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Space-filling designs

Space to be filled: X = [-1,1]¢
Design: Z, ={2Z1,...,Z,} C X
We want these points to be ‘space-filling':

Designs Z,, which are well-spread within high-dimensional sets are required

for efficient numerical integration, function approximation and global
optimization.



Covering radius = dispersion = fill radius = minimax crit.

The main criteria for characterizing the spread of points are covering and
packing radii, mean quantization error and various discrepancies.

CR(Zn) = may myin I = 2

A.G.Sukharev: in the class of Lipschitz functions, n-point set with smallest
covering radius provides the n-point min-max optimal:
(a) quadrature and (b) global optimization method.



If d is not small (say, d > 5) then computation of CR(Z,) is very difficult
to (a) compute given a point set, and (b) optimize with respect to the
choice of the sets of points.

o>



Weak covering of high-dimensional sets

Definition

A design Z, with radius r makes a (1 — 7)-covering of X = [-1,1]9 if

Co(Zpy r) = vol(X N By(Zn,r))/2¢ =1 — 7.

@ We are only interested in a high covering of say 90%, 95% or 99%.



Quantization error

Definition

Let X = (x1,...,Xq) be uniform random vector on [~1,1]9. The mean
squared quantization error for a design Z, = {Z,...,Z,} C R? is defined
by

0(Z,) = Ex0*(X,Z,), where ¢*(X,Z,) = ZmiQ X - z|?.
1€Ln

@ C4(Zn,r), as a function of r > 0, is the c.d.f. of the r.v. o(X,Z,)
while 6(Z,,) is the second moment of the distribution with this c.d.f.:

0(Zn) = />0 r2dCy(Zn,r) .



Part 1
Intersection of a ball and a cube

Based on:

J. Noonan and A. Zhigljavsky (2020). Covering of high-dimensional cubes
and quantization. SN Operations Research Forum, 1(3) 1-32.

J. Noonan and A. Zhigljavsky (2021). Non-lattice covering and
quanitization of high dimensional sets. Black Box Optimization, Machine
Learning, and No-Free Lunch Theorems.



Intersection of a ball and a cube

X =[-1,119 By(Z,r)={X eRY: | X = Z|| < r},

vol(X N By(Z,r))
vol(X)

Cazr=

Let U = (u1,..., uq) have uniform distribution on X’. Then

d
Cazr= Pr{||U— Z||2 < r2} = Pr{Z(u,— —z,-)2 < r2} .

i=1



Intersection of a ball and a cube

N
\__/ -

‘ ‘
\ ° |
\

There is no closed-form expression for Cy 7 ,, the c.d.f. of the r.v.
Zf—j:l(u,- — 7;)? but we can approximate the c.d.f. in different ways; e.g.,
using characteristic functions of (u; — z;)?.



Intersection of a ball and a cube: Normal approximation |

d
Coz,=Pr{|lU-Z|?<r’}=Pr {Z(u; —z)? < r2}
i=1
Consider the r.v. ||[U — Z||?. Its mean and variance are:
d

paz =E|U - Z|? =|Z|* + 3

4 d
sz = (U - 21%) = (11217 + 5 )

The resulting normal approximation:
2
~ ™ —Hd,z
Cazr=9® () ;
0d.z
where ®(+) is the c.d.f. of the standard normal distribution.



Improving the normal approximation

We use Edgeworth-type expansion in the CLT for sums of independent
non-identically distributed r.v. by V.Petrov:

_ 2 _
P(HU Z|| Md72_> o(x) +ZQud

0d,z dv/2

where

v

1 mi2d \ "
v Hl/ 0
Qu,a(x ()Y Hurasa(x nHlk <m+2)>
where Hp, is the Chebyshev-Hermite polynomial of degree m and the

summation is carried out over all non-negative integer solutions of the
equation

ki +2ky +---+ vk, =v
s=k+hkotot k.



Improving the normal approximation

The summation is carried out over all non-negative integer solutions of the
equation

ki+2kp+ -4+ vk, =v.

In number theory, the partition function p(v) represents the number of
possible partitions of a non-negative integer v. The sequence has the
generating function

S - 1 (1)

The first few values are: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101,
135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436,
3010, 3718, 4565, 5604...



Improving the normal approximation

Taking the first additional term in the Petrov expansion:

(3)
|U—Z|? — pa,z Ha 7z 5
P Z < x) 2 o)+ L2 (1
( L <) = 004 g Bt (1= 0l),

)

where

3 3 16 d
W =BV -2ZIP - paz] = <||Z||2+63>

)

This leads to the following improved form of the normal approximation:

1 Z]|? + d/63

SVA(IZ7 + a0,

Cd,Z,r = (D(l') +

rP—paz _ V3(r?—|Z]> - d/3)

0d,z 2\/|1Z||> + d/15

t=1tq)z|,r =



Intersection of a ball and a cube
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Figure 1. d =10, Z =10, r € [1,2.5].



Intersection of a ball and a cube

d=10
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Figure 2: d =10, Z =0, r € [0.95,1.25].



Intersection of a ball and a cube
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Figure 3: Z is at half-diagonal with || Z|| = 2v/10



Part 2
Random designs

Based on:

J. Noonan and A. Zhigljavsky (2020). Covering of high-dimensional cubes
and quantization. SN Operations Research Forum, 1(3) 1-32.

J. Noonan and A. Zhigljavsky (2021). Non-lattice covering and
quanitization of high dimensional sets. Black Box Optimization, Machine
Learning, and No-Free Lunch Theorems.



