $N = \sum_k B_k$  and

$$\tilde{K}(x,y) = \sum_{k\geqslant 0} B_k \varphi_k(x) \varphi_k(y),$$

sample

$$(x_1,\ldots,x_N \sim \det\left( ilde{K}(x_i,x_j)
ight)_{1\leqslant i,j\leqslant N}$$

<sup>&</sup>lt;sup>2</sup>Hough, Krishnapur, Peres, and Virág 2006.

Let 
$$K(x, y) = \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)$$
.

- **1.** sample  $B_k \sim \text{Ber}(\lambda_k)$ , for all k.
- **2.** letting  $N = \sum_k B_k$  and

$$\tilde{K}(x,y) = \sum_{k\geqslant 0} B_k \varphi_k(x) \varphi_k(y),$$

sample

$$x_1, \ldots, x_N \sim \det \left( \tilde{K}(x_i, x_j) \right)_{1 \leqslant i, j \leqslant N}$$

<sup>&</sup>lt;sup>2</sup>Hough, Krishnapur, Peres, and Virág 2006.

Let  $K(x, y) = \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)$ .

- **1.** sample  $B_k \sim \text{Ber}(\lambda_k)$ , for all k.
- **2.** letting  $N = \sum_k B_k$  and

$$\tilde{K}(x,y) = \sum_{k\geqslant 0} B_k \varphi_k(x) \varphi_k(y),$$

sample

$$x_1, \ldots, x_N \sim \det \left( \tilde{K}(x_i, x_j) \right)_{1 \leqslant i, j \leqslant N}$$

$$\overset{\times}{x_1}$$

 $\widetilde{K}(x_1,\cdot)$ 

<sup>&</sup>lt;sup>2</sup>Hough, Krishnapur, Peres, and Virág 2006.

Let  $K(x, y) = \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)$ .

- **1.** sample  $B_k \sim \text{Ber}(\lambda_k)$ , for all k.
- 2. letting  $N = \sum_k B_k$  and

$$\tilde{K}(x,y) = \sum_{k\geqslant 0} B_k \varphi_k(x) \varphi_k(y),$$

sample

$$x_1, \ldots, x_N \sim \det \left( \tilde{K}(x_i, x_j) \right)_{1 \leqslant i, j \leqslant N}$$

 $\overset{\times}{x_1}$ 





<sup>&</sup>lt;sup>2</sup>Hough, Krishnapur, Peres, and Virág 2006.

Let  $K(x, y) = \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y)$ .

- **1.** sample  $B_k \sim \text{Ber}(\lambda_k)$ , for all k.
- 2. letting  $N = \sum_k B_k$  and

$$\tilde{K}(x,y) = \sum_{k\geqslant 0} B_k \varphi_k(x) \varphi_k(y),$$

sample

$$x_1, \ldots, x_N \sim \det \left( \tilde{K}(x_i, x_j) \right)_{1 \leq i, j \leq N}$$

 $\overset{\times}{x_2}$ 

$$\overset{\times}{x_3}$$

 $ilde{K}(x_2,\cdot)$ 

<sup>&</sup>lt;sup>2</sup>Hough, Krishnapur, Peres, and Virág 2006.

#### Plan

Prologue: Determinantal point processes

## **Numerical integration**

Tight interpolation rates in RKHSs

## The goal is to approximate

$$\int f d\mu = \int f(x)\omega(x)dx \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i).$$

- $\blacktriangleright$  How to choose the nodes  $x_i$ ?
- ▶ How to choose the weights  $w_i$ ?

## Monte Carlo integration (importance sampling, MCMC, etc.)

- ▶ Choose the nodes randomly, and the weights  $w_i = w(x_i, x_{-i})$ .
- ► Typical error is

$$\sqrt{\mathbb{E}\left[\int f\mathrm{d}\mu - \sum_{i=1}^{N} w_i f(x_i)
ight]^2} \sim \frac{1}{\sqrt{N}}.$$

#### **Projection DPPs**

- ▶ Let  $(\varphi_k)_{k=0,...,N-1}$  be an orthonormal sequence in  $L^2(\mu)$ .
- Let  $K(x,y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$ .

