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Cosmological Random Fields
□ Bayesian Hierarchical models for cosmological 

maps, spectra, and parameters
■ random fields
■ sampling techniques
■ applications to CMB and weak lensing

□ Modelling inflationary potential as a random field



Random fields in Cosmological 
Bayesian Hierarchical Models

Deterministic 
evolution

Astrophysical
fields:  

slices/volumes/projections

Experimental  
apparatus

Data fields: 
maps, catalogs, 

timestreams

experimental 
parameters

(some unknown)

cosmological 
parameters

effective parameters
(since we don’t know the 

full theory)

Initial fields: 
δi(r), Φ(r) Power Spectra



Where are the cosmological 
random  fields?

□ Initial (post-inflation?) fluctuations may be only 
true “random field”.
■ ~known to be approximately isotropic, Gaussian

□ Unknowns in [actually deterministic] evolution & 
measurement modelled as further random fields or 
paramaterised processes 
■ also may be some further “true” quantum randomness
■ e.g.
□ details of galaxy formation
□ properties of experimental noise



Quick case study:  
Cosmostatistics of  the CMB

□ CMB as a hierarchical model
■ can be computed exactly using Gibbs methods, 

estimated w/ approximations for  
P(Ĉℓ|Cℓ) 

□ Map and power spectrum are just 
(approximately) sufficient statistics

□ Radical compression (~sparsity):
■ 1012 samples ⇾ 107 pixels ⇾  

103 Cℓ ⇾ 6 parameters

□ This version assumes 
■ isotropic Gaussian signal (no topology)
■ known & Gaussian noise properties
■ known (isotropic) beam shape
■ no foregrounds
■ no systematics

□ Even so: compute-bound O(Npix3):
■ covariance matrix in mapmaking
■ likelihood evaluation in Cℓ step

CMB Map
Δp"="Tp"+ np

CMB
Power Spectrum

C#

Cosmological
Parameters

θi = {ns, Ωm, ΩΛ, H0, ...} 

Timestream data
dt

GLS
Mapmaking

Likelihood 
Maximization/
Exploration

MCMC

Detectors

Pr(C# | θi ) = $[C# − C#(θi )]

Pr(Δp | C# ) = N(Δp , Cpp'+Npp') 

Pr(dt | Tp) = N(dt  - Atp Tp, Ntt')



Weak Gravitational Lensing
□ Intervening matter bends the path of light
□ results in distorted images
□ measures the line-of-sight density, suitably integrated
□ kernel depends on the distance to the source galaxy 

behind and the cosmology

Courtesy Euclid/Jason Rhode, JPL



Weak Gravitational Lensing
□ Intervening matter bends the path of light
□ results in distorted images
□ measures the line-of-sight density, suitably integrated
□ kernel depends on the distance to the source galaxy 

behind and the cosmology

NASA/



Weak lensing of  galaxies
□ First analyzed/observed in clusters

Wikipedia

Image: Composite Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; 
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. 
Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.



Lensing formalism
□ Map the unperturbed image to the  

lensed image:
□ source position = image position − deflection

□ β = θ − α  (2D vectors on the sky)
□ Born approx + small deflections: 
■ linear mapping

□ main point: these are all linear in the potential  
(by construction, but to an excellent approximation)
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Figure 1. Propagation of two light rays (red solid lines), converging on the observer on the left.
The light rays are separated by the transverse comoving distance x, which varies with distance �

from the observer. An exemplary deflector at distance �0 perturbes the geodescics proportional to
the transverse gradient r?� of the potential. The dashed lines indicate the apparent direction of
the light rays, converging on the observer under the angle ✓. The dotted lines show the unperturbed
geodesics, defining the angle � under which the unperturbed transverse comoving separation x is
seen.

modify the path of both light rays, and we denote with the superscript (0) the potential along the

second, fiducial ray. The result is

x(�) = f
K

(�)✓ � 2

c2

Z
�

0

d�0f
K

(� � �0)
⇥
r?�(x, �0), �0) �r?�(0)(�0)

⇤
. (12)

In the absence of lensing the separation vector x would be seen by the observer under an angle

� = x(�)/f
K

(�). The di↵erence between the apparent angle ✓ and � is the total, scaled deflection

angle ↵, defining the lens equation
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Equation (13) is analogous to the standard lens equation in the case of a single, thin lens, in which

case � is the source position.

