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Energy

Let X be a (compact) set and K (x , x ′) be a continuous kernel.
For any signed measure µ on X , its energy is

E(µ) =
∫
X

∫
X
K (x , x ′)µ(dx)µ(dx ′) .

If the kernel K is IPD (integrally positive definite), then E(µ) ≥ 0 for any
µ and E(µ) is a convex functional of µ (conditions on K can be relaxed).

Minimum-energy signed measure of mass 1: µ∗ = argminµ∈M E(µ),
where M is the set of signed measures µ with µ(X ) = 1.

Minimum-energy probability measure: µ+ = argminµ∈M+ E(µ).

µ+ always exists but µ∗ exists very rarely.

Maximum mean discrepancy: MMD(µ, ν) =
√
E(µ− ν)



Minimum-energy measures: optimality conditions

Theorem

(i) µ is a minimum-energy probability measure iff Pµ(x) ≥ E(µ) for all
x ∈ X and Pµ(x) = E(µ) on the support of µ.
(ii) µ is a minimum-energy signed measure of total mass one iff
Pµ(x) = E(µ) for all x ∈ X .

Here Pµ(x)=
∫
K (x , x ′)µ(dx ′) is the potential (kernel imbedding) of µ.

Corollary

1 is a potential of some positive measure iff µ+ = µ∗.
1 is a potential of a finite signed measure iff µ∗ exists.

Questions:
When does 1 belong to the space of potentials?
If it does, when the corresponding measure is positive?



When minimum-energy measure is a probability measure?

Corollary

Let µ+ be a minimum-energy probability measure (always exists!). If µ+ is
supported on the whole set X , then µ+ is also a minimum-energy signed
measure of total mass one.

Theorem (PZ, 2020)

Let K be ISPD and translation invariant, with K (x , x ′) = ψ(x − x ′) and ψ
continuous, twice differentiable except at the origin, with Laplacian
∆ψ(x) =

∑d
i=1 ∂

2ψ(x)/∂x2i ≥ 0, ∀x ̸= 0. Then there exists a unique
mass 1 minimum-energy signed measure, which is a probability measure.

Idea of proof: potential Pµ∗ is subharmonic outside the support of µ∗.
Particular case: d = 1, ψ(x) is convex for x > 0 (Hàjek, 1956).

It is easy to construct translation invariant kernels for d = 1 such that
ψ(x) is not convex for x > 0 but mass 1 minimum-energy signed measure
µ∗ is a probability measure (help of T. Karvonen is appreciated).



OLSE, n-point design

Design: Xn = {x1, . . . , xn} ∈ X

Model: y(xj) = θ + ε(xj), Eε(x) = 0, Eε(x)ε(x ′) = K (x , x ′),

K is a (conditionally) positive definite kernel

OLSE of θ:

θ̂OLSE ,n=

∫
y(x)µn(dx) = ȳ =

1

n
1⊤n Y ,

where Y = (y(x1), . . . , y(xn))
⊤, 1n = (1, . . . , 1)⊤ and µn is the empirical

probability measure assigning weights 1/n to points xj ∈ Xn.



Variance of OLSE, n-point design

var(θ̂OLSE ,n) =
1

n2
1⊤n Kn1n =

1

n2

n∑
i ,j=1

K (xi , xj)

=

∫ ∫
K (x , x ′)µn(dx)µn(dx

′),

where Kn = (K (xi , xj))
n
i ,j=1 is the kernel matrix

That is,

var(θ̂OLSE ,n) =

∫ ∫
K (x , x ′)µn(dx)µn(dx

′) = E(µn),

which is a discrete energy.



OLSE: approximate design; optimal designs

Approximate design: any probability measure µ on X

θ̂OLSE =

∫
y(x)µ(dx)

var(θ̂OLSE ) =

∫ ∫
K (x , x ′)µ(dx)µ(dx ′) = E(µ)

Minimum-energy probability measure µ+ = argminµ∈M+ E(µ) is the
optimal approximate design for OLSE (easy to construct numerically).

Optimal n-point design for OLSE is the minimum-energy n-point
probability measure (hard to construct numerically).



BLUE of θ, n-point design

Design: Xn = {x1, . . . , xn} ∈ X , xj are pair-wise different points.

θ̂BLUE ,n = w∗
nY ; w∗

n = 1⊤n K
−1
n /1⊤n K

−1
n 1n; var(θ̂BLUE ,n) = 1/1⊤n K

−1
n 1n

w∗
n gives the weights of µ∗n, the optimal signed measure minimizing the

discrete energy

E(νn) =
∫ ∫

K (x , x ′)νn(dx)νn(dx
′),

where νn are discrete signed measures supported on Xn with νn(Xn) = 1.

θ̂BLUE ,n =

∫
y(x)µ∗n(dx), var(θ̂BLUE ,n) = E(µ∗n)

Construction of optimal n-point designs for BLUE is a difficult
computational problem (Sacks, Ylvisaker (1965), etc.)



