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Wavelets on the sphere and ball Sampling theory & fast algorithms
Cosmic microwave background (CMB) observed on 2D sphere

E/B separation

Credit: WMAP
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Wavelets on the sphere and ball

Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.
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Wavelets on the sphere and ball

Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function
f € L2(S?) on the sphere is defined by

[R(p)flw) = f(R;'w), w=(0,0) €S*, p=(a,B,7) €S0(3).
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Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function
f € L2(S?) on the sphere is defined by

[R(p)flw) = f(R;'w), w=(0,0) €S*, p=(a,B,7) €S0(3).

@ How define dilation on the sphere?
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Wavelets on the sphere and ball

Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function
f € L2(S?) on the sphere is defined by

[R(p)flw) = f(R;'w), w=(0,0) €S*, p=(a,B,7) €S0(3).

@ How define dilation on the sphere? T

v =263},

e Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

South pole

Figure: Stereographic projection
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Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function
f € L2(S?) on the sphere is defined by

[R(p)flw) = f(R;'w), w=(0,0) €S*, p=(a,B,7) €S0(3).

@ How define dilation on the sphere?

North,pole-

e Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

v =263},

e Harmonic dilation wavelets
McEwen et al. (2006), Sanz et al. (2006)

South pole

Figure: Stereographic projection
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Wavelets on the sphere and ball

Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function
f € L2(S?) on the sphere is defined by

[R(p)flw) = f(R;'w), w=(0,0) €S*, p=(a,B,7) €S0(3).

@ How define dilation on the sphere?

North,pole-

v =263},

Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

Harmonic dilation wavelets |
McEwen et al. (2006), Sanz et al. (2006)

Isotropic undecimated wavelets
Starck et al. (2005), Starck et al. (2009) South pole
Figure: Stereographic projection

Needlets
Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)

Scale-discretised wavelets
Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional spin wavelets

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

o Extend to functions of arbitrary spin.
McEwen et al. (2015)

Spin s signals transform under local rotations of x by
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional spin wavelets

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

o Extend to functions of arbitrary spin.
McEwen et al. (2015)

Spin s signals transform under local rotations of x by

o Why directional wavelets?

o Peaks of isotropic random fields elongated
Bond & Efstathiou (1987)

o Anisotropic structure (in additional to, e.g., inflationary Gaussian component for CMB)

Sl et | vl em die cpbare ordl [l



Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Axisymmetric kernel construction

@ Spin scale-discretised wavelet sWJ constructed in separable form in harmonic space:

axisymmetric directional

i | ki
S\I]Z'm -

—
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Axisymmetric kernel construction

@ Spin scale-discretised wavelet sWJ constructed in separable form in harmonic space:

-

axisymmetric directional

@ Admissible wavelets constructed to satisfy a partition of the identity:

EX35>

h - Om=—¢
scaling function J=0m=

Jj
S\I]Z'm -

£m

wavelet
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Wavelets on the sphere and ball
Scale-discretised wavelets on the sphere

Axisymmetric kernel construction

@ Spin scale-discretised wavelet sWJ constructed in separable form in harmonic space:

-

axisymmetric directional
o Admissible wavelets constructed to satisfy a partition of the identity:

scaling function

Jj
S\I]Z'm -

P L (O R (O W (S B () B 104}

o Axisymmetric wavelet kernels x7 (£): smooth,
infinitely differentiable (Schwarz) functions with
compact support.

Amplitude

(Similar but different to needlets.)

Figure: Harmonic tiling 7 (£).
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

o Consider directional auto-correlation:

T (Ay =+ =) = (@§, w9 :
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

o Consider directional auto-correlation:
oo min(N—1,¢)
j j j ) (|2 2 (im
PO@Ay =y =) = (@, ¥0) =3 [ @OF 3 o[ emAY,
£=0 m=— min(N—1,¢)
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

o Consider directional auto-correlation:
oo min(N—1,¢)
j j j ) (|2 2 (im
PO@Ay =y =) = (@, ¥0) =3 [ @OF 3 o[ emAY,
£=0 m=— min(N—1,¢)

