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Part 1. Estimation of structure
Examples of series data

time series
f1 f2 f3 . . . fn

multivariate time series
f1 f2 f3 . . . fn

g1 g2 g3 . . . gn

h1 h2 h3 . . . hn

images
f1,1 f1,2 f1,3 . . . f1,n2

f2,1 f2,2 f2,3 . . . f2,n2... ... ... ...
fn1,1 fn1,2 fn1,3 . . . fn1,n2
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Part 1. Estimation of structure
Example 1. Crude Oil Production

Monthly data, Y-unit is thousand barrels.http://www.economagic.com/em-cgi/data.exe/frbg17/G211_ipsa
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Part 1. Estimation of structure
Example 2. Unemployment

Monthly data, West Germany, 1948-1980.http://robjhyndman.com/TSDL/data/subbrao3.dat
4/32 Andrey Pepelyshev Introduction to SSA



Part 1. Estimation of structure
Elements of structure to be discovered

trend components

oscilatory components

noise components
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Part 1. Estimation of structure
Nonparametric approach

for structure discovering

Singular Spectrum Analysis
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Part 1. Estimation of structure
How it works

The vector of time series is not convenient
to discover a structure.

f1 f2 f3 f4 f5 f6 f7 f8 f9

The matrix is needed!
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Part 1. Estimation of structure Algorithm of SSA
Transformation of data

f1 f2 f3 f4 f5 f6 f7 f8 f9

f1
f2
f3
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Part 1. Estimation of structure Algorithm of SSA
Transformation of data

f1 f2 f3 f4 f5 f6 f7 f8 f9

f1 f2
f2 f3
f3 f4
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Part 1. Estimation of structure Algorithm of SSA
Transformation of data

f1 f2 f3 f4 f5 f6 f7 f8 f9

f1 f2 f3
f2 f3 f4
f3 f4 f5
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Part 1. Estimation of structure Algorithm of SSA
Transformation of data

f1 f2 f3 f4 f5 f6 f7 f8 f9

f1 f2 f3 f4
f2 f3 f4 f5
f3 f4 f5 f6
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Part 1. Estimation of structure Algorithm of SSA
Transformation of data

f1 f2 f3 f4 f5 f6 f7 f8 f9

f1 f2 f3 f4 f5
f2 f3 f4 f5 f6
f3 f4 f5 f6 f7
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Part 1. Estimation of structure Algorithm of SSA
Result of transformation

f1 f2 f3 f4 f5 f6 f7 · · · fn = F

f1 f2 f3 · · · fn−L+1
f2 f3 f4 · · · fn−L+2
f3 f4 f5 · · · fn−L+3
... ... ... ...
fL fL+1 fL+2 · · · fn

= X

X is called a trajectory matrix, 2 ≤ L < n− L+ 1
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Part 1. Estimation of structure Algorithm of SSA
Decomposition of trajectory matrix

X =
√
λ1U1V

T
1 +

√
λ2U2V

T
2 +

√
λ3U3V

T
3 + . . .

(λi, Ui, Vi) is called an eigentriple
λi is an eigenvalue of XXT , i = 1, . . . , L

Ui is called an eigenfunction
Vi is called a factor vector

λi∑L
j=1 λj

is a ratio of ith component
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Part 1. Estimation of structure Algorithm of SSA
Decomposition of series

X =
√
λ1U1V

T
1 +

√
λ2U2V

T
2 +

√
λ3U3V

T
3 + . . .

⇑ � ⇓ ⇓ ⇓
F = F1 + F2 + F3 + . . .

Fi is a trend component
Fj is a harmonic component
Fl is a noise component
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Part 1. Estimation of structure Elements of SSA theory
Why it works

The equivalence of three de�nitions

Series of �nite rank

Series of �nite order

Series of �nite di�erence dimension
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Part 1. Estimation of structure Elements of SSA theory
1. Series of �nite rank

De�nition
The series F has a rank d if the dimension of linear
space spanned on columns of trajectory matrix is d
for any L > d and N − L > d, i.e.
rank(F ) := rank(X).

X =

f1 f2 f3 · · · fn−L+1
f2 f3 f4 · · · fn−L+2
f3 f4 f5 · · · fn−L+3
... ... ... ...
fL fL+1 fL+2 · · · fn
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Part 1. Estimation of structure Elements of SSA theory
2. Series of �nite order

De�nition
The series F has a order d if there exist two systems of functions

φ1, . . . , φd : {1, . . . , L} → R,
ψ1, . . . , ψd : {1, . . . , N−L+1} → R

such that

fi+j =
d∑

k=1

φk(i)ψk(j)

for any i = 1, . . . , L, j = 1, . . . , N−L+1.

