Optimal design for multivariate models with correlated observations

Andrey Pepelyshev

MODA10 June 10, 2013 Consider the common linear regression model

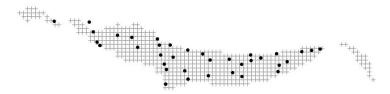
$$y(x) = \theta_1 f_1(x) + \ldots + \theta_m f_m(x) + \varepsilon(x) , \ x \in \mathbb{X} \subset \mathbb{R}^d$$

- functions $f_1(x), \ldots, f_m(x)$ are linearly independent and continuous,
- a random error field $\varepsilon(x)$ has the zero mean and the covariance kernel $K(x, x') = E[\varepsilon(x)\varepsilon(x')]$,
- parameters $\theta_1, \ldots, \theta_m$ are unknown and have to be estimated.

No replication of experimental points.

Example: the monitoring network

The Südliche Tullnerfeld in Lower Austria and the monitoring network, (Muller, 2000, 2005; Muller, Pazman, 1999).



Consider the linear model with $f(x) = (1, x_{[1]}, x_{[2]})^T$, the isotropic spherical correlation function

$$\begin{split} K_1(x,x';\theta) &= \begin{cases} \theta_1 + \theta_2 & \|x - x'\| = 0\\ \theta_2(1 - 1.5\|x - x'\|/\theta_3 + 0.5\|x - x'\|^3/\theta_3^3) & 0 < \|x - x'\| < \theta_3 \\ 0 & \|x - x'\| > \theta_3 \end{cases} \\ \text{or the Gaussian correlation function} \\ K_2(x,x';\theta) &= \theta_1 \delta_0(\|x - x'\|) + \theta_2 \exp(-\|x - x'\|^2/\theta_3^2) = 0 \end{split}$$

Design and covariance matrices

	Exact design	Continuous design
BLUE	$(\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-1}$	_
OLS	$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{\Sigma}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}$	$M^{-1}(\xi)B(\xi,\xi)M^{-1}(\xi)$

$$\mathbf{X} = (f_i(x_j))_{j=1,\dots,N}^{i=1,\dots,m}$$

$$\mathbf{\Sigma} = (K(x_i, x_j))_{i,j=1,\dots,N}$$

$$M(\xi) = \int_{\mathbb{X}} f(u) f^T(u) \xi(\mathrm{d}u),$$

$$B(\xi,\xi) = \int_{\mathbb{X}} \int_{\mathbb{X}} K(u, v) f(u) f^T(v) \xi(\mathrm{d}u) \xi(\mathrm{d}v).$$

Let the design points $\xi_N = \{x_{1,N}, \ldots, x_{N,N}\}$ be generated by the quantile function $Q(\cdot)$ of a continuous measure ξ ,

$$x_{i;N} = Q\left((i-1)/(N-1)\right), \ i = 1, \dots, N.$$

We have

$$\lim_{N \to \infty} \operatorname{Cov}(\hat{\theta}_{BLUE} | \xi_N) = \lim_{N \to \infty} \operatorname{Cov}(\hat{\theta}_{BLUE} | \zeta_N)$$

and

$$\lim_{N \to \infty} \operatorname{Cov}(\hat{\theta}_{WLS} | \xi_N) \neq \lim_{N \to \infty} \operatorname{Cov}(\hat{\theta}_{WLS} | \zeta_N).$$

Theorem (Dette, Pepelyshev, Zhigljavsky, 2012)

Let ξ^* be any *D*-optimal design. Then for all $x \in \mathbb{X}$ we have

$$d(x,\xi^*) \le b(x,\xi^*),$$
 (*)

э

(日) (同) (三) (

where

$$d(x,\xi) = f^{T}(x)M^{-1}(\xi)f(x)$$

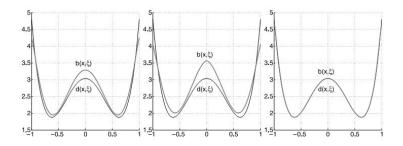
and

$$b(x,\xi) = tr(B^{-1}(\xi,\xi)B(\xi,\xi_x)) = f^T(x)B^{-1}(\xi,\xi) \int K(u,x)f(u)\xi(\mathrm{d}u),$$

$$\xi_x = \{x,1\} \text{ is the Dirac measure. Moreover, there is equality}$$

in (*) for ξ^* -almost all x

Examples of $d(x,\xi)$ and $b(x,\xi)$



The functions $b(x,\xi)$ and $d(x,\xi)$ for the regression model with $f(x) = (1, x, x^2)^T$, $x \in [-1, 1]$ and the covariance kernels $K(u, v) = e^{-|u-v|}$ (left), $K(u, v) = \max(0, 1 - |u - v|)$ (middle) and $K(u, v) = -\log(u - v)^2$ (right), and the arcsine design ξ .

