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Outline

* Introduction of Minkowski Functionals

* Application of Minkowski Functionals to CMB
temperature and B-mode polarization map

 Tensor Minkowski Functionals as anisotropic
measures

e Summary




galaxy maps
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Observational data

cosmic microwave background
observed by Planck satellite

The cosmic microwave background

Dec (J2000)

temperature anisotropy

T38.00°36.00° 34.00°

Oquiri et al. 2017




Gaussian random field

* |In a Gaussian random field G(x), the joint probability
function of the field values ai=G(x;) with i=1,...,n
becomes a multivariate Gaussian distribution

1
Pu(ay,...,ap)da; ...da, = [(2#)" detM]_I/2 exp [——a,- M,-"jl Q’j] da...da,
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ARRILHERLCN] covariance matrix

e A Gaussian random field with vanishing mean value is
completely determined by the two-point correlation
functions




Fourier space

» After Fourier-transform of the field G(x), each Fourier mode
Is given by the amplitude and the phase

G(k) = |G(k)| ¢

* In a Gaussian random field, each Fourier modes are
statistically independent, and have random phases and the
moduli |G(k)| follows Rayleigh distribution

] |(k)|2] 2|G(K)P do(k)

dG(K)| o

P(k) P(k)

PlIGK)|, 6(k)] = exp [

 Power spectrum P(k) completely describes the statistics of
the random-Gaussian fields




Power spectrum
of cosmic matter density field

P(k)=<|0k|%>

Square of the amplitude of
the matter density
fluctuation as a function of
wavenumber of k

® Cosmic Microwave Background
® SDSS galaxies

# Cluster abundance

P(k) is measured from
different probes such as
CMB, galaxy distributions,
weak lensing

= Weak lensing

A Lyman Alpha Forest
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Statistics for Non-Gaussian fields

 Power spectrum (or 2-point correlation functions)
cannot describe non-Gaussian properties

* Higher-order statistics beyond 2-point statistics are
necessary

e e.g., bispectrum (3-point), trispectrum (4-point)

e Since non-Gaussianity has infinite freedom in general,
there is no single statistic to fully characterize non-
Gaussian properties




Minkowski Functionals (MFs)

 MFs characterize morphological properties
* In 2D space, there exist three MFs

Vo Area
V1 circumference
V2 Euler characteristic Hermann Minkowski
(1864-1909, Germay)
| e e.g., UK
4 ™ V,:0.00048 (A/4TTIR2,A=244820km2)
P V,:2.0 (I/R,I=12800km)
A, V,:33=34-1 (# of islands — # of lakes [>100km?])

Note: Values of MFs depend on a
smoothing scale

Lok i




Conditions that MFs satisfy

1. Motion Invariance: Vi(K)=Vk(gK) (g=rotation+transfer)

K : convex bodies

2. Additivity: Vi(K1UK2)=Vi(K1) + Vi(K2)-Vi(K1nK2)
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3. Continuity: Vk(K’)— Vk(K) as K’ K

—>




Hadwiger’s theorem (1957)

* |n d-dimensional space, there exists
d+1 number of MFs Vi (k=0,1,..., d)

1 2 3

length area volume

X circumference surface area
- X total mean curvature

- - X
X: Euler characteristic

* Any morphological descriptors
satisfying motion-invariant, additive,
and continuous conditions is a linear
combination of MFs

Hugo Hadwiger (1908-1981)
Swiss mathematician

d
M = Z aka(d) with numbers ay

k=0




Steiner’s formula

* For a given body K, the MFs of the parallel
body K: at a distance € from K are a polynomial
€ with coefficients proportional to the MFs of K

Jakob Steiner (1796-1863)
Swiss mathematician

e.g., 2D body

Vo(K.) = Vo(K) 4 2Vi(K)e + Va(K)€®
Vi(K.) = Vi(K) + Vo(K)e

Va(Ke) = Vo(K)

Schroder-Turk et al. 2010
Vo Area, V1 circumference, V2 Euler characteristic




MFs for a scalar field

* Let’s consider a smooth scalar field (@) on the sphere (e.g., CMB)
 MFs are measured in the excursion set over a given threshold v
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(c) WMAP team (data), T. Matsubara (movie)




MFs as a function of threshold v

V:area fraction  V,: Circumference = V,: Euler Characteristic
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Op = <f2)1/2




MFs as a function of threshold v

V:area fraction  V,: Circumference = V,: Euler Characteristic
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MFs as a function of threshold v

V:area fraction  V,: Circumference = V,: Euler Characteristic
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Analytical formula of MFs
in Gaussian random field

 Tomita’s formula (Tomita 1986)

1 W o) k_Vz
AR N ( l>e 2H \(v)

\/200 " .
where Hermite polynomials

v=[floo oo=(f)'? o1=—(f V)

wk: volume of the unit ball in k-dimension (wo=1, wW1=2, W2=T)

V,:area fraction  V,: Circumference = V,: Euler Characteristic
0.2

(27‘_) (k+1)/2 W — Wk




Matsubara’s formulae

e T. Matsubara 2003 derive the perturbative
formula of MFs using multidimensional
Edgeworth expansion

Takahiko Matsubara

= VO W) + Ae ™y (W) oy

(professor@KEK)
Gaussian term leading-order perturbative term
* Leaing-order NG term is determined by three “skewness

parameters”

S 5 S

= —Hpa(v) - _Hk( )=

6 H k-2(v)

_ 2(IVSI*V?S)

4
0,

 The skewness parameters are the sum of bispectra with different
configuration weight




2nd-order perturbation of MFs

 Matsubara 2010 derive the 2nd-order perturbations of
MFs, which depend on 4 kurtosis parameters

Vi) = VO ) + Ae™ v (0)oo + v (v)?)