## Definition (Hough, Krishnapur, Peres, and Virág 2006)

 $X = \{x_1, \dots, x_N\}$  is the DPP with kernel  ${
m K}$  and reference measure  $\mu$  if

$$x_1,\ldots,x_N\sim rac{1}{N!} {\sf det}\left[{
m K}(x_i,x_\ell)
ight]_{i,\ell=1}^N {
m d}\mu(x_1)\ldots {
m d}\mu(x_N).$$

**1.** If  $\mu = \sum_{\mathbf{x} \in \mathcal{X}} \delta_{\mathbf{x}}$ , one recovers

$$\mathbb{P}(A \subset X) = \det \mathbf{K}_A.$$

- 2.  $x_1 \sim \frac{1}{N} \mathbb{K}(x, x) \mathrm{d}\mu(x)$  so that  $\mathbb{E} \sum_{j=1}^N \frac{f(x_j)}{\mathbb{K}(x_j, y_j)} = \int f \mathrm{d}\mu$ .
- 3. A natural choice of  $\varphi_k: \mathbb{R}^d \to \mathbb{R}$  is orthogonal polynomials w.r.t.  $\mu$

#### **Projection DPPs**

- Let  $(\varphi_k)_{k=0,...,N-1}$  be an orthonormal sequence in  $L^2(\mu)$ .
- Let  $K(x,y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$ .

# Definition (Hough, Krishnapur, Peres, and Virág 2006)

 $X = \{x_1, \dots, x_N\}$  is the DPP with kernel K and reference measure  $\mu$  if

$$x_1,\ldots,x_N\sim rac{1}{N!} {\sf det} \left[{
m K}ig(x_i,x_\ellig)
ight]_{i,\ell=1}^N {
m d} \mu(x_1)\ldots {
m d} \mu(x_N).$$

**1.** If  $\mu = \sum_{x \in \mathcal{X}} \delta_x$ , one recovers

$$\mathbb{P}(A \subset X) = \det \mathbf{K}_A.$$

2. 
$$x_1 \sim \frac{1}{N} \mathrm{K}(x, x) \mathrm{d}\mu(x)$$
 so that  $\mathbb{E} \sum_{i=1}^{N} \frac{f(x_i)}{\mathrm{K}(x_i, x_i)} = \int f \mathrm{d}\mu$ .

3. A natural choice of  $\phi_{\ell}: \mathbb{R}^d \to \mathbb{R}$  is orthogonal polynomials w.r.t.  $\mu$ 

#### **Projection DPPs**

- Let  $(\varphi_k)_{k=0,...,N-1}$  be an orthonormal sequence in  $L^2(\mu)$ .
- Let  $K(x,y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$ .

## Definition (Hough, Krishnapur, Peres, and Virág 2006)

 $X = \{x_1, \dots, x_N\}$  is the DPP with kernel K and reference measure  $\mu$  if

$$x_1, \dots, x_N \sim \frac{1}{N!} \mathsf{det} \left[ \mathrm{K}(x_i, x_\ell) \right]_{i,\ell=1}^N \mathrm{d} \mu(x_1) \dots \mathrm{d} \mu(x_N).$$

1. If  $\mu = \sum_{x \in \mathcal{X}} \delta_x$ , one recovers

$$\mathbb{P}(A \subset X) = \det \mathbf{K}_A.$$

- 2.  $x_1 \sim \frac{1}{N} K(x, x) d\mu(x)$  so that  $\mathbb{E} \sum_{i=1}^N \frac{f(x_i)}{K(x_i, x_i)} = \int f d\mu$ .
- **3.** A natural choice of  $\varphi_k : \mathbb{R}^d \to \mathbb{R}$  is orthogonal polynomials w.r.t.  $\mu$ .