Let $\xi^{(r)} = \{x_1, \ldots, x_n; w_1^{(r)}, \ldots, w_n^{(r)}\}$ denote the design at the iteration r

The updating rule for the weights has the form

$$w_i^{(r+1)} = \frac{w_i^{(r)} (\psi(x_i, \xi^{(r)}) - \beta_r)}{\sum_{j=1}^n w_j^{(r)} (\psi(x_j, \xi^{(r)}) - \beta_r)}, \qquad i = 1, \dots, n,$$

where β_r is a tuning parameter, $0 \leq \beta_r < \min_i \psi(x_i, \xi^{(r)})$,

$$\psi(x,\xi) = d(x,\xi)/b(x,\xi).$$

In most of cases, 20 iterations are sufficient for finding a good approximation of the optimal design.

Examples of D-optimal designs

The design $\xi^{(20)}$ for the spherical correlation function with $\theta = (4.89, 1.86, 0.81)$.

The design $\xi^{(20)}$ for the Gaussian correlation function with $\theta = (4.89, 1.86, 0.5).$

Examples of *D*-optimal designs

The design $\xi^{(20)}$ for the spherical correlation function with $\theta = (4.89, 1.86, 0.4)$.

The design $\xi^{(20)}$ for the spherical correlation function with $\theta = (4.89, 1.86, 1.6).$

For given N, we choose a discretization x_1, \ldots, x_n such that n is much larger than N. Let $\xi = \{x_1, \ldots, x_n; w_{1(1)}, \ldots, w_{n(1)}\}$ be the asymptotic optimal design calculated by the multiplicative algorithm.

- Find the index τ such that $w_{\tau(k)}$ is maximal, i.e. $w_{\tau(k)} = \max_{i} w_{i(k)}$.
- Set $x'_k = x_{\tau} + \epsilon$, where ϵ is a random variable with zero mean and very small variance.
- Define $w_{\tau(k+1)} = w_{\tau(k)} 1/N$ and $w_{j(k+1)} = w_{j(k)}$ for all $j \neq \tau$.
- If w_{τ(k+1)} < 0, then set w_{τ(k+1)} = 0 and the weights for points in a neighborhood of x_τ should be decreased such that ∑ⁿ_{j=1} w_{j(k+1)} = (N k)/N. In other words, we should take points that are nearest to x_τ and decrease weights at them.

Exact designs

The exact designs $\xi_{20}, \xi_{25}, \xi_{30}$ and ξ_{36} generated by the design $\xi^{(20)}$ for the linear model and the spherical correlation function with $\theta = (4.89, 1.86, 0.81);$ $\Psi(\xi_N) = \sqrt[3]{(\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-1}}.$ $\Psi(\xi_{20}) = 5.39,$ $\Psi(\xi_{25}) = 4.56,$ $\Psi(\xi_{30}) = 4.15,$ $\Psi(\xi_{36}) = 3.67.$

< /i>

Fully optimized exact designs

The exact designs $\xi_{D,36,r}^*$ (left) and $\xi_{D,36,a}^*$ (right) computed by the Brimkulov algorithm (Muller, 2005) when the initial design is *random* and one generated from the *asymptotic* optimal density, respectively, for the linear model and the spherical correlation function with $\theta = (4.89, 1.86, 0.81)$.

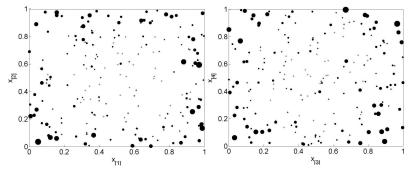
$$\Psi(\xi^*_{D,36,r})=3.55$$
, $\Psi(\xi^*_{D,36,a})=3.39$,

For the existing monitoring network, $\Psi(\xi_{m.n.}) = 6.93$.

- Let we intend to perform N evaluation of a computer model.
- Discretize the domain with n points, n >> N.
- Run the multiplicative algorithm to find the asymptotic optimal design ξ.
- Compute N-point exact design using ξ .

Example of design in $[0,1]^4$

Consider the model with $f(x) = (1, x_{[1]}, x_{[2]}, x_{[3]}, x_{[4]})^T$ and the Gaussian correlation function $K(x, x') = \exp(-||x - x'||^2)$. Generate 200 random uniform points in $[0, 1]^4$.



Conclusion: Uniform design is not *D*-optimal.

Thank you for your attention.

æ

< 一型