@ Impose auto-correlation of the form:

r(Ay) = f: |;.g(j)(2)}2 cosP (A%y) .
£=0
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

o Consider directional auto-correlation:

] ) o . min(N—1,¢) )
T(Ay =5 =) = (@5, 91)) = 37 [0 @) Yo [Gem| A
= m=— min(N—1,£)

@ Impose auto-correlation of the form:
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

o Consider directional auto-correlation:

] ) o . min(N—1,¢) )
T(Ay =5 =) = (@5, 91)) = 37 [0 @) Yo [Gem| A
= m=— min(N—1,£)

@ Impose auto-correlation of the form:

@ Recover directional wavelet kernel:

i =10\ (o y2) |

- ']. Ef A\jfrl even | = (c1)N+m) 2 = 0, ff A\t+m even
i, if N —1 odd ' 1, if N+ m odd

where

p=min{N —1,0—[1+ (-1)NVT4/2},
Scale-discretised wavelets on the sphere and ball



Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Directional kernel construction

f 1
—N=4
0.8 — N_6 0.9 ]
0.6 —N-=8 0.8 ]
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(a) Odd N — 1 (b) Even N — 1

Figure: Directional auto-correlation for even and odd N — 1.
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Scalar wavelets

(@ N=1,j=6 (b)N=1,j=5 (¢)N=1,j=4 d)N=1, ;=3

() N=2j=6 (N=2 j=5 (gN=2j=4 ()N=2 j=3

() N=3j=6 (N=3 =5 (KN=3j=4 (HN=3 j=3

Figure: Scalar scale-discretised wavelets on the sphere.
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Spin wavelets

(a) Real(s®7) (b) Imag(sW7) (c) Abs(sW7)

Figure: Spin scale-discretised wavelets on the sphere.
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Forward and inverse transform (i.e. analysis and synthesis)

@ The spin scale-discretised wavelet transform is given by the usual projection onto each
wavelet:

W (0) = (o Ry W) | = [ a0 f(w)(Ry ) ().

projection
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Forward and inverse transform (i.e. analysis and synthesis)

@ The spin scale-discretised wavelet transform is given by the usual projection onto each
wavelet:

Wo (p) = (s f, Rp s ¥9)

_ /SQ AQ(w)s f(W) (R s W9)* (w) .

projection

@ Framework applied for functions of any spin.
o Wavelet coefficients are scalar and not spin.

o Wavelet coefficients live in SO(3) x Z; thus, directional structure is naturally incorporated.
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Forward and inverse transform (i.e. analysis and synthesis)

@ The spin scale-discretised wavelet transform is given by the usual projection onto each
wavelet:

Wo (p) = (s f, Rp s ¥9)

_ /SQ AQ(w)s f(W) (R s W9)* (w) .

projection

@ Framework applied for functions of any spin.
o Wavelet coefficients are scalar and not spin.
o Wavelet coefficients live in SO(3) x Z; thus, directional structure is naturally incorporated.

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

/ de(p)W=Y (p)(Rp s B9)(w) .
S0(3)

wavelet contribution

finite sum
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Wavelets on the sphere and ball Sampling theory & fast algorithms E/B separation

Scale-discretised wavelets on the sphere
Steerability

@ By imposing an azimuthal band-limit N, we recover steerable wavelets.

Zv0 “"‘Zﬂu O""ZW C = C

Figure: Steered wavelet computed from basis wavelets.
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Wavelets on the sphere and ball Sampling theory & fast algorithms E/B separation

Scale-discretised wavelets on the sphere
Steerability

@ By imposing an azimuthal band-limit N, we recover steerable wavelets.