3.3. Linearized lensing quantities

The integral equation (12) can be approximated by substituting the separation vector x in the integral

by the 0th-order solution x

0

(�) = f
K

(�)✓ (11). This corresponds to integrating the potential gradient

along the unperturbed ray, which is called the Born approximation (see Sect. 3.14 for higher-order

corrections). Further, we linearise the lens equation (13) and define the (inverse) amplification matrix

as the Jacobian A = @�/@✓, which describes a linear mapping from lensed (image) coordinates ✓ to
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Figure 2. The orientation of the ellipses given by the Cartesian coordinates �1 and �2 of the shear.
While the polar angle ' passes through the range [0; 2⇡], the shear ellipse rotates around ⇡.

The second term in (14) drops out since it does not depend on the angle ✓.

In this approximations the deflection angle can be written as the gradient of a 2D potential, the

lensing potential  ,
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With this definition, the Jacobi matrix can be expressed as
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where the partial derivatives are understood with respect to ✓. The symmetrical matrix A
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This defines the convergence and shear as second derivatives of the potential,
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The inverse Jacobian A�1 describes the local mapping of the source light distribution to image

coordinates. The convergence, being the diagonal part of the matrix, is an isotropic increase or

decrease of the observed size of a source image. Shear, the trace-free part, quantifies an anisotropic

stretching, turning a circular into an elliptical light distribution.

It is mathematically convenient to write the shear as complex number, � = �
1

+ i�
2

=

|�| exp(2i'), with ' being the polar angle between the two shear components. Shear transforms

as a spin-two quantity: a rotation about ⇡ is the identity transformation of an ellipse (see Fig. 2 for

an illustration).

In the context of cosmological lensing by large-scale structures, images are very weakly lensed,

and the values of  and � are on the order of a few percent or less. Each source is mapped uniquely

onto one image, there are no multiple images, and the matrix A is indeed invertible.
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The inverse Jacobian A�1 describes the local mapping of the source light distribution to image

coordinates. The convergence, being the diagonal part of the matrix, is an isotropic increase or

decrease of the observed size of a source image. Shear, the trace-free part, quantifies an anisotropic

stretching, turning a circular into an elliptical light distribution.

It is mathematically convenient to write the shear as complex number, � = �
1

+ i�
2

=

|�| exp(2i'), with ' being the polar angle between the two shear components. Shear transforms

as a spin-two quantity: a rotation about ⇡ is the identity transformation of an ellipse (see Fig. 2 for

an illustration).

In the context of cosmological lensing by large-scale structures, images are very weakly lensed,

and the values of  and � are on the order of a few percent or less. Each source is mapped uniquely

onto one image, there are no multiple images, and the matrix A is indeed invertible.

metric perturbationlensing potential
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The inverse Jacobian A�1 describes the local mapping of the source light distribution to image

coordinates. The convergence, being the diagonal part of the matrix, is an isotropic increase or

decrease of the observed size of a source image. Shear, the trace-free part, quantifies an anisotropic

stretching, turning a circular into an elliptical light distribution.

It is mathematically convenient to write the shear as complex number, � = �
1

+ i�
2

=

|�| exp(2i'), with ' being the polar angle between the two shear components. Shear transforms

as a spin-two quantity: a rotation about ⇡ is the identity transformation of an ellipse (see Fig. 2 for

an illustration).

In the context of cosmological lensing by large-scale structures, images are very weakly lensed,

and the values of  and � are on the order of a few percent or less. Each source is mapped uniquely

onto one image, there are no multiple images, and the matrix A is indeed invertible.
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The second term in (14) drops out since it does not depend on the angle ✓.
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 =
1

2
(@

1

@
1

+ @
2

@
2

) =
1

2
r2 ; ; �

1

=
1

2
(@

1

@
1

� @
2

@
2

) ; �
2

= @
1

@
2

 . (19)

The inverse Jacobian A�1 describes the local mapping of the source light distribution to image

coordinates. The convergence, being the diagonal part of the matrix, is an isotropic increase or

decrease of the observed size of a source image. Shear, the trace-free part, quantifies an anisotropic

stretching, turning a circular into an elliptical light distribution.

