Basic properties of unit hypercube

Andrey Pepelyshev

The
University Of
Sheffield.

Sheffield
January 19-20, 2010

How much are cubes differed

at different dimensions?

$?$

$[0,1]^{2}$
$[0,1]^{3}$
$[0,1]^{8}$

Basic properties of unit hypercube

How much are cubes differed

 at different dimensions?

$[0,1]^{3}$
$[0,1]^{8}$
Basic properties of unit hypercube

Volume of inscribed ball

Volume of cube $=1$

$V_{2} \approx 0.78 \quad V_{3} \approx 0.52 \quad V_{8}=\left.\frac{\pi^{d / 2} r^{d}}{\Gamma(1+d / 2)}\right|_{\substack{d=8 \\ r=0.5}} \approx 0.016$

Features of cube

In high-dimensional space

- The 'middle' of cube is empty.
- The cube is a 'union' of its corners.
- The 'average' radius of the cube is about $\sqrt{\frac{d}{2 \pi e}}$. Note that the distance from the center to the middle of cube's facets is 0.5 for any dimension d.

Radius of ball of unity volume

Volume of cube $=1$

$\left.r_{2} \approx 0.56 \quad r_{3} \approx 0.62 \quad r_{8} \approx \sqrt{\frac{d}{2 \pi e}}\right|_{d=8} \approx 0.84$

Projection of ball of unity volume

If one project the mass distribution of the ball of volume 1 onto a single direction, one get a distribution that is approximately Gaussian with variance $1 /(2 \pi e)$.

Note that

- the variance does not depend upon the dimension d,
- the radius of ball of volume 1 grows like $\sqrt{\frac{d}{2 \pi e}}$.

Most of the volume of the ball lies near its surface.

Sections of cube

The cube in \mathbb{R}^{d} has almost spherical sections whose dimension is roughly $\log d$ and not more.

10 uniform points

Distance between points grows very fast

Conclusion

- 2D and 3D intuition might lead us astray in high-dimensional spaces.
- The cube is a bad approximation to the ball (the distance is at most $\sqrt{d} / 2$).

Reference

K. Ball (1997) An elementary introduction to modern convex geometry

