Basic properties of unit hypercube

Andrey Pepelyshev

Sheffield January 19-20, 2010

Andrey Pepelyshev Basic properties of unit hypercube

How much are cubes differed at different dimensions?

æ

How much are cubes differed at different dimensions?

Andrey Pepelyshev

Basic properties of unit hypercube

Volume of inscribed ball

Features of cube

In high-dimensional space

- The 'middle' of cube is empty.
- The cube is a 'union' of its corners.
- The 'average' radius of the cube is about $\sqrt{\frac{d}{2\pi e}}$. Note that the distance from the center to the middle of cube's facets is 0.5 for any dimension d.

Radius of ball of unity volume

Projection of ball of unity volume

If one project the mass distribution of the ball of volume 1 onto a single direction, one get a distribution that is approximately Gaussian with variance $1/(2\pi e)$.

Note that

- the variance does not depend upon the dimension *d*,
- the radius of ball of volume 1 grows like $\sqrt{\frac{d}{2\pi e}}$.

Most of the volume of the ball lies near its surface.

Sections of cube

The cube in \mathbb{R}^d has almost spherical sections whose dimension is roughly $\log d$ and not more.

10 uniform points

Distance between points grows very fast

990

Conclusion

- 2D and 3D intuition might lead us astray in high-dimensional spaces.
- The cube is a bad approximation to the ball (the distance is at most $\sqrt{d}/2$).

Reference

K. Ball (1997) An elementary introduction to modern convex geometry