@ By the linearity of the wavelet transform, steerability extends to wavelet coefficients:

M-1
Wﬁq’J(a B,y) = Z z Y we? (047,3,79).
9=0

steerability

Zv0 “"‘Zﬂu O""ZW C = C

Figure: Steered wavelet computed from basis wavelets.
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Localisation of Gaussian random fields

Wavelet localisation (McEwen, Durastanti, Wiaux 2017)

Directional scale-discretised wavelets ¥ & LQ(SQ), defined on the sphere S? and centred on
the North pole, satisfy the localisation bound:

[T)(0, )| <

(there exist strictly positive constants C\?), C{?) € R} for any ¢ € Rt). Follows from theorem
by Geller & Mayeli (2009).
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Localisation of Gaussian random fields
Wavelet localisation (McEwen, Durastanti, Wiaux 2017)

Directional scale-discretised wavelets ¥ & LQ(SQ), defined on the sphere S? and centred on
the North pole, satisfy the localisation bound:

[T)(0, )| <

(there exist strictly positive constants (,',"t"A (,'Vé/j € R forany £ € R1). Follows from theorem
by Geller & Mayeli (2009).

Wavelet asymptotic uncorrelation (McEwen, Durastanti, Wiaux 2017)

For Gaussian random fields on the sphere, directional scale-discretised wavelet coefficients
are asymptotically uncorrelated. The directional wavelet correlation satisfies the bound:

o)

E(jj')(m,pz) <
(1+cp)*

where 8 € [0, 7) is an angular separation between Euler angles p1 and pa (there exist strictly
positive constants (f,']"/),(f';}) € RI for any £ € RT, € > 2N, where N is the azimuthal band-limit
of the wavelet and |j — j'| < 2). Follows from theorem by Geller & Mayeli (2009).
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Wavelets on the sphere and ball

Scale-discretised wavelets on the sphere
Parseval frame

Parseval frame property (McEwen, Durastanti, Wiaux 2017)

Scale-discretised wavelets form a Parseval (tight) frame:

AP < [ a0w) |, oD + Z/ de(p) [{7, RoWD)[* < BISI?,

j=Jo

with A = B = 1, for any band-limited f € L2(S?), and where || - ||2 = (-, -).

(Adopt shorthand integral notation, although by appealing to sampling theorems and
exact quadrature rules integrals may be replaced by finite sums.)
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Wavelets on the sphere and ball Sampling theory & fast algorithms E/B separation

Galaxy distribution observed on the 3D ball

Credit: SDSS
«0» «4F» 4«
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Wavelets on the sphere and ball

Fourier-LAGuerre wavelets (flaglets) on the ball

o Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012; Lesitedt, McEwen, Kitching & Peiris 2015):

W (1 0) = (of, Ty 897 :/BS & o f(r) (T py s W97 )" (r) .

projection
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Wavelets on the sphere and ball

Fourier-LAGuerre wavelets (flaglets) on the ball

o Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012; Lesitedt, McEwen, Kitching & Peiris 2015):

‘ W (1 0) = (of, Ty 897 :/33 & o f(r) (T py s W97 )" (r) .

projection

@ Original function may be recovered exactly in practice from wavelet coefficients:

s = T [ o) [ ar w6 T s ).

Ji’

finite sum wavelet contribution
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Wavelets on the sphere and ball

Fourier-LAGuerre wavelets (flaglets) on the ball

o Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012; Lesitedt, McEwen, Kitching & Peiris 2015):

‘ W (1 0) = (of, Ty 897 :/BS & o f(r) (T py s W97 )" (r) .

projection

@ Original function may be recovered exactly in practice from wavelet coefficients:

s = T [ o) [ ar w6 T s ).

Ji’

finite sum wavelet contribution

o Define translation operator on positive real line RT = [0, c0).
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Wavelets on the sphere and ball

Fourier-LAGuerre wavelets (flaglets) on the ball

Real part of spin s = 2 flaglets with A\=v =3, Iy =Jy=2, N =1 Imag. part

Modulus

3D with z slices

slice z =0

o

o
‘ f
‘ f

slice z = 0

half sphere r = R/2

half sphere r = R/2
a
Jason McEwen

=

half sphere r = R/2

E A
Scale-discretised wavelets on the sphere and ball



Sampling theory & fast algorithms
Outline

© Sampling theory and fast algorithms
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Sampling theory on the sphere S?

