Local optimisation of Nyström samples through stochastic gradient descent

Matt Hutchings in collaboration with Bertrand Gauthier 01/07/2022

Cardiff University - School of Mathematics

- 1. Introduction to the Nyström method
- 2. Efficient matrix approximations and the radial SKD criterion
- 3. Locally optimising the radial SKD
- 4. Experiments
- 5. Conclusion

Introduction to the Nyström method

Low-rank approximation for a symmetric, positive semi-definite (SPSD) matrix K.

Nyström method

- 1. Sample n columns from **K**.
- 2. Construct the Nyström approximation matrix

 $\hat{\mathbf{K}} = \mathbf{C} \mathbf{W}^{\dagger} \mathbf{C}^{T}$:

C is the sample of columns; **W** is the principal submatrix of **K** indexed by the column sample; \dagger denotes the Moore-Penrose generalised inverse of a matrix. $\hat{\mathbf{K}}$ is an approximation of rank at most *n*.

Task: find a column sample that defines an efficient approximation for K.

Remark: The optimal rank-n approximation for \mathbf{K} is formed by truncating the spectrum of \mathbf{K} ; this becomes intractable when N is large.

Kernel methods involve representing data sets with a kernel matrix.

- Data set $\mathcal{D} = \{x_1, \dots, x_N\} \subset \mathbb{R}^d$.
- SPSD kernel function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.
- $N \times N$ SPSD kernel matrix **K** defined by

$$[\mathbf{K}]_{i,j} = K(x_i, x_j) \text{ for } i, j \in \{1, \dots, N\}.$$

Low-rank approximations can improve efficiency of algorithms.

Sampling *n* columns from **K** is equivalent to sampling *n* points from \mathcal{D} . We call a sample $S = \{s_1, \ldots, s_n\} \subset \mathcal{D}$ a Nyström sample, and we refer to the s_i as landmark points.

Nyström method in machine learning

In the kernel matrix setting, it is not necessary to restrict S to a sample from D. We could instead sample from the ambient space \mathbb{R}^d .

Relaxed Nyström method for kernel matrices

- 1. Sample *n* points $S = \{s_1, \ldots, s_n\}$ from \mathbb{R}^d .
- 2. Construct the Nyström approximation matrix $\hat{K}(\mathcal{S})$ as follows:

$$[\hat{\mathbf{K}}(S)]_{i,j} = \mathbf{k}^T(x_i)\mathbf{K}_S^{\dagger}\mathbf{k}(x_j) \text{ for } i, j \in \{1, \dots, N\}$$
 :

 $\mathbf{k}(x) = (K(x, s_1), \dots, K(x, s_n))^T$ for $x \in \mathbb{R}^d$; \mathbf{K}_S is the $n \times n$ kernel matrix defined by S.

How do we choose landmark points that define efficient low-rank approximations? Remark: In the RKHS framework, the matrix $\hat{\mathbf{K}}(S)$ is defined by the data set Dand the kernel function K_S , which is the reproducing kernel of the subspace $\mathcal{H}_S \subset \mathcal{H}$ spanned by the functions $K(s_1, \cdot), \ldots, K(s_n, \cdot)$; \mathcal{H} is the RKHS associated with K.

Efficient matrix approximations and the radial SKD criterion

Three classical criteria:

- Trace norm error: $\left\| \mathbf{K} \hat{\mathbf{K}}(\mathcal{S}) \right\|_{*}$
- Frobenius norm error: $\|\mathbf{K} \hat{\mathbf{K}}(\mathcal{S})\|_F$
- Spectral norm error: $\|\boldsymbol{K} \hat{\boldsymbol{K}}(\mathcal{S})\|_2$

Costly to evaluate; cheapest is trace norm error with complexity $O(n^3 + Nn^2)$. Spectral is completely intractable for large N.

Can we find a cheaper alternative?

For $\mathcal{S} = \{s_1, \dots, s_n\} \subset \mathbb{R}^d$, the radial SKD of \mathcal{S} is defined as

$$R(\mathcal{S}) = \sum_{x \in D} \sum_{y \in D} K^2(x, y) - \frac{1}{\sum_{s \in S} \sum_{t \in S} K^2(s, t)} \bigg(\sum_{x \in D} \sum_{s \in S} K^2(x, s) \bigg)^2.$$

We have that for all $\mathcal{S} \subset \mathbb{R}^d$,

$$\|\mathbf{K} - \hat{\mathbf{K}}(\mathcal{S})\|_2^2 \le \|\mathbf{K} - \hat{\mathbf{K}}(\mathcal{S})\|_F^2 \le R(\mathcal{S}) \le \|\mathbf{K}\|_F^2 \text{ and } \frac{1}{N} \|\mathbf{K} - \hat{\mathbf{K}}(\mathcal{S})\|_*^2 \le R(\mathcal{S}).$$

Radial SKD in reproducing kernel Hilbert spaces

The radial SKD criterion can be defined more generally in the context of Hilbert-Schmidt operators on RKHSs, where it enjoys nice properties and has deep connections with integral operator approximation.

