

Efficient design of computer experiments

Andrey Pepelyshev

A distinct feature of optimal designs is that points near the boundary have a larger weight than points at the middle of the design interval.

Consider the model

$$y_j = y_j(t_j) = \theta_1 f_1(t) + \ldots + \theta_k f_k(t) + \varepsilon_j$$

where $t_j \in [-T, T]$, j = 1, ..., N and $\mathbf{E} \varepsilon_j \varepsilon_i = \sigma^2 \rho(t_j - t_i)$. For the estimate

$$\hat{\theta}_{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$$

the exact design problem has the form

$$\operatorname{Var}\left(\hat{\theta}_{\mathrm{OLS}}\right) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T R X (\mathbf{X}^T \mathbf{X})^{-1} \to \min_{t_1, \dots, t_N}.$$

Let the design points $\{t_1, \ldots, t_N\}$ be generated by the quantiles of a distribution function,

Design of computer experiments

Designs, in which points are located more densely near the boundary, provide a smaller mean squared error than uniform space-filling designs.

The arcsine transformation

Uniform density p(t) = 1Arcsine density $p(t) = 1 / (\pi \sqrt{t(1-t)})$ For $x \in [0,1]^d$, apply the transformation to the one-dimensional projections of designs,

 $\tilde{x}_i = (1 - \cos(\pi x_i))/2.$

30-point LHDs in 2D

$$t_{iN} = a\left((i-1)/(N-1)\right), \ i = 1, \dots, N,$$

where the function $a: [0,1] \rightarrow [-T,T]$ is the inverse of a distribution function. Let ξ be a design measure corresponding to $a(\cdot)$.

Under asymptotic settings, the design problem has the form

 $D(\xi) = W^{-1}(\xi)R(\xi)W^{-1}(\xi) \to \min_{\xi}$

where $W(\xi) = \int f(u)f^T(u)\xi(du)$ and $R(\xi) = \int \int \rho(u-v)f(u)f^T(v)\xi(du)\xi(dv)$. As example, consider the location model

$$y_j = y_j(t_j) = \theta + \varepsilon_j$$

where $t_j \in [-1, 1]$, $\mathbf{E}\varepsilon_j = 0$ and $\mathbf{E}\varepsilon_j\varepsilon_i = \sigma^2 \rho(t_j - t_i)$.

Exponential corr. function For $\rho(t) = e^{-\lambda|t|}$ the optimal design has the form

$$\frac{1}{1+\lambda} \left(\frac{1}{2} \delta_1(du) + \frac{1}{2} \delta_{-1}(du) \right) + \frac{\lambda}{1+\lambda} \frac{1}{2} \mathbf{1}_{[-1,1]}(du)$$

Triangular corr. function For $\rho(t) = \max\{0, 1 - \lambda |t|\}$ the optimal design ξ^* is a discrete symmetric measure supported at 2n points

Cauchy corr. function 1

For $\rho(t) = 1/\sqrt{1+\lambda|t|}$ the optimal design has the form $\omega^* \left(\frac{1}{2}\delta_1(du) + \frac{1}{2}\delta_{-1}(du)\right) + (1 - \omega^*)\xi_0(du).$ The density of $\xi_0(du)$ is depicted.

	 A NUMBER TO DELETE A STOCK TO DELETE A NUMBER TO DELETE 	aran seranaran garatan serana	· · · · · · · · · · · · · · · · · · ·
	82	(3)	
29 S		18	
	2. C	12	
17 State 19	28	200	
		50 C	1.00
	25	5.5	2003
• • • • • • • • • • • • • • • • • • •		-56	S
	1.5	62	0.000
		(3)	3 5 5
· · · · · · · · · · · · · · · · · · ·	190	1.3	
-2	28.	122	
2 C		•22	

The performance of designs

Compare designs using the MSE criterion and the meta-model given by the posterior mean of a Gaussian process with the Gaussian correlation function, parameters are estimated according to the Bayesian analysis.

$$MSE_{\Omega}(L) = \int_{\Omega} (\eta(x) - \hat{\eta}(x))^2 dx$$

The square root of the mean squared error, obtained by the generalized maximin Latin hypercube designs, is substantially smaller (about 15%-30%) than the square root of the mean squared error, obtained by the maximin Latin hypercube designs.

 $\pm t_1, \pm t_2, \ldots, \pm t_n$

with weights w_1, \ldots, w_n at t_1, \ldots, t_n , where $n = \lceil 2\lambda \rceil$,

 $(w_1,\ldots,w_n) =$ $\frac{1}{n(n+1)}(\lceil n/2 \rceil, \dots, 3, n-2, 2, n-1, 1, n),$

 t_1, \ldots, t_n are the ordered quantities $|u_1|, ..., |u_n|$, where $u_j = -1 + j/\lambda$, $j = 1, \ldots, n - 1$, $u_n = 1$. Support points of the optimal design are depicted.

For the MLHD, the mean squared error at the middle of the design space is considerably smaller than the mean squared error over the full design space. For the GMLHD, the mean squared error is almost constant among different subdomains of the design space.

Algorithm for computing efficient designs

Gaussian corr. function

For $\rho(t) = e^{-\lambda t^2}$ the optimal design is a discrete measure; support points of the optimal design are depicted.

the optimal design is a Beta density

 $p^*(t) = \frac{2^{-\alpha}}{B(\frac{1+\alpha}{2}, \frac{1+\alpha}{2})} (1-t^2)^{\frac{\alpha-1}{2}}.$

Singular corr. kernel 2

For $\rho_{\infty}(t) = -\ln(t^2)$ the density of the optimal design is the arcsine density

- - Compute *n* points which are uniformly distributed on a given domain.
 - Shift each point to the boundary, perhaps, using the arcsine transformation.

Funding

This work was supported by the MUCM project, EPSRC EP/D048893/1.