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1. Response surface methodology

Response surface methodology is a branch of experimental design.

Box, G. E. P. and Wilson, K.B. (1951) On the Experimental Attainment of
Optimum Conditions (with discussion). Journal of the Royal Statistical Society
Series B 13(1):1-45.

The purpose is to find the conditions x1, ...,z for some output variable to be of
maximal value.

y= f(x1,22,...,2k) + €

Box and Wilson suggest using a first-degree polynomial model to do this. They
acknowledge that this model is only an approximation, but use it because such a
model is easy to estimate and apply, even when little is known about the process.

An easy way to estimate a first-degree polynomial model is to use a factorial
experiment or fractional factorial designs.
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1. First stage of response surface methodology

i &
5 ..
;./'/./.q
@ 3
& & &
/
& &

Figure. The points of observation for £ = 2.

y=P00+01x1+...+ 0rxr +¢

This procedure works well when
the current point is far from an extremum point.
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1. Second stage of response surface methodology

Let
the current point be close to an extremum point or
an extremum point be outside of design region.

A second-degree polynomial model should be used

y = 0Bo + b1z + ...+ Opxr + a11$% + 12212 + A13T1T3 +

central composite design
D-optimal design for estimating all parameters

locally D-optimal design for estimating extremum point

2
oot QRETy T €
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2. Multivariate quadratic regression model

Let the experimental results at the design points z(;), i1 = 1,2,...,n, z;) € X be
described by the equation

yz:n(x(z)7A7577>+527 7::1727“'777’7
where
n(z) =n(z,A,B,7) =z Az + "z + 7,

A is a positive definite k X k£ matrix, 8 is a k dimensional vector, v is a real
number, {¢;} are i.i.d. random errors such that Ee; = 0, Ec? = o2,

1 =1,2,...,n.

Elements of the matrix A and of the vector 8 as well as v are unknown and we

should evaluate the extremum point

1
b= arg maxn(x,A,ﬂ,fy) — _§A_1ﬁ°
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2. Multivariate quadratic regression model

Let us rewrite the regression function in the form

A(z,0) = (z —b)T A(x — b) + ¢,

where
O = (b, bk, @11y, Qs @12 - -+ Ak, B35 -+, G—1ks C)
¢ = y—pTATB/A.
The asymptotic variance matrix Cov® for the (nonlinear) LSE of © is
oM (€)
where £ is a discrete probability measure (experimental design) given by

{:13(1),...,x(n);,ul,...,,un},

T(;) are experimental conditions (design points) and y; are proportions of the

total number of experiments to be performed at the design points, > u; = 1.
The goal of the experimental design is to determine a design ¢ which

minimizes the determinant of Covb.
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3. Information matrix

24 0 \ - 24 0
M(E) = M
a2 9o 0)
where I is the identify matrix, f(x) = 07/00,

M) = Zf z) [ (zay)

f(:lj‘) — f(.’lj‘,b) — ((bl — xl)a R (bk — $k), (371 — b1)27 T (xk — bk)27
2(331 — bl)(icg — bz), .. -72(37I<:—1 — bk_l)(ack — bk), l)T.

Rewrite the matrix M (§) in the block form

- M; MF
M<€):<M: o, )

where M is a k X k matrix.
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3. Information matrix

Let
My = My(€) = My, — XT M3 X,

where X = My 1 M, if the matrix M3 is nonsingular, otherwise X is an arbitrary
solution of the equation M3X = Ms>. Then

~ 0'2 1
COVb ~ ZAMb (g)A

A design € is called locally D-optimal if it maximize the quantity
det M (€)

that corresponds to the known truncated D-criterion.

Our purpose is to find locally optimal designs for any given b for the hypercube
% = [-1,1]* and the hyperball ¥= {z; 3" 22 <1}.
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4. The case of line segment, X = |—1, 1]

Let us consider the following designs

4 1
&. s |b|> 9
(1) 2 ¢y = {- 1(),74 ,2,4—|—1/} Z/—Lb
(1) 525(5)2{ ), 0<b< g where £y = {2b6—1,1;1/2,1/2},
13 — —1,1+4+2b;1/2,1/2}.
| €3, —2>b>0 ) { 2172}

Introduce also the following 1 X 1 matrices

M, = 16b2, |b| > 1/2,
(2) » :
My = 1/(1—[b])%, || < 1/2.

