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Prologue: Determinantal point processes



How do you describe a point process?

> Let X be a complete metric space, with 1 a Borel measure.

» A point process is a random configuration of points in X
.X .
: ‘
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> Correlation intensitities (p,), are defined by

E[N(Dy)...N(Dp)] :/p,,(xl,...,X,,)du(xl)...du(x,,),



How do you describe a point process?

» Let A be a complete metric space, with 11 a Borel measure.

» A point process is a random configuration of points in X.

> Correlation intensitities (p,), are defined by

E[N(Dy)...N(D )]—/p,,( 1y Xn)dp(xa) .. du(xg),

» The Poisson process corresponds, e.g., to
on(x1, - xn) = A(x1) ... A(xp), du = dx.



How do you describe a point process?

> Let X be a complete metric space, with 1 a Borel measure.

» A point process is a random configuration of points in X
» Correlation intensitities (p,), are defined by

E[N(Dy)... N(D,)] = / poae ) (1) - (),

> A DPP is defined by pp(xi,...,x,) = det (K(x,',)<j))1<,.j<,7



Basic properties, assuming existence

> E[N(X)] = [ K(x,x)du(x).
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> E[N(X)] = [ K(x,x)du(x).

» If K(x,y) is the kernel of a projection of rank r in L2(p), then
X ~ DPP(K, 1) has cardinality r, almost surely.
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Basic properties, assuming existence

>

2

E[N(X)] = [ K(x, x)du(x).

If K(x,y) is the kernel of a projection of rank r in L2(p), then
X ~ DPP(K, 1) has cardinality r, almost surely.

Interaction can be read in

p2x,y) = K, x)K(y,y) — K(x,y)K(y,x)
= p()pr(y) — |K(x, ¥)IP < pr(x)pr(y)-

if K(x,y)=K(y,x).

For finite X', take u to be the counting measure, the correlation
intensities read

]PXNDPP(K,/,L)(A C X) = det K(I',_j.),"jeA =detK,.



A condition for existence

Theorem (Macchi 1975; Soshnikov 2002)

If K defines a self-adjoint, trace-class operator on L2(u), then
DPP(K, ) exists iff the spectrum of K in is [0, 1].

» For instance, take K(x,y) = pexp(—||x — y||>/a?) and p Lebesgue.
» Fourier arguments® show that the DPP exists iff

p(v/ma)? exp(~|lmax|?) < 1,

1Lavancier, Mgller, and Rubak 2014.



A constructive proof of Macchi-Soshnikov?

Let K(x,y) = >k A (x)er(y)-
1. sample By ~ Ber(\y), for all k.

2Hough, Krishnapur, Peres, and Virag 2006.
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Let K(x,y) = >k Aepr(X)pi(y)-
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A constructive proof of Macchi-Soshnikov?

Let K(x,y) = >_) A (x)er(y)-
1. sample By ~ Ber(Ag), for all k.

2. letting N =", By and

K(x,y) = Z Brok(x)e(y),

k>0
sample
X1, .., Xy ~ det (K(X,',Xj))lgid.glv
X
x1
K(z1,)

2Hough, Krishnapur, Peres, and Virag 2006.
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A constructive proof of Macchi-Soshnikov?

Let K(x,y) = >k Aepr(X)pi(y)-
1. sample By ~ Ber(\y), for all k.
2. letting N =", By and

Kix,y) = Bepr(x)ex(y),

k>0
sample
Xi,..., Xy ~ det (K(X"7XJ'))1gi,jgN
X
Zz3
X
Z1
X
T2

2Hough, Krishnapur, Peres, and Virag 2006.
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Numerical integration

The goal is to approximate

/ fdu = / w(x)dx =~ Z w; f(x;)-

» How to choose the nodes x;?
» How to choose the weights w;?

Monte Carlo integration (importance sampling, MCMC, etc.)

» Choose the nodes randomly, and the weights w; = w(x;, x_;).

» Typical error is

. 2
E /fdu—ZW;f(x,-)} ~

-



Projection DPPs

» Let (pk)k=o...n—1 be an orthonormal sequence in L2(p).
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Projection DPPs

» Let (pk)k=o...n—1 be an orthonormal sequence in L2(p).
N—1
> Let K(x,y) = > 24— ex(x)ek(y)-

Definition (Hough, Krishnapur, Peres, and Virag 2006)

X:{Xl,..

