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Designs for linear models with correlated observations
A distinct feature of optimal designs is that points near the boundary have a larger
weight than points at the middle of the design interval.

Consider the model
yj = yj(tj) = θ1f1(t) + . . .+ θkfk(t) + εj

where tj ∈ [−T, T ], j=1, ..., N and Eεjεi=σ
2ρ(tj − ti).

For the estimate
θ̂OLS = (XTX)−1XTY

the exact design problem has the form

Var
(
θ̂OLS

)
= (XTX)−1XTRX(XTX)−1 → min

t1,...,tN
.

Let the design points {t1, . . . , tN} be generated by the quantiles of a distribution function,

tiN = a ((i− 1)/(N − 1)) , i = 1, . . . , N,

where the function a : [0, 1]→ [−T, T ] is the inverse of a distribution function.
Let ξ be a design measure corresponding to a(·).
Under asymptotic settings, the design problem has the form

D(ξ) =W−1(ξ)R(ξ)W−1(ξ)→ min
ξ

where W (ξ) =
∫
f(u)fT (u)ξ(du) and R(ξ) =

∫∫
ρ(u− v)f(u)fT (v)ξ(du)ξ(dv).

As example, consider the location model

yj = yj(tj) = θ + εj

where tj ∈ [−1, 1], Eεj=0 and Eεjεi=σ
2ρ(tj − ti).

Exponential corr. function
For ρ(t) = e−λ|t| the optimal design has
the form
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Gaussian corr. function
For ρ(t) = e−λt

2

the optimal design is
a discrete measure; support points of the
optimal design are depicted.

Triangular corr. function
For ρ(t) = max{0, 1 − λ|t|} the optimal
design ξ∗ is a discrete symmetric measure
supported at 2n points

±t1,±t2, . . . ,±tn

with weights w1, . . . , wn at t1, . . . , tn,
where n = d2λe,

(w1, . . . , wn) =

1

n(n+1)
(dn/2e, . . . , 3, n−2, 2, n−1, 1, n),

t1, . . . , tn are the ordered quantities
|u1|, . . . , |un|, where uj = −1 + j/λ,
j = 1, . . . , n− 1, un = 1. Support points of
the optimal design are depicted.

Cauchy corr. function 1
For ρ(t) = 1/

√
1 + λ|t| the optimal design

has the form

ω∗
(
1

2
δ1(du) +

1

2
δ−1(du)

)
+(1−ω∗)ξ0(du).

The density of ξ0(du) is depicted.

Cauchy corr. function 2
For ρ(t) = 1/(1 + λ|t|0.5) the optimal de-
sign has the form

ω∗
(
1

2
δ1(du) +

1

2
δ−1(du)

)
+(1−ω∗)ξ0(du).

The density of ξ0(du) is depicted.

Singular corr. kernel 1

For ρ∞(t) =
1

|t|α
, α ∈ (0, 1), the density of

the optimal design is a Beta density

p∗(t) =
2−α

B( 1+α
2 , 1+α

2 )
(1− t2)

α−1
2 .

Singular corr. kernel 2
For ρ∞(t) = − ln(t2) the density of the op-
timal design is the arcsine density

p∗(t) =
1

π
√
1− t2

.

Design of computer experiments
Designs, in which points are located more densely near the boundary, provide a
smaller mean squared error than uniform space-filling designs.

The arcsine transformation

Uniform density p(t) = 1

Arcsine density p(t) = 1
/(

π
√
t(1− t)

)
For x ∈ [0, 1]d, apply the transformation to the one-dimensional projections of designs,

x̃i = (1− cos(πxi))/2.

30-point LHDs in 2D
GMLHD MLHD = Maximin LHD Random LHD

GMLHD = Generalized Maximin LHD which is obtained by modifying MLHD using
the arcsine transformation

The performance of designs
Compare designs using the MSE criterion and the meta-model given by the posterior
mean of a Gaussian process with the Gaussian correlation function, parameters are esti-
mated according to the Bayesian analysis.

MSEΩ(L) =

∫
Ω

(
η(x)− η̂(x)

)2
dx

The square root of the mean squared error, obtained by the generalized maximin Latin
hypercube designs, is substantially smaller (about 15%-30%) than the square root of the
mean squared error, obtained by the maximin Latin hypercube designs.

For the MLHD, the mean squared error at the middle of the design space is considerably
smaller than the mean squared error over the full design space. For the GMLHD, the
mean squared error is almost constant among different subdomains of the design space.

Algorithm for computing efficient designs
• Compute n points which are uniformly distributed on a given domain.

• Shift each point to the boundary, perhaps, using the arcsine transformation.
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