Theorem. For the problem at the unit segment there exists a unique locally optimal design.
This design has the form (1) and the corresponding values of Mb_1 are given by the formula

(2).
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5. Locally optimal designs on hypercube

Let k£ be an arbitrary natural number and b = by € Int|0, 1]*. Consider all

hyperparallelepiped with center in the point b and take a maximal one.

Let £* be the experimental design that consists of all vertices of this
hyperparallelepiped and equal weights, m; = 1/n, 1 =1,...,n, n = 2%,

Theorem. For an arbitrary k the design £* s a locally optimal design for

estimation of an extremum point if and only if |b;| < 1/2,i=1,... k.

Let

S — [deth (f*, b)/(deth(g, b)}

under a fixed b, where &* is the locally optimal design for estimating the

1/k

extremum and ¢ is the usual D-optimal design. Note that the design £* will

require s times less observations than design &€ with the same accuracy.
For b= (1/2,...,1/2)" we have

k

1

Sk

1.5

1.78

2.08

2.38

2.68
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5. Locally optimal designs on hypercube

g

N
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Figure. Points of the design &* for k = 2.

The design £* consists of all vertices of maximal inscribed hyperparallelepiped

with the center at b and equal weights.
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5. Locally optimal designs on hypercube

Note that the design &* corresponds to the full factorial design, i.e. its number of
points is 2*. For k > 4 it is possible to construct a locally optimal design with
the number of points less than 2.

Let v be a natural number such that
2=l >k v <k.

Theorem. Ifb e [—1/2,1/2]% and k > 4 then there exists a locally optimal
design with n = 2¥ points for the estimation of an extremum point.

An explicit form of this design is given in (Melas, Pepelyshev, Cheng, 2003).
Let v be the minimal number satisfying above inequality for a given k, and set
n*(k) = 2¥. Then

for k =5,6,7,8 we have n*(k) = 16,

for K =9,10,...,16 we have n*(k) = 32.
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5. Locally optimal designs on hypercube

It is impossible to construct the design explicitly for b & [—1/2,1/2]%.
Teopema. Suppose that £ be an optimal design. Then there does not exist two
points of the design &* which are situated inside some hypercube or some
hyperside or some hyperedge.
Let k£ = 2. Optimal design s = £*(b(g)) for by = (7, ) equals

((_17_1) (_170) (07_1) (070)\
2y—1 271 271 1/4
= T a2
K 2v+1 27+1 2y+1
16~ 16~ 16~

Optimal design &y = £*(b()) for by = (2, 4) equals

(—1,-1) (—1,—0.0968) (0.2885,—1) (—0.0265,0.0145)
. | 0.1224 0.0860 0.1242 0.2041
§°((2,4)) = (—0.2990,1)  (1,0.1180) (1,1)
0.1743 0.1140 0.1749
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5. Locally optimal designs on square

Figure. Points of the design &¢* for k = 2.
Green points are points of design £*((-y,y)) for v > 1/2.

- p.15/23



6. Locally optimal designs on ball

Let us now consider the problem at the unit circle: k = 2,
X={z=(z1,22) ;22 + 22 <1}, b= (b1,b2)T € R?.

Let 8= ||b|| = /b3 + b3, b= Ber, e1 = (1,0)T, B3> 0, p = arccos(b1/||b]]),

CcOS sin
F=La, L= AR
—siny Ccos

The matrix L is orthogonal and

n(z, )

|
@‘
\_/
;L
/-\
|
S
~—~
_|_
o
|

where A = LALT, det A = det A, # € X. Thus by rotation of coordinate axis the
problem can be reduced to the estimation of the vector of the form b = Ge;.
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6. The theorem and the plot of points of optimal design on ball

Theorem. For the problem at the unit circle with b = Be; locally optimal
designs are given by formula

X . Xon

ey . Pl

/. -

<

E3=(§2) +€)/2 & =(Eq) +€u)/2 & = () +E3)/2
(My(£)™" diag{ 725, =52} diag{326°, 25} diag{3267 86}
0<p<i lep< 2 B> L2

Besides, for any fixed 8 < v/2/2 the design £(b) is the unique locally optimal

design. For any fixed 3 > v/2/2 this design is a unique locally optimal design
with the minimal number of points.
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6. Locally optimal designs on ball