# Multivariate orthogonal polynomial ensembles<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>Gautier, Bardenet, Polito, and Valko 2019.

## Theorem (Bardenet and Hardy 2020)

Let  $\mu(\mathrm{d}x) = \omega(x)\mathrm{d}x$  with  $\omega$  separable,  $\mathscr{C}^1$ , positive on  $(-1,1)^d$ , and satisfying a regularity assumption. Let  $\varepsilon > 0$ . If  $x_1, \ldots, x_N$  stands for the associated OPE, then for  $f \mathscr{C}^1$  vanishing outside  $[-1 + \varepsilon, 1 - \varepsilon]^d$ ,

$$\sqrt{N^{1+1/d}}\left(\sum_{i=1}^{N}\frac{f(x_i)}{\mathrm{K}(\mathsf{x}_i,\mathsf{x}_i)}-\int f(\mathsf{x})\mu(\mathrm{d}\mathsf{x})\right)\xrightarrow[N\to\infty]{law}\mathcal{N}\big(0,\Omega_{f,\omega}^2\big),$$

where

$$\Omega_{f,\omega}^2 = \frac{1}{2} \sum_{k_1,\ldots,k_d=0}^{\infty} (k_1 + \cdots + k_d) \widehat{\left(\frac{f\omega}{\omega_{eq}^{\otimes d}}\right)} (k_1,\ldots,k_d)^2,$$

and 
$$\omega_{eq}^{\otimes d}(x) = \pi^{-d}(1-x^2)^{-1/2}$$
.

As you would probably have seen in PO Amblard's talk<sup>4</sup>, for  $\mu = dx$ , assumptions can be relaxed and K be taken such that  $K(x, x) \propto 1$ .

<sup>&</sup>lt;sup>4</sup>CoMaAm21

#### Plan

Prologue: Determinantal point processes

**Numerical integration** 

Tight interpolation rates in RKHSs

Consider the RKHS  $\mathcal{F}$  with kernel  $\kappa$ , i.e. the completion of

$$\left\{\sum_{i=1}^{M} \alpha_{i} \kappa(x_{i}, \cdot), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\}.$$

for the inner product defined by  $\langle \kappa(x,\cdot), \kappa(y,\cdot) \rangle_{\mathcal{F}} := \kappa(x,y)$ .

▶ Under general assumptions,  $\mathcal{F} \subset L^2(\mathrm{d}\mu)$ , is dense, there is an ON basis  $(e_n)$  of  $L^2(\mathrm{d}\mu)$  and  $\sigma_n \to 0$  such that, pointwise,

$$\kappa(x,y) = \sum_{n>1} \sigma_n e_n(x) e_n(y).$$

▶ In that case,  $f \in \mathcal{F}$  if and only if  $\sum_{n} \sigma_{n}^{-1} |\langle f, e_{n} \rangle|^{2}$  converges

▶ Consider the RKHS  $\mathcal{F}$  with kernel  $\kappa$ , i.e. the completion of

$$\left\{\sum_{i=1}^{M} \alpha_{i} \kappa(x_{i}, \cdot), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\}.$$

for the inner product defined by  $\langle \kappa(x,\cdot), \kappa(y,\cdot) \rangle_{\mathcal{F}} := \kappa(x,y)$ .

▶ Under general assumptions,  $\mathcal{F} \subset L^2(\mathrm{d}\mu)$ , is dense, there is an ON basis  $(e_n)$  of  $L^2(\mathrm{d}\mu)$  and  $\sigma_n \to 0$  such that, pointwise,

$$\kappa(x,y) = \sum_{n \ge 1} \sigma_n e_n(x) e_n(y).$$

▶ In that case,  $f \in \mathcal{F}$  if and only if  $\sum_{n} \sigma_{n}^{-1} |\langle f, e_{n} \rangle|^{2}$  converges.