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere S? (McEwen & Wiaux 2011)

Information content of a signal f € LQ(SQ) on the sphere S2, band-limited at L, can
be captured in ~ 2L? equiangular samples.
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Sampling theory & fast algorithms

Sampling theory on the sphere S?

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere S? (McEwen & Wiaux 2011)

Information content of a signal f € L2(SQ) on the sphere S2, band-limited at L, can
be captured in ~ 2L? equiangular samples.

Outline of proof: factoring of rotations, mapping of sphere S? to torus T2, Fourier transform
e ) @
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Sampling theory & fast algorithms

Sampling theory on the sphere S?

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere S? (McEwen & Wiaux 2011)

Information content of a signal f € L2(SQ) on the sphere S2, band-limited at L, can
be captured in ~ 2L? equiangular samples.

Outline of proof: factoring of rotations, mapping of sphere S? to torus T2, Fourier transform

? =

@ Previous canonical sampling theorem on the sphere based on the seminal work of
Driscoll & Healy (1994)

o Required ~ 41? samples.

o Reduction in the Nyquist rate on the sphere by a factor of 2 (McEwen & Wiaux 2011).
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Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

o Wavelet coefficients for scale j live on the rotation group SO(3): ws¥ ¢ L2(SO(3))

@ Develop fast wavelet transforms by considering their (Wigner) harmonic representation.
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Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

o Wavelet coefficients for scale j live on the rotation group SO(3): ws¥ ¢ L2(SO(3)) |

@ Develop fast wavelet transforms by considering their (Wigner) harmonic representation.

o Signal on the rotation group F' € L2(SO(3)) may expressed by Wigner decomposition:

oo I4
14
Fo) =Y 3 3 2 Pl D)

where Wigner coefficients given by usual projection onto basis functions:

= / de(p)F(p) Db (p) -
SO(3)

‘ Dl* >
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Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

o Wavelet coefficients for scale j live on the rotation group SO(3): ws¥ ¢ L2(SO(3)) |

@ Develop fast wavelet transforms by considering their (Wigner) harmonic representation.

o Signal on the rotation group F' € L2(SO(3)) may expressed by Wigner decomposition:

oo I4
14
Fo) =Y 3 3 2 Pl D)

where Wigner coefficients given by usual projection onto basis functions:

= / de(p)F(p) Db (p) -
SO(3)

Equiangular sampling theorem on the rotation group SO(3) (McEwen et al. 2015)

‘ Dl* >

Information content of a signal F' € L?(SO(3)) on the rotation group SO(3), band-limited
at L, can be captured in ~ 43 equiangular samples.
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Sampling theory & fast algorithms

Fast Wigner transform

Timing
N
c 10} 1
9
© 10 | ;
_g 2
g 107 — NL? scaling 1
@©
§ 10% L —+ real
< e o complex
10'6 1 1 1 1 | 1 |
32 64 128 256 512 1024 2048
L
Figure: N =4
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Sampling theory & fast algorithms

Fast Wigner transform

Accuracy
10-12 ]
(O] -13
10 E
€
S5
% 101 — L scaling |
g —+ real
e o complex
10'15 Il Il Il Il Il Il Il
32 64 128 256 512 1024 2048
L
Figure: N =4
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Sampling theory & fast algorithms

Fast directional spin scale-discretised wavelet transform on the sphere
Exact and efficient computation via Wigner transforms

o Directional wavelet analysis can be posed as an inverse Wigner transform on SO(3):

(W) =

_ 5
mn = 2041 sfom s %o »

analysis
with

j 2041 N .
we¥ (o) =" (W=¥") . Dhx(p) -
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Wavelets on the sphere and ball Sampling theory & fast algorithms E/B separation

Fast directional spin scale-discretised wavelet transform on the sphere
Exact and efficient computation via Wigner transforms

o Directional wavelet analysis can be posed as an inverse Wigner transform on SO(3):

(Wé\II] )e 82

_ 5
mn = 2041 sfom s %o »

analysis
with

j 2041 N .
W (o) = 37 = W), Dine)
mn

o Directional wavelet synthesis can be posed as a forward Wigner transform on SO(3):

of(w) = Z S 2 L) 9 Vi),

2
j=04mn 8

synthesis

where

(w=¥")  =w=¥ Di)= /S o) do(p)W="" (p) Df,,, (p) -
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Sampling theory & fast algorithms