It is mathematically convenient to write the shear as complex number, � = �
1

+ i�
2

=

|�| exp(2i'), with ' being the polar angle between the two shear components. Shear transforms

as a spin-two quantity: a rotation about ⇡ is the identity transformation of an ellipse (see Fig. 2 for

an illustration).

In the context of cosmological lensing by large-scale structures, images are very weakly lensed,

and the values of  and � are on the order of a few percent or less. Each source is mapped uniquely

onto one image, there are no multiple images, and the matrix A is indeed invertible.
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The second term in (14) drops out since it does not depend on the angle ✓.
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The inverse Jacobian A�1 describes the local mapping of the source light distribution to image

coordinates. The convergence, being the diagonal part of the matrix, is an isotropic increase or

decrease of the observed size of a source image. Shear, the trace-free part, quantifies an anisotropic

stretching, turning a circular into an elliptical light distribution.

It is mathematically convenient to write the shear as complex number, � = �
1

+ i�
2

=

|�| exp(2i'), with ' being the polar angle between the two shear components. Shear transforms

as a spin-two quantity: a rotation about ⇡ is the identity transformation of an ellipse (see Fig. 2 for

an illustration).

In the context of cosmological lensing by large-scale structures, images are very weakly lensed,

and the values of  and � are on the order of a few percent or less. Each source is mapped uniquely

onto one image, there are no multiple images, and the matrix A is indeed invertible.

convergence

shear

Short et al 2012



CFHTLens
□ 154 deg2 ugriz multi-

colour optical survey
□ five years of data from the 

Wide, Deep and Pre-
survey components of full 
CFHT Legacy Survey

□ Optimised for weak 
lensing with deep i-band 
data taken in sub-arcsec 
seeing

□ For general overview, see 
Erben et al 2012, Heymans 
et al 2012



Worked example: 
Shear power spectra

□ Shear: spin-2 (tensor), linearly related to density (potential)
□ 2-point correlators encode cosmological information
■ motivates “quadratic estimators”
■ find quadratic combinations 

of data which give unbiased 
(and low variance) estimates of the  
underlying power spectra.

■ details sensitive to survey 
geometry (masks), noise, &c. 

■ not quite “optimal” (Bayesian)
□ even when used in a  

likelihood (e.g., CosmoMC)
■ simple versions cheap &  

cheerful first steps

3D Cosmic Shear 13

Figure 6. The projected 2D cosmic shear power spectrum for each of the CFHTLenS fields; computed by integrating the full 3D cosmic
shear power. The data points show the E-mode only power as a function of ℓ. The solid line shows the 2D power spectra estimates
calculated using a reference cosmology of WMAP7 (Komatsu et al., 2011). For the W2 field we show the error bar on each point, which
are also typical of the other fields. Because of the logarithmic y axes negative values as a result of noise are not shown. For illustration, in
the W4 field only, the grey dot-dashed line shown is the 2D cosmic shear power spectrum that one would compute from data evaluated
on a plane, or from theory if no cut in the radial k direction were imposed in the Limber-approximated calculation.

consistent with shot noise only (equation 3), because cos-
mic shear only induces E-mode power. Therefore the B-
mode power minus the expected shot noise power spec-
trum should be consistent with zero. This assumption can
break down due to intrinsic alignments (see e.g. Merkel &
Schaefer, 2013), but at the level of precision attainable from
CFHTLenS, and the fact that we remove the galaxies that
are most likely to be contaminated with intrinsic alignments,
this is a valid systematic test.

• The cross power spectrum between the E and the B-
mode power should be consistent with zero. A non-zero E-B
power spectrum would correspond to a mixing of E and B-
mode power which is expected to be zero, except in some
exotic cosmologies (see Amendola et al. 2013 for a review),
or as a result of residual systematic B-mode power being
mixed with the E-mode power through the application of
the mixing matrix.

• For a Gaussian random field the phase of the E and
B-mode power spectra for a given mode is

φ = atan

(
I[γ(k, ℓ)]
R[γ(k, ℓ)]

)
. (11)

The distribution of phases should be random, and consis-

tent with a uniform distribution over [0, 2π] (see Coles et al.
2004 for a study of phases in a CMB study) if there is no
prefered direction in the data (this tests sensitivity to a shift
in the origin of the coordinate system used). The shear co-
efficients used in the above equation are the observed shear
coefficients (equation 20 in Appendix A) to test the isotropy
of the on-sky shear field.