., xn} is the DPP with kernel K and reference measure p if

N

1
Xty Xy~ et {K(X,-,xz)} dp(x) . . . dp(xw).

1, =



Projection DPPs

» Let (pk)k=o...n—1 be an orthonormal sequence in L2(p).
N—1
> Let K(x,y) = > 24— ex(x)ek(y)-

Definition (Hough, Krishnapur, Peres, and Virag 2006)

X ={x1,...,xn} is the DPP with kernel K and reference measure p if

1 N
Xty Xy~ et {K(X,-,xz)}  dula). ().

1. If 4= cx Ox, One recovers

P(A C X) = detKa.

2. x1 ~ yK(x,x)du(x) so that ]EZ, 1 K =/ fdp.

3. A natural choice of ¢, : RY — R is orthogonal polynomials w.r.t. u.



Multivariate orthogonal polynomial ensembles®
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3Gautier, Bardenet, Polito, and Valko 2019.



Our first Monte Carlo result

Theorem (Bardenet and Hardy 2020)

Let p(dx) = w(x)dx with w separable, €, positive on , and
satisfying a regularity assumption. Let € > 0. If x1, ..., xy stands for the
associated OPE, then for f € vanishing outside [-1 +¢,1 — €]¢,

N
W(g}j“ - [ fix u(dX)>—>N(OQ o)

i=1 (
where
= " Fw
szzi Z (k1+...+kd)< xd)(k,_,_vkd)z’
ki,...,kq=0 Weq

and w%(x) = 779(1 — x?)71/2.

» As you would probably have seen in PO Amblard’s talk*, for u = dx,

assumptions can be relaxed and K be taken such that K(x, x) o 1.

4CoMaAm21.
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RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of

M
d
{Za;m(x,-,),MEN,al,...,an ER,x,...,xy €R }
i=1

for the inner product defined by (k(x, ), k(y, ")) 7 = k(x,y).
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» Under general assumptions, F C Lz(du), is dense, there is an ON
basis (e,) of L2(dp) and o, — 0 such that, pointwise,

k(x,y) = Z onen(x)en(y)-

n>1



RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of

M
d
{Za;m(x,-,-),MEN,oq,...,oz,, ER,x,...,xy €R }
i=1

for the inner product defined by (k(x, ), k(y, ")) 7 = k(x,y).

» Under general assumptions, F C Lz(du), is dense, there is an ON
basis (e,) of L2(dp) and o, — 0 such that, pointwise,

k(x,y) = Z onen(x)en(y)-

n>1

> In that case, f € F if and only if >_ o, '[(f,e,)|? converges.



Quadrature and approximation in an RKHS

> Let f € F, g € L?(du) then

N
|/ fgdp — Z w;f (x;)

i=1

N
< NFllz (g = wirxi, )|
i=1

where
g = / g (), )dpu(x)

is the mean element of g.



Quadrature and approximation in an RKHS

> Let f € F, g € L?(du) then

N
|/ fedu — " wif ()

i=1

N
< ||f||.7: ||/1/g o Z WI'K’(XI'? )H]:? (1)
i=1

where
e = [ €0n(x. Jdu(x)

is the mean element of g.

» Once the nodes xi, ..., xy are known, minimizing the RHS of (1) in
w boils down to inverting an N x N matrix.



A DPP for quadrature in RKHSs: first attempt, sharper bound

Remember r(x,y) = 3_ 5, ones(x)en(y).

Algorithm 1: DPP

> Take K(x,y) = Yoy en(x)en(y)-
> Let x1,...,xy ~ 1/N! det[K(x;, x;)] du(xq) . .. dps(xw).
» Solve the linear problem for the weights wy, ..., wy.

Theorem (Belhadji, Bardenet, and Chainais 2019)

Assume YN (g, e)2 < 1. Let ry = > 0y, then
m>N+1

N l
Nr,
e 3 winto ) < 200142 (NfN 3 Z % (o) )
i=1



A DPP for quadrature in RKHSs: first attempt, sharper bound

Remember r(x,y) = >, onen(x)en(y).

Algorithm 1: DPP

> Take K(x,y) = Yo, en(x)en(y).
> Let x1,...,xy ~ 1/N! det[K(x;, x;)] dp(xq) - . . dps(xw)-
» Solve the linear problem for the weights wy, ..., wy.