Fast directional spin scale-discretised wavelet transform on the sphere
Timing

w

T T T T T T

- ¢— Multi resolution P
¢ & & Full resolution
— L® scaling

_

=
o o
S

M e e
ReR=X=X=)
o = N W
T

-®-

[eNeoNe]
[N

Average duration [s]
e
S

H

32 64 128 256 512 1024 2048
L

Figure: N =5, s =2

Sl et | vl em die cpbare ordl [l



Sampling theory & fast algorithms

Fast directional spin scale-discretised wavelet transform on the sphere
Accuracy

10-11 T T T
&—¢ Multi resolution
102 | & @ Full resolution

— L scaling

10-13 |

Maximum error

10'15 1 1 1 1 | 1 |
32 64 128 256 512 1024 2048

L

Figure: N =5, s =2
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Sampling theory & fast algorithms

Sampling theory and harmonic transforms
Codes (www.jasonmcewen.org/codes.html)

SSHT code http://www.spinsht.org

SSHT: Fast & exact spin spherical harmonic transforms
McEwen & Wiaux (2011)

@ C, Matlab, Python
@ Efficient sampling theorem on the sphere S?

@ Fast algos

http://wuw.sothree.org

SO3: Fast & exact Wigner transforms
McEwen, Biittner, Leistedt, Peiris, Wiaux (2015)

@ C, Matlab, Python
@ Efficient sampling theorem on the rotation group SO(3)

@ Fast algos
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http://www.jasonmcewen.org/codes.html
http://www.spinsht.org
http://www.sothree.org

Sampling theory & fast algorithms

Spin scale-discretised wavelets on the sphere and ball
Codes (www.jasonmcewen.org/codes.html)

S2LET code

http://www.s2let.org

S2LET: Fast & exact wavelets on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

McEwen, Leistedt, Biittner, Peiris, Wiaux (2015)
@ C, Matlab, Python
@ Supports directional, steerable, spin wavelets

@ Fast algos

FLAGLET code

http://www.flaglets.org

FLAGLET: Fast & exact wavelets on the ball
Leistedt & McEwen (2012)

Leistedt, McEwen, Kitching, Peiris (2015)
@ C, Matlab, Python
@ Supports directional, steerable, spin wavelets

@ Fast algos
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http://www.jasonmcewen.org/codes.html
http://www.s2let.org
http://www.flaglets.org

Outline

© E/B separation for CMB polarization and cosmic shear
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E/B separation

E- and B-modes
Full-sky

@ Decompose 19 P into parity even and parity odd
components: l
N/ —

E-mode
AN
/
/I

e(w) = —% [52 2P(w) + 82 _gP(w)]

/7 \ | ¥ —

v
irs 3
Bw) = 5 [0 2P(w) - 3% _2P(w)] |2
2 b AN N\
where 8 and 8 are spin lowering and raising \—/ / I
(differential) operators, respectively. Figure: E-mode (even parity) and
B-mode (odd parity) signals [Credit:

http://www.skyandtelescope.com/].
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E/B separation

E- and B-modes

Full-sky
@ Decompose +2 P into parity even and parity odd E-mode B-mode
components:
NP
[
17 K - - 7 7/
e(w) = =5 [0 2P(w) + 8% 2P(W)] |2 RN | —
d I AN

/TN | 7=
AN AN

where 8 and 8 are spin lowering and raising \—/ / I
Figure: E-mode (even parity) and

(differential) operators, respectively.
B-mode (odd parity) signals [Credit:

http://www.skyandtelescope.com/].