 $\blacktriangleright$  Consider the RKHS  $\mathcal{F}$  with kernel  $\kappa$ , i.e. the completion of

$$\left\{\sum_{i=1}^{M} \alpha_{i} \kappa(x_{i}, \cdot), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\}.$$

for the inner product defined by  $\langle \kappa(x,\cdot), \kappa(y,\cdot) \rangle_{\mathcal{F}} := \kappa(x,y)$ .

▶ Under general assumptions,  $\mathcal{F} \subset L^2(\mathrm{d}\mu)$ , is dense, there is an ON basis  $(e_n)$  of  $L^2(\mathrm{d}\mu)$  and  $\sigma_n \to 0$  such that, pointwise,

$$\kappa(x,y) = \sum_{n>1} \sigma_n e_n(x) e_n(y).$$

▶ In that case,  $f \in \mathcal{F}$  if and only if  $\sum_{n} \sigma_{n}^{-1} |\langle f, e_{n} \rangle|^{2}$  converges.

## Quadrature and approximation in an RKHS

▶ Let  $f \in \mathcal{F}$ ,  $g \in L^2(d\mu)$  then

$$\left| \int f g d\mu - \sum_{i=1}^{N} w_i f(x_i) \right| \leqslant \|f\|_{\mathcal{F}} \left\| \mu_g - \sum_{i=1}^{N} w_i \kappa(x_i, .) \right\|_{\mathcal{F}}, \quad (1)$$

where

$$\mu_{g} = \int g(x)\kappa(x,.)\mathrm{d}\mu(x)$$

is the mean element of g.

Once the nodes  $x_1, \ldots, x_N$  are known, minimizing the RHS of (1) in w boils down to inverting an  $N \times N$  matrix.

▶ Let  $f \in \mathcal{F}$ ,  $g \in L^2(d\mu)$  then

$$\left| \int f g d\mu - \sum_{i=1}^{N} w_i f(x_i) \right| \leqslant \|f\|_{\mathcal{F}} \|\mu_g - \sum_{i=1}^{N} w_i \kappa(x_i, .)\|_{\mathcal{F}}, \qquad (1)$$

where

$$\mu_g = \int g(x) \kappa(x,.) \mathrm{d}\mu(x)$$

is the mean element of g.

▶ Once the nodes  $x_1, ..., x_N$  are known, minimizing the RHS of (1) in w boils down to inverting an  $N \times N$  matrix.

Remember  $\kappa(x, y) = \sum_{n \ge 1} \sigma_n e_n(x) e_n(y)$ .

## Algorithm 1: DPP

- ► Take  $K(x, y) = \sum_{n=1}^{N} e_n(x)e_n(y)$ .
- ▶ Let  $x_1, \ldots, x_N \sim 1/N! \det[K(x_i, x_i)] d\mu(x_1) \ldots d\mu(x_N)$ .
- ▶ Solve the linear problem for the weights  $w_1, \ldots, w_N$ .

## Theorem (Belhadji, Bardenet, and Chainais 2019)

Assume 
$$\sum_{n=1}^{N} |\langle g, e_n \rangle|^2 \leqslant 1$$
. Let  $r_N = \sum_{m \geqslant N+1} \sigma_m$ , then

$$\mathbb{E}\left\|\mu_{g}-\sum_{i=1}^{N}w_{i}\kappa(x_{i},\cdot)\right\|_{\mathcal{F}}^{2} \leqslant \frac{2\sigma_{N+1}}{2}+2\left(Nr_{N}+\sum_{\ell=2}^{N}\frac{\sigma_{1}}{\ell!^{2}}\left(\frac{Nr_{N}}{\sigma_{1}}\right)^{\ell}\right).$$

## A DPP for quadrature in RKHSs: first attempt, sharper bound

Remember  $\kappa(x, y) = \sum_{n \ge 1} \sigma_n e_n(x) e_n(y)$ .