We show the result of the first two of these systematic tests
in Figure 8 for each of the four fields as a function of ℓ,
averaged over k, and the real and imaginary parts of the
power spectra. We find that as expected each of these tests
is consistent with zero. In Figure 8 we also show the dis-
tribution of the complex phases of the observed transform
coefficients averaged over all ℓ and k-modes, which we find
to be consistent with a uniform distribution for each field.

c⃝ 2013 RAS, MNRAS 000, 1–??

Kitching et al 2015
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according to the central limit theorem.
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Under the assumptions described above, the data vector is
described by a linear model d = s + n where the field s is
the collection of tomographic shear maps (whose statistics
are described in §2.2.2) and the noise n has covariance,

hnnT

i = N = diag

 
�2

✏

N
(1)

p=1

,
�2

✏

N
(1)

p=1

,
�2

✏

N
(2)

p=1

,
�2

✏

N
(2)

p=1

, . . . ,

. . . ,
�2

✏

N
(1)

p=2

,
�2

✏

N
(1)

p=2

,
�2

✏

N
(2)

p=2

,
�2

✏

N
(2)

p=2

, . . .

!
.

(6)

For masked pixels there are no observed sources contributing
to �̂

(↵)

p

, so the noise covariance for these pixels is taken to
be infinite.

2.2.2 The signal: tomographic shear fields and their

covariance

The tomographic shear fields described in (3) are two-
dimensional isotropic random fields with spin-weight-2 on
the angular sky. Since the fields are isotropic, their (spin-
2) spherical harmonic coe�cients are uncorrelated, making
harmonic space a particularly convenient basis. The expan-
sion coe�cients and two-point statistics of the complex shear
(split into E- and B-mode components) are given by
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models predict negligible B-mode, so CBB
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' 0. However, systematic ef-
fects could give rise to non-zero B-modes, so in a weak lens-
ing analysis the estimation of the B-mode power is nonethe-
less useful as it provides a test for systematic e↵ects.

In the Limber approximation (Limber 1954), the E-
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where � is comoving distance, P (k;�) is the 3D matter
power spectrum and �
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where n
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(�)d� = p
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(z)dz is the redshift distribution for
galaxies in redshift bin ↵ (normalized to one over the bin).

The fields under consideration are the collection of to-
mographic shear maps {�(↵)(✓,�)}. In the context of the hi-
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The full covariance matrixC of the field s will then be block-
diagonal, where each `m-mode contributes one block C
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I
n

is the n⇥ n identity matrix, ⌦ is the Kronecker product
and again C

`,↵�

are the tomographic angular power spectra
between redshift bins ↵ and �. Note that, in principle, the
shear covariance could contain contributions from both cos-
mic shear (as described above) and also intrinsic alignments;
see §3.4 for a discussion of including intrinsic alignments into
this framework.

2.2.3 Flat sky approximation

In the limit where we have a small survey area, we can make
the flat sky-approximation and replace spherical harmonic
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Joint map/power spectrum 
inference

□ Link between d and C is the true map s
□ Natural to sample from C and s jointly, conditioned 

on the data d: P(C, s | d) 
□ Marginalise over the map(s) s to get P(C | d) 
□ Assume Gaussian fields [large scales]

□ How to do this inverse problem? 
■ Instead, consider the forward model… 



Hierarchical Models for 
cosmology (maps & spectra)

□ Break the problem into steps
□ Parameters
■ C = (various) power spectra
■ s = true shear map 
□ (many more parameters)

□ Data: pixelised shear values 
■ d = s + n (noise)

□ We typically want P(C|d)
□ Conditional distributions,  

e.g., P(s|C), are often known
■ (so Gibbs sampling can be used)

Joint estimate 
of map (s) & 
spectra (C)



From data to model (and back)
□ noisy, redshift-binned, masked data
□ ⇒shear spectra
□ ⇒cosmology

Credit: J. Alsing
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Gibbs Sampling
□ Algorithm:
■ x1(n+1) ~ P(x2(n), x3(n),…)  

x2(n+1) ~ P(x1(n+1), x3(n),…)  
x3(n+1) ~ P(x1(n+1), x2(n+1),…) 

□ Note that conditionals are just the  
full distribution with the other  
parameters held fixed  
(up to normalization).

