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Introduction to the Nyström

method



What is the Nyström method?

Low-rank approximation for a symmetric, positive semi-de�nite (SPSD) matrix K.

Nyström method

1. Sample n columns from K.

2. Construct the Nyström approximation matrix

K̂ = CW†CT ∶

C is the sample of columns; W is the principal submatrix of K indexed by the

column sample; † denotes the Moore-Penrose generalised inverse of a matrix.

K̂ is an approximation of rank at most n.

Task: �nd a column sample that de�nes an e�cient approximation for K.

Remark: The optimal rank-n approximation for K is formed by truncating the

spectrum of K; this becomes intractable when N is large.
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Nyström method in machine learning

Kernel methods involve representing data sets with a kernel matrix.

� Data set  = {x1,… , xN} ⊂ ℝd .

� SPSD kernel function K ∶ ℝd ×ℝd → ℝ.
� N ×N SPSD kernel matrix K de�ned by

[K]i,j = K(xi, xj) for i, j ∈ {1,… , N}.

Low-rank approximations can improve e�ciency of algorithms.

Sampling n columns from K is equivalent to sampling n points from . We call a

sample  = {s1,… , sn} ⊂  a Nyström sample, and we refer to the si as
landmark points.
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Nyström method in machine learning

In the kernel matrix setting, it is not necessary to restrict  to a sample from .

We could instead sample from the ambient space ℝd .

Relaxed Nyström method for kernel matrices

1. Sample n points  = {s1,… , sn} from ℝd .

2. Construct the Nyström approximation matrix K̂() as follows:
[K̂()]i,j = kT (xi)K

†k(xj) for i, j ∈ {1,… , N} ∶

k(x) = (K(x, s1),… , K(x, sn))T for x ∈ ℝd ; K is the n × n kernel matrix

de�ned by .
How do we choose landmark points that de�ne e�cient low-rank approximations?

Remark: In the RKHS framework, the matrix K̂() is de�ned by the data set 
and the kernel function K , which is the reproducing kernel of the subspace

 ⊂  spanned by the functions K(s1, ⋅),… , K(sn, ⋅);  is the RKHS associated

with K. 4



E�cient matrix approximations

and the radial SKD criterion



Matrix reconstruction errors

Three classical criteria:

� Trace norm error: ‖K − K̂()‖∗
� Frobenius norm error: ‖K − K̂()‖F
� Spectral norm error: ‖K − K̂()‖2

Costly to evaluate; cheapest is trace norm error with complexity (n3 +Nn2).
Spectral is completely intractable for large N .

Can we �nd a cheaper alternative?
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Radial squared-kernel discrepancy

For  = {s1,… , sn} ⊂ ℝd , the radial SKD of  is de�ned as

R() = ∑
x∈

∑
y∈

K2(x, y) − 1∑
s∈

∑
t∈ K2(s, t)

( ∑
x∈

∑
s∈

K2(x, s)
)2
.

We have that for all  ⊂ ℝd ,

‖K − K̂()‖22 ≤ ‖K − K̂()‖2F ≤ R() ≤ ‖K‖2F and
1
N

‖K − K̂()‖2∗ ≤ R().

Radial SKD in reproducing kernel Hilbert spaces

The radial SKD criterion can be de�ned more generally in the context of

Hilbert-Schmidt operators on RKHSs, where it enjoys nice properties and has

deep connections with integral operator approximation.
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Locally optimising the radial

SKD



Gradient of the radial SKD

Idea: From an initial Nyström sample  (0) ⊂ ℝd , �nd the nearest local minimum

of the radial SKD using gradient descent methods.

For  = {s1,… , sn} ⊂ ℝd , the partial derivative of R at  with respect to the l-th
coordinate of the k-th landmark point sk is given by

)[sk]lR() =
(∑

x∈
∑
s∈ K2(x, s)

)2
(∑

s∈
∑
t∈ K2(s, t)

)2
(
)[d][sk]l

K2(sk, sk) + 2
∑

t∈⧵{sk}
)[l][sk]lK

2(sk, t)
)

− 2
∑
x∈

∑
s∈ K2(x, s)∑

s∈
∑
t∈ K2(s, t)

( ∑
x∈

)[l][sk]lK
2(sk, x)

)
.

Gradient descent iterates converge under reasonable assumptions on K2 (gradient

is Lipschitz continuous).

Evaluation of partial derivatives is (n2 + nN), cheaper than evaluating norm

errors.
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Stochastic approximations of the gradient

There are still large sums of size N in the partial derivatives.

We can approximate the partial derivatives stochastically by sampling at random

from .

One-sample approximation:

Random sample X1,… , Xb i.i.d. from  for some batch size b ∈ ℕ.

∑
x∈

∑
s∈

K2(s, x) = E
[
N
b

b∑
i=1

∑
s∈

K2(s,Xi)
]
;

∑
x∈

)[l][sk]lK
2(sk, x) = E

[
N
b

b∑
i=1

)[l][sk]lK
2(sk, Xi)

]
.

Two-sample approximation:

Two independent random samples produce unbiased estimators of partial

derivatives. In practice, no signi�cant bene�t observed over one-sample

approximation.
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Experiments



Gradient descent example

Data: Two Gaussian clusters in dimension 2, N = 2000.

Initial Nyström sample of size n = 50.
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Real data set 1: Abalone

Data: Physical measurements of molluscs. N = 4,175 observations, d = 8
features.
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Boxplots show radial SKD and measures of e�ciency for Nyström samples pre-

and post-optimisation through SGD. Random initialisations of size n = 50. 10



Real data set 2: MAGIC

Data: Monte-Carlo simulated image data for gamma particles in a telescope.

N = 18,905, d = 10.
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Gaussian kernel with parameter � = 0.2.
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Real data set 3: MiniBooNE

Data: Particle identi�cation data for neutrinos. N = 129,592, d = 50.

0 2000 4000 6000 8000
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5000000
10000000
15000000
20000000
25000000

𝑡 ↦ 𝑅
( (𝑡))

𝑡

‖‖‖𝐊 − �̂�( (0))‖‖‖∗ ≈ 63,272.7

‖‖‖𝐊 − �̂�( (𝑇 ))‖‖‖∗ ≈ 53,657.2

n = 1,000, � = 0.04. SGD with T = 8,000 iterations, taking 1,350 seconds if cost

is not recorded.

One trace norm error: 6,600 seconds (nearly 2 hours!)
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Conclusion



Conclusion

Radial SKD can

a) be used as an a�ordable surrogate for classical e�ciency criteria.

b) be locally optimised through SGD, resulting in consistently more e�cient

Nyström approximations.

SGD on radial SKD shown to be tractable for relatively large data sets.

Moving forward

� Algorithm could be made more e�cient (parallelisation, adaptive step sizes).

� Di�erent initialisation strategies could be explored (sequential/herding, more

sophisticated column sampling).
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Thank you!

Any questions?
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