B-mode

Bw) = %[52 2P(w) — 32 _gp(w)]

o Different physical processes exhibit different symmetries and thus behave differently under
parity transformation.

o Can exploit this property to separate signals arising from different underlying physical
mechanisms.

o Mapping E- and B-modes on the sky of great importance for forthcoming experiments.
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E- and B-modes

Partial-sky

@ On a manifold without boundary (i.e. full sky), a spin 2 signal can be decomposed
uniquely into E- and B-modes.
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E- and B-modes

Partial-sky

@ On a manifold without boundary (i.e. full sky), a spin 2 signal can be decomposed
uniquely into E- and B-modes.

@ On a manifold with boundary (i.e. partial sky),
decomposition not unique.

@ Recovering E and B-modes from partial sky observations
is challenging since mask leaks contamination.
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E- and B-modes
Partial-sky

@ On a manifold without boundary (i.e. full sky), a spin 2 signal can be decomposed

uniquely into E- and B-modes.
@ On a manifold with boundary (i.e. partial sky),
decomposition not unique.

@ Recovering E and B-modes from partial sky observations
is challenging since mask leaks contamination.

@ Pure and ambiguous modes (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga
2007, Grain et al. 2007, Ferté et al. 2013).
o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes
o Pure B-modes: orthogonal to all E-modes
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E/B separation

E- and B-modes

Partial-sky

@ On a manifold without boundary (i.e. full sky), a spin 2 signal can be decomposed
uniquely into E- and B-modes.

@ On a manifold with boundary (i.e. partial sky),
decomposition not unique.

o Recovering E and B-modes from partial sky observations
is challenging since mask leaks contamination.

@ Pure and ambiguous modes (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga
2007, Grain et al. 2007, Ferté et al. 2013).
o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes
o Pure B-modes: orthogonal to all E-modes

@ Number of existing techniques (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga
2007, Grain et al. 2007, Bowyer et al. 2011, Kim 2013, Ferté et al. 2013).

o Exploit wavelets
(Leistedt, McEwen, Biittner, Peiris 2016).
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E/B separation

Connections between spin and scalar wavelet coefficients

@ Spin wavelet transform of 1oP = Q iU (observable):

¥l .
Wi‘lz’p(l)) = (£2P, Ry +2¥7)

- /82 AQ(w) 12 P(W) (Rp £2%9)* (w) .

spin wavelet transform
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E/B separation

Connections between spin and scalar wavelet coefficients

@ Spin wavelet transform of 1oP = Q iU (observable):

¥l .
Wiq;p(P) = (£2P, Ry +2¥7)

- /82 AQ(w) 12 P(W) (Rp £2%9)* (w) .

spin wavelet transform

o Scalar wavelet transforms of E and B (non-observable):

WY (p) = (e, Rp 0¥) |,

scalar wavelet transform

W (o) = (8, Rp o) |,

scalar wavelet transform

where U7 = 5207 .
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E/B separation

Connections between spin and scalar wavelet coefficients

@ Spin wavelet transform of 1oP = Q iU (observable):

i ,
W;p( p) = (£2P, Ry +297)

spin wavelet transform

- /82 AQ(w) 12 P(W) (Rp £2%9)* (w) .

o Scalar wavelet transforms of E and B (non-observable):

W (p) = (e, Rp o¥7) |,

scalar wavelet transform

W (p) = (8, R W) |,

scalar wavelet transform

where U7 = 5207 .

Spin wavelet coefficients of 4o P are connected to scalar wavelet coefficients of E/B: ]

WY (p) = —Re[W2¥ 1 (p)] and Wg“”(p)=ﬂm[wfﬁp(p>}.’
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E/B separation

Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

© Compute spin wavelet transform of 1o P = Q + iU:
Spin wavelet transform

Nl
+2P(w) — W;p(l?)
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E/B separation

Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

© Compute spin wavelet transform of 1o P = Q + iU:
Spin wavelet transform

i
+2P(w) — W2 p(P)

@ Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):

Wi Mitigate mask
W2 p(P) — Wizp(l’)
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E/B separation

Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

© Compute spin wavelet transform of 1o P = Q + iU:
Spin wavelet transform

i
+2P(w) — W2 p(P)

@ Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):
Mitigate mask i
207 77297
Wizp(f’) — W 2P(P)
@ Construct E/B maps:

Inverse scalar wavelet transform

w7 v

(a) WO (p) = —Re[ W20 7, (o)] — e(w)
j Wi Inverse scalar wavelet transform

(6) W§™' (0) = Fm[W2T0 ()] T —— A)
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Wavelets on the sphere and ball

Sampling theory & fast algorithms E/B separation

E/B separation

Scale-dependent masking

Input (observation) mask Mask for harmonic recovery Mask for wavelet recovery (scaling function) Mask for wavelet recovery (wavelet 1)

A AN T T &
N 4

- -

Mask for wavelet recovery (wavelet4)  Mask for wavelet recovery (wavelet 5)

SETTN PN AN RN

Mask for wavelet recovery (wavelet 2)  Mask for wavelet recovery (wavelet 3)

Jason McEwen Scale-discretised wavelets on the sphere and ball



E/B separation

Pure mode wavelet estimator

o Consider masked Stokes parameters:

oM =M, 11M=038+M, 12M=238%M, ’

spin adjusted masks

‘ +2P=oMioP, 41 P= F1M 2P, +0P = Fo2M 12 P.

masked Stokes parameters

where 04 = {9 if +, 0 if — }.
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E/B separation

Pure mode wavelet estimator

o Consider masked Stokes parameters:

oM =M, 11M=038+M, 12M=238%M, ’

spin adjusted masks

‘ +2P=oMioP, 41 P= F1M 2P, +0P = 12 M 42 P.

masked Stokes parameters

where 04 = {9 if +, 0 if — }.

o Pure wavelet estimators (Leistedt, McEwen, Biittner, Peiris 2016):

i i i w

W (p) = — Re [Wj:,; () +2W 15 (p) + W03 (p)}, v
o

— pJ I Y3 j m
W5 () = % tm [W22T () + 2w 2 T () 4 o ()] | ¢
o

where +,YJ = 0% (0T7) are spin adjusted wavelets and assuming the Dirichlet and

Neumann boundary conditions, i.e. that the mask and its derivative vanish at the
boundaries.

Scale-discretised wavelets on the sphere and ball



E/B separation

Pure mode wavelet estimator

@ Pure wavelet estimators (Leistedt, McEwen, Biittner, Peiris 2016):

- i I i
W™ (p) = = Re || W25 (p) |+ 2W 25 (p) + W5 (o) ||

L pseudo pure correction -

— i I I i
WY (p) = Im || W=220(p) |+ | 2W=127 () + WO (o)

L pseudo pure correction -

o Correction terms require spin +1 wavelet transforms.
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E/B separation

Results: pseudo harmonic approach

E mode error mean (pseudo harmonic recovery) B mode error mean (pseudo harmonic recovery)

~0.015 0.000 0015 ~0.015 0.000 0015
(K] (K]

E mode error std. dev. (pseudo harmonic recovery) B mode error std. dev. (pseudo harmonic recovery)

o

~—— s —_—

=

=0.15 0.00 0.15 =0.15 0.00 0.15
[1K] [1K]
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E/B separation

Results: pure wavelet approach

E mode error mean (pure wavelet recovery)

~0.015 0.000 0015
(K]

E mode error std. dev. (pure wavelet recovery)

—0.15 0.00 0.15
[1K]

E/B separation

B mode error mean (pure wavelet recovery)

~0.015 0.000 0015
(K]

B mode error std. dev. (pure wavelet recovery)

—0.15 0.00 0.15
[uK]
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Summary

Spin scale-discretised wavelets on the sphere S? and ball SO(3) are
powerful tools for studying CMB and weak gravitational lensing
and beyond (e.g. diffusion MRI).

o Exact forward (analysis) and inverse (synthesis) transforms in theory and practice.
o Probe directional structure.
o Framework applies to signals of any spin.

@ Excellent localisation properties
(localisation of Gaussian random fields).

o Parseval frame.

@ Fast algorithms to scale to big-data
(leveraging exact and efficient harmonic transforms on S2 and SO(3)).

o Elegant and practical connection between spin and scalar wavelet transforms
(e.g. for E/B separation).
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