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Let X be a (compact) set and K(x,x’) be a continuous kernel.
For any signed measure p on X, its energy is

£ = [ [ Kexxuteontex).

If the kernel K is IPD (integrally positive definite), then £(u) > 0 for any
p and E(p) is a convex functional of u (conditions on K can be relaxed).

Minimum-energy signed measure of mass 1: p* = argmin e E(1),
where M is the set of signed measures p with p(X') = 1.

Minimum-energy probability measure: p+ = arg mine et ().

pT always exists but u* exists very rarely.

Maximum mean discrepancy: MMD(p, v) = \/E(p — v)



Minimum-energy measures: optimality conditions

(i) v is a minimum-energy probability measure iff P,(x) > E(u) for all
x € X and P,(x) = E(u) on the support of p.

(i) w is @ minimum-energy signed measure of total mass one iff
Pu(x) = &E(p) for all x € X

Here P, (x)= [ K(x,x")u(dx") is the potential (kernel imbedding) of .

1 is a potential of some positive measure iff u= = p*.
1 is a potential of a finite signed measure iff 1* exists.

Questions:
When does 1 belong to the space of potentials?
If it does, when the corresponding measure is positive?



When minimum-energy measure is a probability measure?

Let u* be a minimum-energy probability measure (always exists!). If u™ is
supported on the whole set X, then u™ is also a minimum-energy signed
measure of total mass one.

Theorem (PZ, 2020)

Let K be ISPD and translation invariant, with K(x,x") = ¢(x — x") and ¢
continuous, twice differentiable except at the origin, with Laplacian
AY(x) = Zflzl 0%)(x)/0x? > 0, Vx # 0. Then there exists a unique
mass 1 minimum-energy signed measure, which is a probability measure.

Idea of proof: potential P, is subharmonic outside the support of p*.
Particular case: d =1, ¥(x) is convex for x > 0 (Hajek, 1956).

It is easy to construct translation invariant kernels for d = 1 such that

¥(x) is not convex for x > 0 but mass 1 minimum-energy signed measure

p* is a probability measure (help of T. Karvonen is appreciated).



OLSE, n-point design

Design: X, = {x1,...,xn} € X

Model: y(x;) =0 +e(x;), Ee(x) =0, Ee(x)e(x") = K(x,x'),
K is a (conditionally) positive definite kernel

OLSE of ¢:

A _ 1
OoLsE,n= /y(X)u,,(dx) =y = ;1;\/,

where Y = (y(x1),...,y(xa)) ", 1o = (1,...,1)" and p, is the empirical
probability measure assigning weights 1/n to points x; € X,.



Variance of OLSE, n-point design

A 1 1 «
var(orse.n) = ?IIK,,L, = Z K(xi, xj)
ij=1

— //K(x,x’)un(dX)Mn(dX’),

where K, = (K(x;, x;))7;_; is the kernel matrix

That is,

var(Bouse.n) = [ [ KOx A un(didin(ad) = (o)

which is a discrete energy.



OLSE: approximate design; optimal designs

Approximate design: any probability measure o on X

foLse = /Y(X)M(dx)

var(ovse) = / / K(x, X Yu(dbx)u(dx') = £(1)

Minimum-energy probability measure ™ = arg min, e+ E(p) is the
optimal approximate design for OLSE (easy to construct numerically).

Optimal n-point design for OLSE is the minimum-energy n-point
probability measure (hard to construct numerically).



BLUE of #, n-point design

Design: X, = {x1,...,xp} € X, x; are pair-wise different points.

éBLUE,n = W: Y; W: = 1;|7—K,7_1/1;|1—Kn_11n; Var(é\BLUE’n) = ]-/1;|7—Kn_11n

w; gives the weights of p, the optimal signed measure minimizing the
discrete energy

E(vn) = / / K (x, X' Yn(dx)vn(d'),

where v, are discrete signed measures supported on X, with v,(X,) = 1.
OBLUEN = /Y(X)pr(dx), var(OpLue.n) = E(uh)

Construction of optimal n-point designs for BLUE is a difficult
computational problem (Sacks, Ylvisaker (1965), etc.)



Comparison of var(forse.n) versus var(6sLue.n)

Of course,

var(fgLue.n) = 1/(1) K, ) = E(uy) <
A 1
Var(HOLSE,n) = ?(IIKnln) = 5(Mn)

Matrix analysis approach:

var GAOLS 1 _
M = 7(1;;("1”) 1k t1,)>1
var(fpLue,n) M

by the Cauchy-Schwarz inequality (as 1] 1 = n?), where we have equality
if and only if 1, is an eigenvector of K,; that is, K1, = A1, for some
A >0 ( = row sums of K, are the same).



Var(éOLSE,n)_ Var(éBLUE,n)

2
ulu < (u" Kyu) (u' K tu) < % (1 / i\\i + “ii’)

Left inequality: Cauchy-Schwarz. Right inequality: Kantorovich (poor).