52 K
EHS(V) - 7274H3(l/).

52 K — SS;
EHG(V) + 24

K — 285 1/ 1 L/ 1
H:(v) + = IH;,(V)—E(I\;+§SSU) Hg(u)—§(1\11+§SISII)H1(V)

Hi(v) — 1—12 (1\', + %Sf) Hs(v) — I‘é”,
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* Kurtosis parameters are the sum of trispectrum with
different configuration weights

(V2DF)e o _ 2IVIEV e + (Ve o _ (V)
4 0 II = . A =

4 0.2 4 °
1 20707

I 3 2
0007 lorited




Primordial Non-Gaussianity

» Local-type non-Gaussianity in primordial perturbation
(e.g., Komatsu, Spergel 2001)

& = ¢+ fnn(¢” — (¢%)) + gnrd’..

®: auxiliary Gaussian variable

* Primoridal non-Gaussianity is a useful probe to
differentiate models in early Universe

* The simple model of inflation predicts fn.~O(1), while
other models can generate larger non-Gaussianity
fne~O(1-100))




difference from Gaussian MFs

Perturbative formula vs
Simulations with primordial NG

V,:surface area V,: Circumference V,: Euler Characteristic

SN
AV,

-3—2-10 1 2 3 -3-2-10 1 2 3 -3-2-10 1 2 3

CH, Matsubara, Coles et al. 2007

mock simulations

Perturbative formulae
fne=100

Error: dispersion of MFs
among 1000 mock
simulations

The agreement
between simulations
and perturbative
formulae is perfect




gni-type NG effect on MFs

2nd-order perturbation of MFs due to gni-type NG is
also very good agreement with the simulation results

variance
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S

« MFs depend on all-orders of polyspectra (bispectra,
trispectra, ....)

 MFs and polyspectra play a complimentary role in the
analysis of non-Gaussianity with each other

« Computation of MFs are much faster than the full
calculation of bispectra/trispectra

 MFs are model-independent statistics and may be able
to detect unexpected NG (e.g., unknown systematics),
while the commonly used cubic statistics is optimal but
model-dependent




Constraints on primordial NG
from CMB data

- WMAP

» optimal cubic estimators: fn.=32+21 (Komatsu et al. 2011)
* MFs: fni=20+42, gni=(-1.9x6.4)x10° (C.H., Matsubara 2012)

* Planck (Planck collaboration 2015)
« optimal estimators: fn.=0.8+5.0, gni=(—9.0+7.7)x10%
 MFs: fni=3+12, gni=(—-8x13)x10*

all error values are 1o

The results from MFs are consistent with those from
optimal estimators




gravitational wave (GW)

B-mode polarization from primordial
* Polarization pattern separate geometrically into E-mode

(divergence-only) and B mode (curl-only)
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Hunting primordial B-mode
polarization signal

BICEP2: E signal

On-going surveys:
POLARBEAR
BICEP/Keck Array,
SPTPol, ACTPol

tensor-to-scalar ratio

r<0.07 (95%CL)

Future surveys:
LiteBIRD, PIXIE

CMB-54
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Right ascension [deg.] O(r) & 0 . 001
BICEP2 maps at 150GHz




Origin of primordial GW

« Many studies assume that the detection of primordial
B-mode comes from the quantum fluctuations of
vacuum during the cosmic inflation

Is the assumption always true ?

« GW could be sourced by particles produced during
inflation

e.d., gauge field sources chiral GWs via a pseudo
scalar coupling (Namba et al. 2016)

Validity of the assumption should be tested




B-mode power spectrum

pseudo-scalar model (Namba et al. 2016)
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Shiraishi, CH, Namba, Hazumi, Namikawa 2016

Vacuum and pseudoscalar model spectrum are compatible
within 1-sigma




Non-Gaussianity in CMB B-mode
polarization map

The vacuum mode is nearly Gaussian, however the
mode sourced by other fields could have large NG

V,:surface area V,: Circumference V,: Euler

The source-field NG in
B-mode map is
detectable at LiteBIRD
experiment.

NG in B-mode map is
useful to reveal the
origin of the
primordial B-mode

e -3-2-10 1 2 3 -3-2-101 2 3 -3-2-1012 3

Shiraishi, CH, Namba, Hazumi, Namikawa 2016




Tensor Minkowski functionals

* Tensorial generalization of usual (scalar) MFs (Alesker
1999, Beispert et al. 2002)

e Tensor MFs of rank 2 are defined as

Schroder-Turk et al. 2010




Anisotropy measures

 |f the field is isotropic, the tensor MFs should be
Isotropic, I.e., the eigenvalues of the tensor are all equal

 Deviations from isotropy can be measured from the ratio
of the eigenvalues

B=6/&] (l&] <|&l) & are the eigenvalues
of a tensor MF

e tensor MFs quantifies the anisotropy of shape on
different scales, which cannot be captured by the usual
scalar MFs




Summary

Minkowski Functionals (MFs) are morphological
descriptors satisfying motion-invariant, additive and
continuous conditions

Analytical formulae of MFs are derived in random
Gaussian fields and also in weakly non-Gaussian fields

MFs have been applied to cosmological random fields
such as CMB temperature/polarization maps as a
probe of NG from morphological point of view

Tensor MFs become a novel probe of anisotropy and
can be used to test the isotropy of our Universe