Locally optimising the radial SKD

Gradient of the radial SKD

Idea: From an initial Nyström sample $S^{(0)} \subset \mathbb{R}^d$, find the nearest local minimum of the radial SKD using gradient descent methods.

For $S = \{s_1, \dots, s_n\} \subset \mathbb{R}^d$, the partial derivative of R at S with respect to the *l*-th coordinate of the *k*-th landmark point s_k is given by

$$\begin{split} \partial_{[s_k]_l} R(S) &= \frac{\left(\sum_{x \in D} \sum_{s \in S} K^2(x, s)\right)^2}{\left(\sum_{s \in S} \sum_{t \in S} K^2(s, t)\right)^2} \left(\partial_{[s_k]_l}^{[d]} K^2(s_k, s_k) + 2\sum_{t \in S \setminus \{s_k\}} \partial_{[s_k]_l}^{[l]} K^2(s_k, t)\right) \\ &- 2 \frac{\sum_{x \in D} \sum_{s \in S} K^2(x, s)}{\sum_{s \in S} \sum_{t \in S} K^2(s, t)} \left(\sum_{x \in D} \partial_{[s_k]_l}^{[l]} K^2(s_k, x)\right). \end{split}$$

Gradient descent iterates converge under reasonable assumptions on K^2 (gradient is Lipschitz continuous).

Evaluation of partial derivatives is $\mathcal{O}(n^2 + nN)$, cheaper than evaluating norm errors.

Stochastic approximations of the gradient

There are still large sums of size N in the partial derivatives.

We can approximate the partial derivatives stochastically by sampling at random from \mathcal{D} .

One-sample approximation:

Random sample X_1, \ldots, X_b i.i.d. from \mathcal{D} for some batch size $b \in \mathbb{N}$.

$$\sum_{x \in D} \sum_{s \in S} K^2(s, x) = \mathbb{E} \left[\frac{N}{b} \sum_{i=1}^b \sum_{s \in S} K^2(s, X_i) \right];$$
$$\sum_{s \in D} \partial_{[s_k]_l}^{[l]} K^2(s_k, x) = \mathbb{E} \left[\frac{N}{b} \sum_{i=1}^b \partial_{[s_k]_l}^{[l]} K^2(s_k, X_i) \right].$$

Two-sample approximation:

5

Two independent random samples produce unbiased estimators of partial derivatives. In practice, no significant benefit observed over one-sample approximation.

Experiments

Gradient descent example

Data: Two Gaussian clusters in dimension 2, N = 2000.

Initial Nyström sample of size n = 50.

Real data set 1: Abalone

Data: Physical measurements of molluscs. N = 4,175 observations, d = 8 features.

Boxplots show radial SKD and measures of efficiency for Nyström samples preand post-optimisation through SGD. Random initialisations of size n = 50.

Real data set 2: MAGIC

Data: Monte-Carlo simulated image data for gamma particles in a telescope. N = 18,905, d = 10.

Gaussian kernel with parameter $\rho = 0.2$.

Data: Particle identification data for neutrinos. N = 129,592, d = 50.

n = 1,000, $\rho = 0.04$. SGD with T = 8,000 iterations, taking 1,350 seconds if cost is not recorded.

One trace norm error: 6,600 seconds (nearly 2 hours!)

Conclusion

Radial SKD can

- a) be used as an affordable surrogate for classical efficiency criteria.
- b) be locally optimised through SGD, resulting in consistently more efficient Nyström approximations.

SGD on radial SKD shown to be tractable for relatively large data sets.

Moving forward

- Algorithm could be made more efficient (parallelisation, adaptive step sizes).
- Different initialisation strategies could be explored (sequential/herding, more sophisticated column sampling).

Preprint this talk was based on:

Matthew Hutchings and Bertrand Gauthier. "Local optimisation of Nyström samples through stochastic gradient descent". In: *arXiv preprint arXiv:2203.13284* (2022)

Some references on Nyström column sampling:

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. "Sampling methods for the Nyström method". In: *Journal of Machine Learning Research* 13 (2012), pp. 981–1006

Alex Gittens and Michael W. Mahoney. "Revisiting the Nyström method for improved large-scale machine learning". In: *Journal of Machine Learning Research* 17 (2016), pp. 1–65 Thank you! Any questions?

Femporary page!

LATEX was unable to guess the total number of pages correctly. As the unprocessed data that should have been added to the final page this o has been added to receive it.

If you rerun the document (without altering it) this surplus page will p because LATEX now knows how many pages to expect for this documen