#### Algorithm 1: DPP

- ► Take  $K(x,y) = \sum_{n=1}^{N} e_n(x)e_n(y)$ .
- ► Let  $x_1, \ldots, x_N \sim 1/N! \det[K(x_i, x_i)] d\mu(x_1) \ldots d\mu(x_N)$ .
- ▶ Solve the linear problem for the weights  $w_1, \ldots, w_N$ .

## Theorem (Belhadji 2021)

Assume 
$$\|g\|_{\omega} \leqslant 1$$
. Let  $r_N = \sum_{m \geqslant N+1} \sigma_m$ , then

$$\mathbb{E} \Big\| \mu_{g} - \sum_{i=1}^{N} w_{i} \kappa(x_{i}, \cdot) \Big\|_{\mathcal{F}}^{2} \leqslant 4 r_{N}.$$

#### 2nd attempt: volume sampling and tight rates

## Algorithm 2: volume sampling

- ► Let  $x_1, \ldots, x_N \sim Z^{-1} \det[\kappa(x_i, x_j)] d\mu(x_1) \ldots d\mu(x_N)$
- ▶ Again, solve the linear program for the weights  $w_1, ..., w_N$ .

## Theorem (Belhadji, Bardenet, and Chainais 2020b)

Assume again  $\sum_{n=1}^{N} |\langle g, e_n \rangle|^2 \leq 1$ . Then

$$\mathbb{E} \left\| \mu_{\mathsf{g}} - \sum_{i=1}^{N} w_{i} \kappa(\mathsf{x}_{i}, \cdot) \right\|_{\mathcal{F}}^{2} \leqslant \sigma_{N} \left( 1 + \beta_{N} \right),$$

where 
$$\beta_N = \min_{M \in [2:N]} \left[ (N - M + 1) \sigma_N \right]^{-1} \sum_{m \geqslant M} \sigma_m$$
.

▶ It is known<sup>5</sup> that  $\inf_{\substack{Y \subset \mathcal{F} \\ \dim Y = N}} \sup_{\|g\|_{\omega} \leqslant 1} \inf_{y \in Y} \|\mu_g - y\|_{\mathcal{F}}^2 = \sigma_{N+1}.$ 

<sup>5</sup> Pinkus 2012

#### 2nd attempt: volume sampling and tight rates

## Algorithm 2: volume sampling

- ► Let  $x_1, \ldots, x_N \sim Z^{-1} \det[\kappa(x_i, x_i)] d\mu(x_1) \ldots d\mu(x_N)$
- $\triangleright$  Again, solve the linear program for the weights  $w_1, \ldots, w_N$ .

## Theorem (Belhadji, Bardenet, and Chainais 2020b)

Assume again  $\sum_{n=1}^{N} |\langle g, e_n \rangle|^2 \leqslant 1$ . Then

$$\mathbb{E} \left\| \mu_{g} - \sum_{i=1}^{N} w_{i} \kappa(x_{i}, \cdot) \right\|_{\mathcal{F}}^{2} \leqslant \sigma_{N} \left( 1 + \beta_{N} \right),$$

where 
$$\beta_N = \min_{M \in [2:N]} \left[ (N - M + 1) \sigma_N \right]^{-1} \sum_{m \geqslant M} \sigma_m$$
.

▶ It is known<sup>5</sup> that  $\inf_{\substack{Y \subset \mathcal{F} \\ \dim Y = N}} \sup_{\|g\|_{\omega} \leqslant 1} \inf_{y \in Y} \|\mu_g - y\|_{\mathcal{F}}^2 = \sigma_{N+1}.$ 

<sup>&</sup>lt;sup>5</sup>Pinkus 2012.