□ In a hierarchical model, get the full posterior  
by multiplying out all the distributions that appear
■ See Alan Heavens’ talk tomorrow…

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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(a)
x1

x2

P (x)
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x2

P (x1 |x(t)
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x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

McKay, Information Theory…



Wiener Filters  
(Wiener realization/prediction)

□ Wiener filter (in the language of BBKS 86; cf. Adler 81)

□ For realizations, also need fluctuations about the 
mean

□ E.g., d = s+n  = signal + noise (zero-mean Gaussians)

□ Even reduces to optimal/unbiased CMB mapmaking in N→∞ limit 

⟨δs δs† |d⟩ = ⟨ss†⟩ − ⟨sd†⟩ ⟨d d†⟩−1 ⟨ds†⟩

⟨s |d ⟩ = ⟨sd†⟩ ⟨d d†⟩−1 d

⟨sd†⟩ = ⟨s(s + n)†⟩ = ⟨ss†⟩ + ⟨sn†⟩ = ⟨ss†⟩
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W-1 = Inverse Wishart distribution
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SUNGLASS simulations (Kiessling et al 2011)



Spectra from simulations
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68% Credible region 
95% Credible region 
Posterior mean 
Simulation 
Noise 
E modes recovered well 
below shot noise at high ℓ

SUNGLASS (Kiessling et al. 2011), 67,467 model params 

EE, EB and BB consistent with sims 



Application to CFHTLens data: 
maps (fields)

Cosmological parameters from CFHTLenS using BHM 3285

Figure 9. Recovered posterior mean and variance for the γ 1 maps in the four CFHTLenS fields and two tomographic bins. The corresponding γ 2 maps are
shown in Fig. 10

Fig. 12 shows that both Joudaki et al. (2016) and our work are in
tension with Planck 2015 at the level of ∼ 2σ , with our results show-
ing slightly worse tension with Planck than Joudaki et al. (2016).
Tension between Planck and CFHTLenS in the σ 8–#m plane un-
der the flat-$CDM model have been widely reported in previous
CFHTLenS analyses, with Joudaki et al. (2016, seven-bin correla-
tion function), Heymans et al. (2013, six-bin correlation function),
Kitching et al. (2014, 3D power spectrum), Benjamin et al. (2013,
two-bin correlation function) and Kilbinger et al. (2013, one-bin
correlation function) all reporting some level of tension. This ten-
sion is interesting because it could indicate evidence for extensions
to the baseline-$CDM model, or unaccounted for systematics in
the CFHTLenS and/or Planck data (both of which are of interest for
future cosmological analyses).

Many attempts have been made to explain and/or alleviate this
tension. Joudaki et al. (2016) report that the discordance can be

alleviated by marginalizing over three additional systematic ef-
fects in the weak lensing analysis – intrinsic alignments, bary-
onic suppression on the small-scale matter power spectrum and
photo-z biases – with reasonably broad priors on all three effects
(where none of the systematics were individually able to relieve
the tension), but the flexible systematics model is disfavoured by
the CFHTLenS data. MacCrann et al. (2015) report that inclusion
of an additional (sterile) neutrino is able to alleviate the tension,
although this more flexible model is disfavoured by the data, whilst
including a massive neutrino or baryonic suppression does little
to relieve the discordance. Meanwhile, Kitching et al. (2014) and
Köhlinger et al. (2016) find that aggressively cutting small scales
from the weak lensing analysis brings the resulting weak lens-
ing constraints (with substantially larger error bars) into agreement
with Planck. There may be residual systematic effects in the Planck
data, too, that are responsible for at least some of the tension (see

MNRAS 466, 3272–3292 (2017)
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Figure 10. Recovered posterior mean and variance for the γ 2 maps in the four CFHTLenS fields and two tomographic bins.