Example. Let fi = ai. Then ord(F ) = 1 since

fi+j = ai+j = φ1(i)ψ1(i),

φ1(i) = ai and ψ1(j) = aj.
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Part 1. Estimation of structure Elements of SSA theory
3. Series of �nite di�erence dimension

De�nition
The series F has a �nite di�erence dimension d if there
are numbers α1, . . . , αd such that αd 6= 0 and the series
F satis�es by the linear recurrent formulae with
coe�cients α1, . . . , αd, that is

fi+d =
d∑

k=1

αkfi+d−k

for any i = 1, . . . , n− d.

Example. Let fi = ai. Then dim(F ) = 1 since
fi+1 = αfi for α = a.
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Part 1. Estimation of structure Elements of SSA theory
Results from theory of di�. equations

Ordinary di�erential equation of order d w.r.t. y = y(t)

y(n) + cn−1y
(n−1) + . . .+ c1y

′ + c0y = 0

The characteristic polynomial has n roots, γk ∈ C

zn + cn−1z
n−1 + . . .+ c1z + c0 =

h∏
k=1

(z − γk)
mk

and mk is the corresponding multiplicities.
Then the functions

yk,j(t) = tje−γkt, j = 0, . . . ,mk − 1, κ = 1, . . . , h

are n linearly independent solutions of ODE.
20/32 Andrey Pepelyshev Introduction to SSA



Part 1. Estimation of structure Elements of SSA theory
Consequences

The series given by

ft =
∑

k

Pk(t)e
−µkt sin(αkt+ βk), t = 1, . . . , n

is a series of �nite rank (and of �nite order...).
SVD decomposition of X for the series of �nite
rank d has only d nonzero eigenvalues.

Real time series is a sum of a series of �nite
rank and a disturbance series.
SSA provide good results in more general cases.
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Part 1. Estimation of structure Applications of SSA
Rough trend extraction

Crude oil production, monthly data from Jan 1973 to Sep 1999
Reconstruction from the leading eigentriple, L = 120, n = 324
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Part 1. Estimation of structure Applications of SSA
Fine trend extraction

Crude oil production, monthly data from Jan 1973 to Sep 1999
Reconstruction from 3 leading eigentriples, L = 120, n = 324
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Part 1. Estimation of structure Applications of SSA
Smoothing

Tree ring indices, Douglas �r, annual, from 1282 to 1950
Reconstruction from 7 leading eigentriples, L = 120, n = 669
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Part 1. Estimation of structure Applications of SSA
Noise reduction

Intensity of the white dwarf star PG1159-035 during March 1989
Reconstruction from 11 leading eigentriples, L = 100, n = 618

25/32 Andrey Pepelyshev Introduction to SSA



Part 1. Estimation of structure Applications of SSA
Extraction of seasonality components

Sales of forti�ed wines in Australia, monthly, Jan 1980-Jun 1994
Reconstruction from eigentriples 2-3, 4-5, 6-7, 8-9, L = 84, n = 174
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Part 1. Estimation of structure Applications of SSA
Extraction of periodicities with varying amplitudes

Monthly public drunkenness intakes, from Jan 1966 to Jul 1978
Reconstruction from the 4th-5th eigentriples, L = 60, n = 151
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Part 1. Estimation of structure Applications of SSA
Complex trends and periodicities

Unemployment, West Germany, monthly, from Apr 1950 to Dec 1980
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Part 1. Estimation of structure Applications of SSA
Finding structure in short time series

Deaths in the Indochina war, monthly, from 1966 to 1971
Reconstruction from eigentriples 1-2, 3-4, L = 18, n = 72
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Part 1. Estimation of structure Applications of SSA
Noise reduction in images

⇒ ⇒

Original Noised Denoised

Reconstruction from the leading 3 eigentriples,
L = 16×16, n = 310×310
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Part 1. Estimation of structure
Conclusions

SSA is a model-free methodology
for the analysis of series data.

SSA is applied to a wide range of problems including
Discovering of structure
Signal/trend extraction
Smoothing and noise reduction
Extraction of harmonic/seasonal components
Forecasting
Change-point detection
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