Theorem (Belhadji 2021)

Assume ||g|lw < 1. Let ry = > op, then
m>N+1

N
2
]EHug — Z w;k(X;, )H}_ < Ary.
i=1



2nd attempt: volume sampling and tight rates

Algorithm 2: volume sampling

> Let x1,...,xy ~ Z Ldet[r(x;, x;)] dp(x1) - . . dp(xn)
» Again, solve the linear program for the weights wy, ..., wy.




2nd attempt: volume sampling and tight rates

Algorithm 2: volume sampling

> Let x1,...,xy ~ Z Ldet[r(x;, x;)] dp(x1) - . . dp(xn)
» Again, solve the linear program for the weights wy, ..., wy.

Theorem (Belhadji, Bardenet, and Chainais 2020b)

Assume again S (g, )2 < 1. Then

N
2
E|ug — Y wir(x;, ')HI <on(1+Bn),
i=1

where By = Mrenln [(N—=M+1)on] Z Orm-

m>M
» It is known® that inf sup inf |lpg — yl|% = ony1.
YCF lgllo<1Y yey
dimY=N

5Pinkus 2012.



Volume sampling is a mixture of projection DPPs

> Remember r(x,y) =3 5, onen(x)en(y).
» For U C N* define the projection kernel

KU(Xv}/) = Z eu(X)eu(y)'

uelU

For N € N*, we have

det r(x;, Xj) Z (H 0u> — det(Kuy(xi, xj)).

[U|l=N \ucU



Some graphical intuition on volume sampling

> Remember r(x,y) = >_,~; onen(x)en(y).
> Let (¢ = /one,) be ON in F.

(®) Tl

20



Some graphical intuition on volume sampling

> Remember r(x,y) = >_,~; onen(x)en(y).
> Let (¢ = /one,) be ON in F.

20



Many open problems

» Robustness to RKHS hypothesis / model choice.
» Practical relevance of RKHS hypothesis.
» What should g € L?() be in [ fgdu?

» How do we efficiently sample from continuous volume sampling
without spectral knowledge? See e.g. Rezaei and Gharan 2019.

» Kernel interpolation is similar to column-subset selection for linear
regression®, where DPPs and VS vyield similar bounds’.

5Derezinski and Mahoney 2020.
"Belhadji, Bardenet, and Chainais 2020a.

21



References |

Bardenet, R. and A. Hardy (2020). “Monte Carlo with Determinantal Point
Processes”. In: Annals of Applied Probability.

Belhadji, A. (2021). “An analysis of Ermakov-Zolotukhin quadrature using
kernels”. In: Advances in Neural Information Processing Systems (NeurlPS).

Belhadji, A., R. Bardenet, and P. Chainais (2019). “Kernel quadrature with
determinantal point processes”. In: Advances in Neural Information
Processing Systems (NeurlPS).

— (2020a). “A determinantal point process for column subset selection”. In:
Journal of Machine Learning Research (JMLR).

— (2020b). “Kernel interpolation with continuous volume sampling”. In:
International Conference on Machine Learning (ICML).

Derezinski, M. and M. Mahoney (2020). “Determinantal Point Processes in
Randomized Numerical Linear Algebra”. In: arXiv preprint arXiv:2005.03185.

Gautier, G., R. Bardenet, G. Polito, and M. Valko (2019). “DPPy: Sampling
Determinantal Point Processes with Python”. In: Journal of Machine
Learning Research; Open Source Software (JMLR MLOSS).

Hough, J. B., M. Krishnapur, Y. Peres, and B. Virdg (2006). “Determinantal
processes and independence”. In: Probability surveys.

Lavancier, F., J. Mgller, and E. Rubak (2014). “Determinantal point process
models and statistical inference”. In: Journal of the Royal Statistical Society,
Series B. B.

22



References Il

Macchi, O. (1975). “The coincidence approach to stochastic point processes”.
In: Advances in Applied Probability 7, pp. 83—122.

Pinkus, A. (2012). N-widths in Approximation Theory. \Vol. 7. Springer Science
& Business Media.

Rezaei, A. and S. O. Gharan (2019). “A Polynomial Time MCMC Method for
Sampling from Continuous Determinantal Point Processes”. In: International
Conference on Machine Learning, pp. 5438-5447.

Soshnikov, A. (2002). “Gaussian Limit for Determinantal Random Point
Fields". In: Annals of Probability 30.1, pp. 171-187.

23



	Prologue: Determinantal point processes
	Numerical integration
	Tight interpolation rates in RKHSs
	References