## Volume sampling is a mixture of projection DPPs

- ► Remember  $\kappa(x, y) = \sum_{n \ge 1} \sigma_n e_n(x) e_n(y)$ .
- ▶ For  $U \subset \mathbb{N}^*$  define the projection kernel

$$K_U(x,y) = \sum_{u \in U} e_u(x)e_u(y). \tag{2}$$

For  $N \in \mathbb{N}^*$ , we have

$$\det \kappa(x_i, x_j) \propto \sum_{|U|=N} \left( \prod_{u \in U} \sigma_u \right) \frac{1}{N!} \det(K_U(x_i, x_j)). \tag{3}$$

## Some graphical intuition on volume sampling

- ► Remember  $\kappa(x,y) = \sum_{n\geqslant 1} \sigma_n e_n(x) e_n(y)$ .
- ▶ Let  $(e_n^{\mathcal{F}} = \sqrt{\sigma_n} e_n)$  be ON in  $\mathcal{F}$ .



## Some graphical intuition on volume sampling

- ► Remember  $\kappa(x,y) = \sum_{n\geqslant 1} \sigma_n e_n(x) e_n(y)$ .
- ▶ Let  $(e_n^{\mathcal{F}} = \sqrt{\sigma_n} e_n)$  be ON in  $\mathcal{F}$ .



## Many open problems

- Robustness to RKHS hypothesis / model choice.
- ► Practical relevance of RKHS hypothesis.
- ▶ What should  $g \in L^2(\mu)$  be in  $\int fg d\mu$ ?
- ▶ How do we efficiently sample from continuous volume sampling without spectral knowledge? See e.g. Rezaei and Gharan 2019.
- Kernel interpolation is similar to column-subset selection for linear regression<sup>6</sup>, where DPPs and VS yield similar bounds<sup>7</sup>.

<sup>&</sup>lt;sup>6</sup>Derezinski and Mahonev 2020.

<sup>&</sup>lt;sup>7</sup>Belhadji, Bardenet, and Chainais 2020a.

#### References I

- Bardenet, R. and A. Hardy (2020). "Monte Carlo with Determinantal Point Processes". In: *Annals of Applied Probability*.
- Belhadji, A. (2021). "An analysis of Ermakov-Zolotukhin quadrature using kernels". In: Advances in Neural Information Processing Systems (NeurIPS).
- Belhadji, A., R. Bardenet, and P. Chainais (2019). "Kernel quadrature with determinantal point processes". In: Advances in Neural Information Processing Systems (NeurIPS).
- (2020a). "A determinantal point process for column subset selection". In: *Journal of Machine Learning Research (JMLR)*.
- (2020b). "Kernel interpolation with continuous volume sampling". In: International Conference on Machine Learning (ICML).
- Derezinski, M. and M. Mahoney (2020). "Determinantal Point Processes in Randomized Numerical Linear Algebra". In: arXiv preprint arXiv:2005.03185.
- Gautier, G., R. Bardenet, G. Polito, and M. Valko (2019). "DPPy: Sampling Determinantal Point Processes with Python". In: *Journal of Machine Learning Research; Open Source Software (JMLR MLOSS)*.
- Hough, J. B., M. Krishnapur, Y. Peres, and B. Virág (2006). "Determinantal processes and independence". In: *Probability surveys*.
- Lavancier, F., J. Møller, and E. Rubak (2014). "Determinantal point process models and statistical inference". In: Journal of the Royal Statistical Society, Series B. B.

#### References II

- Macchi, O. (1975). "The coincidence approach to stochastic point processes". In: *Advances in Applied Probability* 7, pp. 83–122.
- Pinkus, A. (2012). *N-widths in Approximation Theory*. Vol. 7. Springer Science & Business Media.
- Rezaei, A. and S. O. Gharan (2019). "A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes". In: *International Conference on Machine Learning*, pp. 5438–5447.
- Soshnikov, A. (2002). "Gaussian Limit for Determinantal Random Point Fields". In: *Annals of Probability* 30.1, pp. 171–187.