The designs in the theorem are given by

Gy = {(-1,0,00,0), (L0 v 5.7 +vh v = 5o
£ = {(26-1,0),(1,0):1/2,1/2},
by = A(-V2/25V2)2), (V)2 V32 — g — o g+ g )
V3
/’L:@7
) = {(ﬂ,—\/l—52),(57\/1—@);%,%}-

Designs (1) and &) differ from the optimal designs at the unit segment [—1, 1]
only by adding the second coordinate x5 and its value is equal to O.
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6. Locally optimal designs on hyperball

Theorem. For the problem at the unit hyperball with b = Be; locally optimal
designs are given by formula

xlu

i |
e

E3 = kf(z) + L = k§(2) + ELe ) &= € + B
liag{ (1—5)2 , 1—52 e ey 1_52} diag{lﬁkﬁQ, 1—52 e ey 1—52} diag{lﬁkﬁ2, 4kﬁ2, e ,4kﬁ2}
0<pB<d lop< 2 8> 2

For 3 < Q it is the unique optimal design. For 3 > ﬁ and £ =1 it is the

unique optimal design as well. And for 5 > \/_ and k£ > 2 this design is the

unique optimal design with the minimal number of design points (with accuracy
up to an arbitrary rotation of axes xs, ...,z if £ > 2). ~ p.19/23



6. Locally optimal designs on hyperball

The designs in theorem are given by

rotr111 1

4 88’274 837
e1 = (1,0,...,0)7, eg=(0,...,0)T € R*,
Sy = {(28—1)er,e1;1/2,1/2},

5(1) — {—61760761;

6(3)—25(3)/ —1), &u) = 25(4)/ - 1),

5(4)7, — {(ﬁ?i 1 _6262';1/271/2}7

i = 2,3,...,k—1,e2=1(0,1,0,...,0)", ..., er =(0,...,0,1)7,
V2 V2 l—p 1—p 1+p 14+p
= + + .., 0);
5(3)2 {( 9 9 707 70)7 4 0 4 ) 4 ) 1 }7 )
¢ B {(iéo Oiﬂ)-l_u 1—p 14 p 1+u} V2
(3)k — g 2V 9" 4 0 4 ' 4 0 4 7:“_2ﬁ



6. Comparison with a usual D-optimal design

Let

S — [deth (f*, b)/(deth(g, b)}

1/k

under a fixed b, where &* is the locally optimal design for estimating the
extremum and & is the usual D-optimal design. Note that the design £* will
require s; times less observations than design £ with the same accuracy.

Table. Values s for the hyperball, 3 = ||b||.

B\k 2 3 4 5 6
1/4 | 1.38 | 1.38 | 1.41 | 1.45 | 1.50
1/2 | 1.64 | 1.80 | 1.97 | 2.15 | 2.33
1/4/2 | 1.56 | 1.80 | 2.03 | 2.28 | 2.52
1 1.38 | 1.59 | 1.82 | 2.06 | 2.30
2 | 1.25|1.44|1.66 | 1.89 | 2.13
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7. Conclusions

Optimal designs for estimating the extremum for hypercube and hyperball
are constructed.

The advantage of locally optimal designs comparing to usual D-optimal
designs consists of the total number of observations with £ > 5 reduced
more then two times.

One more advantage is that locally optimal designs are concentrated in
substantially less number of distinct points.

For implementation of locally D-optimal designs a sequential procedure is
needed.

The results are published in the papers:

|1] Cheng, R.C.H., Melas, V.B., Pepelyshev, A.N. (2000). Optimal design for
evaluation of an extremum point. Optimum Design 2000. Eds. A.Atkinson,
B.Bogacka, A.Zhigljavsky. Kluwer, 15-24.

12| Melas V.B., Pepelyshev A.N., Cheng R.C.H. (2003). Designs for estimating
an extremal point of quadratic regression models in a hyperball. Metrika, 58.
193-208.
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8. Remarks

Local optimal design is only an ideal.

In practice a design a&y + (1 — a)&* should be used where
&o is the usual D-optimal design or central composite design,

£* is the local optimal design.

Asymptotically best value of a is a* /v N
where a* does not depend on N,

N is the total number of observations.
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