Table 2. Marginal parameter constraints on the cosmological parameters from CFHTLenS for the three models considered: baseline (flat) "CDM and
two extensions including total neutrino mass and photo-z bias parameters as additional free parameters, respectively. The maximum posterior values and
68 per cent credible intervals are given. The quantity S8 is defined as S8 = σ 8($m/0.3)0.5 and the ‘informative’ prior for the "CDM+%z model refers
to the Gaussian prior on the photo-z bias parameters derived from the CFHTLenS-BOSS cross-correlation analysis of Choi et al. (2016, cf.Table 1).
Flat priors are defined in Section 5.4.

Model Prior σ 8 S8 ln(1010AS) $m
∑

mν p1 p2

"CDM Flat 0.69+0.23
−0.17 0.67+0.03

−0.03 2.89+1.20
−1.14 0.23+0.14

−0.10 – – –

"CDM+mν Flat 0.60+0.20
−0.15 0.67+0.04

−0.04 2.79+1.41
−1.23 0.26+0.19

−0.12 <4.6(95 per cent) - -

"CDM+%z Flat 0.63+0.28
−0.09 0.70+0.16

−0.12 2.38+1.50
−0.75 0.20+0.22

−0.09 – −0.25+0.53
−0.60 −0.15+0.17

−0.15

"CDM+%z Informative 0.70+0.18
−0.13 0.70+0.03

−0.03 2.80+1.22
−1.22 0.24+0.16

−0.09 – 0.45+0.02
−0.03 −0.17+0.03

−0.01

e.g.Spergel, Flauger & Hložek 2015; Addison et al. 2016). Mean-
while, recent cosmic shear analysis of the Dark Energy Survey
(DES) science verification data is consistent with both CFHTLenS
and Planck (The Dark Energy Survey Collaboration 2016, with
∼30 per cent larger error bars compared to CFHTLenS), whilst

constraints from the Kilo Degree Survey cosmic shear are con-
sistent with CFHTLenS and in similar ∼2σ tension with Planck
(Hildebrandt et al. 2017). At this time, the jury is still out on
the source of the tension between Planck and CFHTLenS weak
lensing.

MNRAS 466, 3272–3292 (2017)
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Application to CFHTLens data: 
spectra

68% Credible region 
95% Credible region 
Planck 2015 

Note that regions depend on priors 
(but go away when inferring cosmology)

3288 J. Alsing, A. Heavens and A. H. Jaffe

Figure 12. Comparison of constraints in σ 8–"m (left) and S8 = σ 8("m/0.3)0.5 (right) for the previous CFHTLenS analysis of Joudaki et al. (2016, seven-bin
tomography; blue), Planck 2015 (black) and the present work (two-bin tomography) under the broad flat priors described in Section 5.4 (grey dashed) and
under the same prior assumptions (see footnote 9) as Joudaki et al. (2016, red). The contours in the left-hand panel show 68 and 95 per cent credible regions.

Figure 13. Recovered 1D and 2D marginal posteriors for the #CDM+mν model from CFHTLenS, with three degenerate massive neutrinos of total mass∑
mν . The contours of the 2D marginals represent 68 and 95 per cent credible regions, respectively, and the dashed lines of the 1D marginals indicate the 16th,

50th and 84th percentiles. The CFHTLenS data constrains the total neutrino mass to
∑

mν < 4.6 eV at 95 per cent credibility.

MNRAS 466, 3272–3292 (2017)



Application to CFHTLens data: 
parameters

□ Pros:
□ no P(C|data) density estimation

□ no ℓ binning

□ good at low ℓ
□ few parameters

■ Cons:
□ likelihood function  

much more complicated  
fn of parameters

□ no independent estimate 
 of spectra (but cheap  
enough to run both)

■ Could also use similar techniques 
to indirectly estimate correlation 
fn
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dd
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Figure 12. Comparison of constraints in σ 8–"m (left) and S8 = σ 8("m/0.3)0.5 (right) for the previous CFHTLenS analysis of Joudaki et al. (2016, seven-bin
tomography; blue), Planck 2015 (black) and the present work (two-bin tomography) under the broad flat priors described in Section 5.4 (grey dashed) and
under the same prior assumptions (see footnote 9) as Joudaki et al. (2016, red). The contours in the left-hand panel show 68 and 95 per cent credible regions.