Intersection of a cube and n random balls

Let Z1,...,Z, are i.i.d. random vectors uniformly distributed in the cube
[—4,6]¢ with 0 < § < 1. Then, for given U = (uy,...,uq)" € RY,

P{U € By(Zn,r)} = 1-]]P{U¢ Ba(Zr)}
j=1

= 1-J[(Q-P{U € By(Z.n)})

j=1

- 1- <l—IP’z{||U—ZH Sf}>n



Intersection of a cube and n random balls

Ci(Zp,r)~1— /_OO Ua(s)p(s)ds

= (d +2s\/d/5)/82.




Probability of covering of a cube and n random balls

Scheme 1: d=10
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Figure 4: n =128



Probability of covering of a cube and n random balls

Scheme 1: d=20
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Figure 5: n =512



Probability of covering of a cube and n random balls

Scheme 1: d=50
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Figure 6: n =512



Approximations for quantization

d n-r [ p(s)p(cs)pa(s)
E(Ezncd(Z r)) = fs(r):= 5 /oo\/ﬁkz

(++%) V3(? - -5
{m( Do) LS,

Therefore the approximation for Ez 0(Z,) is:

E6, = By, 6(Z,) g/ r’fs(r)dr.
r>0



Approximations for quantization

Scheme 1: d=20
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Figure 7: £6,, and approximation: n = 128.



Approximations for quantization

Scheme 1: d=50
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Figure 8: £6,, and approximation: n = 128.



Part 3
Deterministic designs

Based on: J. Noonan and A. Zhigljavsky (2020). Efficient quantization
and weak covering of high dimensional cubes. Discrete and Computational
Geometry.



Deterministic designs

Design D, 5: a 29-1 design defined on vertices of the cube [, 6],
0<s<1.

Design D:  the collection of 2¢ points (£3,...,£3), all vertices of the
cube [—3, 319

The design D, 1/, extends to the lattice Dy (shifted by %) containing
points X = (x1, ..., xg) with integer components satisfying

X1+ ...+ x4 =0 (mod 2), see [Conway and Sloane, Sect. 7.1, Ch. 4]; this
lattice is sometimes called ‘checkerboard lattice’.



Voronoi cells; Quantization

Voronoi cells V; = {x € X' : ||x — xi|| < [|x — x|,j # i}:

yeeesll

1 n
0(Z,) = E in [ X-Z|P= —————— X — Z|[?dX
(Za) = Bx i 1X - 21 = G S [, X 2P0

where X = (x1,...,xq) and dX = dxydxy - - - dxg.



If all of the Voronoi cells V(Z;),i =1,...,n, are congruent, then

1 / 5
_ X — Z1l|FdX .
wl(V(Z) Sy X 2!

Consider the design ]Dg,o), the collection of n = 29 points
(£1/2,...,£1/2). The Voronoi cells for this design are all congruent.
The Voronoi cell for the point 1/2 = (1/2,1/2,...,1/2) is the cube

Q(Zn) =

Coz{X:(xl,...,xd)ERd: 0<x <1, i:1,2,...,d}.




The Voronoi cells of the design D, 5 = {Z1,...,Z,} are all congruent.
The Voronoi cell for the point Z; = & = (4,0,...,8) € RY is

d
V(z)=al U U
j=1

where

U = {X: (X1, %2, -+, Xg) ERY: —1 < x; < 0, |x;| < x <1 for all kyéj}

The volume of V(Z1) is vol(V(Z1)) = 2.







For the design ID)g,O), we obtain:
oY) = d/12,

For the design D, s with 0 < § < 1, we obtain:

1 26
O(D,s) = d<52—6+3> T

The optimal value of § minimising 0(ID, 5) is

1 1

O = T ddr )
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Figure 9: Q4(IDy s) as a function of § and Qd(]D)S,O)) =1/12 with d =10 ;



For an n-point design Z, = {Zi,...,Z,}, denote the proportion of the
Voronoi cell around Z; covered by the ball B4(Z;, r) as:

Vd,Z,-,r = VOI( V(Z,) N Bd(Z,', r))/vol(V(Z,)) .

Then we can state the following simple lemma.

Consider a design Z, = {Z1, ..., Zn} such that all Voronoi cells V/(Z;) are
congruent. Then for any Z; € Zp, Cy(Zn,r) = V4 z, -




Depending on the values of r and 6, the quantity Cq(ID, s, r) can be
expressed through Cq4 7 . for suitable Z as follows.

@ Forr<$:
1
Ci(Dps,r) = ECd,ZzS—l,Zr

@ Foré <r<1+9:

1
Cd(Dn,& r) = 5

r—o
d—1
Cazo—12r + d/o Cd—l 2o Zix/rz—(w)z(l —x) dX]
'y T 1—x

1—x

@ Forr>1+6:

Ca(Dps,r) =

1
|:Cd,26—1,2r I d/o Cd71 21—y 2/ZamaE (1 — x)?t dx}
s T 1—x  ?

—x

N —
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Figure 10: C4(IDy s, r) and its approximation: d = 15, r from 1.15 to 1.35
increasing by 0.05



‘Do not try to cover the vertices'

Let y be fixed, 0 < v < 1. Consider (1 — ~)-coverings of [-1,1]¢
generated by the designs D, s and the associated normalized radii
Ri(Dps). Forany 0 <~y <1and0<¢ <1, the limit of Ri_(D,5), as
d — o0, exits and achieves minimal value for § = 1/2. Moreover,
Riy(Dp1/2)/Ri(Dp1/2) — 1/v/3 asd — oo, for any 0 < y < 1.
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Figure 11: C4(Dy 5, r) with rg.g99 and ri: d =10
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Figure 12: C4(Dp 5, r) with r.g99 and ri: d = 50
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Thank you for your attention!
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