Better upper bound: using the optimality theorems, for a design u(= un)
and OLSE= [ y(x)u(dx):

V&r(éB/_UE) > 2ian€X PM(X) 1

1> A
V&I‘(QOLSE) E(H)

Useful relation:

MMD?(ptn, 1) = var(forse,n) — var(fpLue,n) -



Smit's paradox; behaviour of the variances as n increases

Smit’s paradox (1961): for particular stationary kernels in one dimension
and equidistant points, var(forse n) increases for n > ng.
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Red curve converges to the energy of the limiting design (e.g. uniform).
Where does the blue curve converge? How fast is the convergence?
How different could be the two limits?



Q: What is the limit of the BLUE curve?

Let x1, x2, ... be a dense sequence of distinct points in compact X.
Designs: X, = {x1,...,Xn};
Model: y(x;) = 0f(x;) + e(x;) (we have f(x) = 1x(x)).

Theorem (Parzen, 1971)

f € H(K) if and only if

Var(agLUEm) — 1/Hf||H(K) = var(éB/_UEpO) as n — oQ.

Here éBLUE’OO is the continuous BLUE of 8 but we may not be able to
write it in the form O ye 00 = [ y(x)p(dx)

(recall OpLuEn = [ y(x)ui(dx))
So, the limit of the BLUE curve is 1/|[1|| () but there may be no limit of
the signed measures p}, defining the discrete BLUEs.
Rate of convergence=MMD(p}, 1*) if u* exists; optimal design for BLUE.



Q: When the limits of the two curves coincide?

Answer: When the minimum-energy probability measure is the
minimum-energy signed measure p* (see above) and the limit of p,
defining the OLSEs converges to this measure.

From any C(1)PD kernel K we can construct a kernel (reduced kernel)
such that given p is the minimum-energy measure:

K (x,x) = K(x,x) = Pa(x) = Pulx) + E(12)
A useful relation: MMD?(p, v) = E(u — v) = &k, (v).

Theorem (LP & AZ)

() [Kul, = Ky

(ii) p discrete: K CPD iff K,, is PD
i) K is CIPD iff K, is IPD
iv)

(
(iv) p has infinite support; K is bounded and CISPD = K, is ISPD
(

i) is a generalization of Schoenberg’s result in which p is a delta
measure. This property is very important, e.g., for the energy distance.



Special role of the constant function 1 = 1x(x)

Questions:

(i) Does 1 belong to the RKHS H(K)?

(ii) Does 1 beIong to the space of potentials P(K)?

P(K) = {P.(x) = | K(x,x")u(dx") for a finite signed measure yu}
(iii) In case of ( i), is p a positive measure?

Importance:

(i) < continuous BLUE exists

(i) < continuous BLUE exists and has the form 0 ye o0 = [ y(x)u(dx)
(iii) < continuous BLUE exists, has the form above and coincides with
continuous OLSE for the optimal design.



More results: K is PD, K(x,x") = ¥(x — x')

@ Spectral measure of v is moment-determinant (e.g., ¢ is an analytic
function) and has no mass at 0 = 1 ¢ H(K) (H.Dette & AZ, 2021)

o If X =[0,1], ¢(t) is non-negative, non-constant, bounded and
decreasing for t > 0, then the uniform measure pg cannot be
minimum-energy measure (simply P,,(0.5) > P,,(0)).



Conclusions



Conjectures; PD kernels K(x, x") = (x — x)

Q 1 ¢ H(K) = the spectral measure of 1) is moment-determinant or it
has a positive mass at 0.

@ ¢ is differentiable at 0 = 1 ¢ P(K) (so that O yE o0 # [ y(x)u(dx)
even if it exists)

@ Uniform measure on X cannot be minimum-energy (not true if
(0) = o)

Q Let ¥(0) < oo, p* (if it exists) and p be minimum-energy measures
(u*(X) = put(X) =1). Then p*(0X) > 0 and pt(0X) > 0.



Conjectures; PD kernels K(x, x") = (x — x)

Q@ 1 ¢ H(K) = the spectral measure of 1) is moment-determinant or it
has a positive mass at 0.

@ ¢ is differentiable at 0 = 1 ¢ P(K) (so that 0 yE o0 7 [ y(x)u(dx)
even if it exists)

© Uniform measure on X cannot be minimum-energy (not true if
(0) = o0)

Q Let ¢(0) < oo, p* (if it exists) and u be minimum-energy measures
(u*(X) = pt(X)=1). Then p*(0X) > 0 and ut(0X) > 0.

Other directions of possible research (K(x,x') = ¢(x —x'), d > 1):
@ Extension of Smit's paradox to d >1 and relaxation of conditions on )
@ Structure of minimum-energy measures
o
(%)