Figure 13. Recovered 1D and 2D marginal posteriors for the #CDM+mν model from CFHTLenS, with three degenerate massive neutrinos of total mass∑
mν . The contours of the 2D marginals represent 68 and 95 per cent credible regions, respectively, and the dashed lines of the 1D marginals indicate the 16th,

50th and 84th percentiles. The CFHTLenS data constrains the total neutrino mass to
∑

mν < 4.6 eV at 95 per cent credibility.

MNRAS 466, 3272–3292 (2017)



Hamiltonian Monte Carlo (HMC)
□ (aka Hybrid Monte Carlo; Duane et al 1987)

□ Analogy with dynamical systems, which explore 
(position, momentum) phase space over time
■ Potential U(θi) = −ln P(θi) w/ “positions” θi  
■ KE K(ui) = ½u·u   w/ “momenta” ui ~ N(0,σ2) 
■ Hamiltonian H(θi, ui) = U(θi) + K(ui) 
■ Density P(θi, ui) = e−H(θ, u) 

□ 2N parameters!
■ Evolve as dynamical system
□ ignore (marginalize over)  

momenta 

✓̇i =
@H

@ui
= ui

u̇i = �@H

@✓i
=

@ lnP

@✓i



HMC for shear

□ Based on BlackPearl 
(Balan et al)

□ Better behaviour than 
Gibbs
■ over wide S/N range
■ with strong degeneracy
■ (but see Racine et al 2016)

□ Euclid level 0 sims
■ full sky, uniform noise
■ Recovers input



Beyond Gaussian Random Fields 
for shear on sphere(s)

□ (Non-) Gaussianity & non-linearity
■ tests w/ lognormal indicate only small effect (CFHTLS)
■ Ideally would propagate full nonlinear physics (e.g., 

2LPT a la Leclercq, Jasche & Wandelt)
□ Radial information
■ Self-consistently including photo-z
■ From tomography to 3D?
□ Lots of modes, very low S/N per model
□ Related to discussion optimal (?) modes to describe the ball?

□ Mass mapping: the shear field is not fundamental



Conclusions (BHMs)
□ (Mostly) Bayesian methods can [optimally] extract 

cosmological information from astronomical data
□ As always, can incorporate prior information on 

measurements
□ More importantly, hierarchical models incorporate 

dependences of parameters at different levels
■ only need true priors on external parameters 
□ i.e., not intermediate maps, power spectra, &c., except for 

display purposes

□ In practice, some steps may be limited by 
computing power… 



Field Trajectories in a Gaussian 
Random Potential

□ Where did the initial random field come from?
□ Assumed to be the result of inflationary dynamics of one or 

more scalar fields in the early Universe
■ There may be many scalar fields at high energy.
■ The physical processes that effect them may be “complex”
□ Model the potential V(φ⃗) as a Gaussian Random Field, isotropic in field space 

(Euclidean norm on φ⃗)



The scalar potential  
as a random field

■ Model potential V(φ⃗) as a Gaussian Random Field, 
isotropic in field space (Euclidean norm on φ⃗)
□ Search for (e.g.) inflationary trajectories
□ Even with FFTs, expensive in high dimensions, esp. if we need to 

condition on properties of the potential (e.g., saddle-point inflation)
□ Lots of wasted volume in field space.

■ Solution: only realise the potential along the trajectory 
— constrained realisation/Wiener filter
□ Scales as O(# of points on trajectory)p  — naively p≃4 

□ Wiener formulae for ⟨Vi+1|V{1…i}⟩, ⟨(δVi+1)2|V{1…i}⟩ 
□ Also add derivatives ∇φᵤV & ∇φᵤ∇φᵥV to “signal” and “data”
■ needed for trajectories and predictions

□ related work: Bachlechner 2017, Masoumi, Vilenkin, Yamada 2017



□ Add Hamiltonian dynamics of field trajectory
□ here, d=8 dimensions, conditioning on V, ∇φᵤV



“Typical” trajectories
□ With many fields, we may be able to use the tools 

of complexity theory to ignore the detailed 
dynamics of many fields 
■ e.g., Dias, Frazer, Marsh 2017 — random matrix theory
□ differs in detail from Gaussian Random fields, but similar in spirit

□ work in progress: no  
conclusions… yet