Comparison of var(θ̂OLSE ,n) versus var(θ̂BLUE ,n)

Of course,

var(θ̂BLUE ,n) = 1/(1⊤n K
−1
n 1n) = E(µ∗n) ≤

var(θ̂OLSE ,n) =
1

n2
(1⊤n Kn1n) = E(µn)

Matrix analysis approach:

var(θ̂OLSE ,n)

var(θ̂BLUE ,n)
=

1

n2
(1⊤n Kn1n) (1

⊤
n K

−1
n 1n) ≥ 1

by the Cauchy-Schwarz inequality (as 1⊤n 1 = n2), where we have equality
if and only if 1n is an eigenvector of Kn; that is, Kn1n = λ1n for some
λ > 0 ( = row sums of Kn are the same).



var(θ̂OLSE ,n)− var(θ̂BLUE ,n)

u⊤u ≤ (u⊤Knu) (u
⊤K−1

n u) ≤ 1

4

(√
λ1
λn

+

√
λn
λ1

)2

Left inequality: Cauchy-Schwarz. Right inequality: Kantorovich (poor).

Better upper bound: using the optimality theorems, for a design µ(= µn)
and OLSE=

∫
y(x)µ(dx):

1 ≥ var(θ̂BLUE )

var(θ̂OLSE )
≥ 2

infx∈X Pµ(x)

E(µ)
− 1

Useful relation:

MMD2(µn, µ
∗
n) = var(θ̂OLSE ,n)− var(θ̂BLUE ,n) .



Smit’s paradox; behaviour of the variances as n increases

Smit’s paradox (1961): for particular stationary kernels in one dimension
and equidistant points, var(θ̂OLSE ,n) increases for n ≥ n0.

Red curve converges to the energy of the limiting design (e.g. uniform).
Where does the blue curve converge? How fast is the convergence?
How different could be the two limits?



Q: What is the limit of the BLUE curve?

Let x1, x2, . . . be a dense sequence of distinct points in compact X .
Designs: Xn = {x1, . . . , xn};
Model: y(xj) = θf (xj) + ε(xj) (we have f (x) = 1X (x)).

Theorem (Parzen, 1971)

f ∈ H(K ) if and only if

var(θ̂BLUE ,n) → 1/∥f ∥H(K) = var(θ̂BLUE ,∞) as n → ∞.

Here θ̂BLUE ,∞ is the continuous BLUE of θ but we may not be able to

write it in the form θ̂BLUE ,∞ =
∫
y(x)µ(dx)

(recall θ̂BLUE ,n =
∫
y(x)µ∗n(dx))

So, the limit of the BLUE curve is 1/∥1∥H(K) but there may be no limit of
the signed measures µ∗n defining the discrete BLUEs.
Rate of convergence=MMD(µ∗n, µ

∗) if µ∗ exists; optimal design for BLUE.



Q: When the limits of the two curves coincide?

Answer: When the minimum-energy probability measure is the
minimum-energy signed measure µ∗ (see above) and the limit of µn
defining the OLSEs converges to this measure.

From any C(I)PD kernel K we can construct a kernel (reduced kernel)
such that given µ is the minimum-energy measure:

Kµ(x , x
′) = K (x , x ′)− Pµ(x)− Pµ(x

′) + E(µ)
A useful relation: MMD2(µ, ν) = E(µ− ν) = EKµ(ν).

Theorem (LP & AZ)

(i) [Kµ]ν = Kν

(ii) µ discrete: K CPD iff Kµ is PD

(iii) K is CIPD iff Kµ is IPD

(iv) µ has infinite support; K is bounded and CISPD ⇒ Kµ is ISPD

(ii) is a generalization of Schoenberg’s result in which µ is a delta
measure. This property is very important, e.g., for the energy distance.



Special role of the constant function 1 = 1X (x)

Questions:
(i) Does 1 belong to the RKHS H(K )?
(ii) Does 1 belong to the space of potentials P(K )?
P(K ) = {Pµ(x) =

∫
K (x , x ′)µ(dx ′) for a finite signed measure µ}

(iii) In case of (ii), is µ a positive measure?

Importance:
(i) ⇔ continuous BLUE exists
(ii) ⇔ continuous BLUE exists and has the form θ̂BLUE ,∞ =

∫
y(x)µ(dx)

(iii) ⇔ continuous BLUE exists, has the form above and coincides with
continuous OLSE for the optimal design.



More results: K is PD, K (x , x ′) = ψ(x − x ′)

Spectral measure of ψ is moment-determinant (e.g., ψ is an analytic
function) and has no mass at 0 ⇒ 1 /∈ H(K ) (H.Dette & AZ, 2021)

If X = [0, 1], ψ(t) is non-negative, non-constant, bounded and
decreasing for t > 0, then the uniform measure µ0 cannot be
minimum-energy measure (simply Pµ0(0.5) > Pµ0(0)).



Conclusions



Conjectures; PD kernels K (x , x ′) = ψ(x − x ′)

1 1 /∈ H(K ) ⇒ the spectral measure of ψ is moment-determinant or it
has a positive mass at 0.

2 ψ is differentiable at 0 ⇒ 1 /∈ P(K ) (so that θ̂BLUE ,∞ ̸=
∫
y(x)µ(dx)

even if it exists)

3 Uniform measure on X cannot be minimum-energy (not true if
ψ(0) = ∞)

4 Let ψ(0) <∞, µ∗ (if it exists) and µ+ be minimum-energy measures
(µ∗(X ) = µ+(X ) = 1). Then µ∗(∂X ) > 0 and µ+(∂X ) > 0.

Other directions of possible research (K (x , x ′) = ψ(x − x ′), d > 1):
Extension of Smit’s paradox to d>1 and relaxation of conditions
on ψ Structure of minimum-energy measures
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