Best intention sequential designs in clinical trial studies

Valerii Fedorov Andrey Pepelyshev Luc Pronzato Anatoly Zhigliavsky

St. Petersburg June 27, 2009

Response is given by

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \varepsilon, \ x \in [-1, 1]$$

Our aim is to estimate $x^* = -\frac{\theta_1}{2\theta_2}$

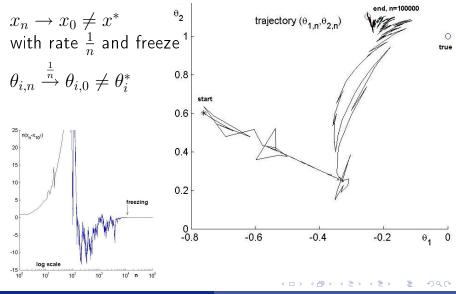
Best intention design procedure

initial (equidistant) design x₁,..., x_k, k is small
in the loop n = k, k + 1,...

•
$$\theta_n = (X_n^T X_n)^{-1} X_n^T Y_n$$
 is LSE of θ , $Y_n = (y_1, \dots, y_n)^T$
• $x_{n+1} = -\frac{\theta_{1,n}}{2\theta_{2,n}}$ is the next design point

Trajectory of estimate $heta_0^*=0, heta_1^*=0, heta_2^*=1, \sigma=1$

Trajectories for model $heta_0+ heta_1x+ heta_2x^2$



Best intention sequential designs in clinical trial studies

Consider two parameter model

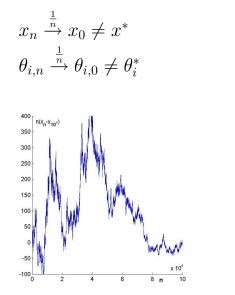
$$y = \theta_1 x + \theta_2 x^2 + \varepsilon, \quad x \in [-1, 1]$$

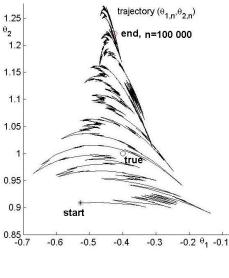
Best intention design procedure

•
$$x_n \to x^*$$
 if $\theta_1^* = 0$
• $x_n \to x_0 \neq x^*$ if $\theta_1^* \neq 0$

Trajectory of estimate $heta_1^* = -0.4, heta_2^* = 1, \sigma = 1$

Trajectories for model $\theta_1 x + \theta_2 x^2$

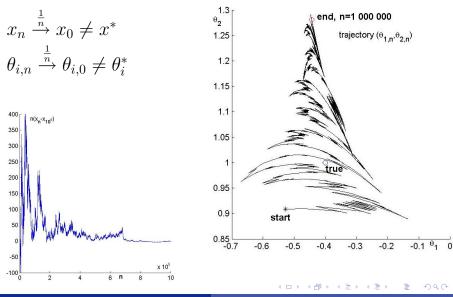




5/17

Trajectory of estimate $\theta_1^* = -0.4, \theta_2^* = 1, \sigma = 1$

Long trajectories for model $heta_1 x + heta_2 x^2$



Best intention sequential designs in clinical trial studies

Estimation of response

$$\eta(x,\theta) = \theta^T f(x)$$

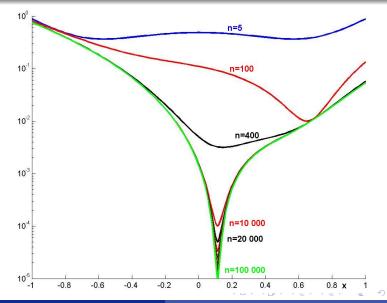
$$\operatorname{Var}[\eta(x,\hat{\theta})] = d(x,\xi_n) = f^T(x)M^{-1}(\xi_n)f(x)$$

$$M(\xi_n) = \sum_{i=1}^n f(x_i) f^T(x_i)$$
$$\xi_n = \{x_1, \dots, x_n\}$$

Fedorov, Pepelyshev, Pronzato, Zhigljavsky Best intention

Estimation of response $\theta_0^* = 0, \theta_1^* = 0, \theta_2^* = 1, \sigma = 1$

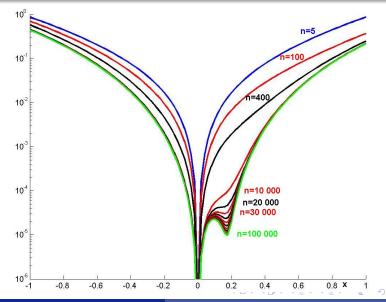
$\overline{d(x,\xi_n)}$ for the model $\overline{ heta_0} + \overline{ heta_1 x} + \overline{ heta_2 x^2}$



Best intention sequential designs in clinical trial studies

Estimation of response $\theta_1^* = -0.4, \theta_2^* = 1, \sigma = 1$

$d(x,\xi_n)$ for the model $heta_1x+ heta_2x^2$



9/17

Best intention sequential designs in clinical trial studies

Variance of estimate of x^*



10/17

Fedorov, Pepelyshev, Pronzato, Zhigljavsky

$$M(\xi_n)$$
 grows linearly as $n \to \infty$
Let $Q_n = (M(\xi_n)/n)^{-1}$

•
$$x_{n+1} = -\frac{\theta_{1,n}}{2\theta_{2,n}}$$
 and observe y_{n+1}
• $\theta_{n+1} = \theta_n + \frac{1}{n} \frac{Q_n f(x_{n+1})}{1 + f(x_{n+1})Q_n f(x_{n+1})} (y_{n+1} - \theta_n^T f(x_{n+1})))$
• $Q_{n+1} = Q_n + \frac{Q_n}{n} - \frac{1 + 1/n}{n} \cdot \frac{Q_n f(x_{n+1}) f^T(x_{n+1})Q_n}{1 + f^T(x_{n+1})Q_n f(x_{n+1})}$

11/17 Fedorov, Pepelyshev, Pronzato, Zhigijavsky Best intention sequential designs in clinical trial studies

Bozzin-Zarrop approach

Model

$$y(t) = \phi^T(t)\theta^o + \varepsilon(t) = \theta_1^o u(t-1) + \theta_2^o u^2(t-1) + \varepsilon(t)$$

Stochastic approximation, $\gamma(t)$ behaves like 1/t

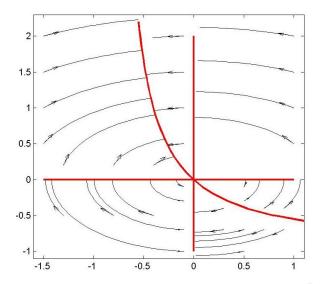
$$\theta(t) = \theta(t-1) + \gamma(t)\phi(t-1)(y(t) - \phi^T(t-1)\theta(t-1))$$

Associated differential equation

$$\frac{d}{d\tau}\theta_D(\tau) = G(\theta_D(\tau))(\theta^o - \theta_D(\tau))$$
$$G(\theta) = \mathbb{E}(\phi(t)\phi^T(t)) = \begin{pmatrix} u^2 & u^3 \\ u^3 & u^4 \end{pmatrix}$$

Bozzin-Zarrop approach $\theta_1^o = -0.4, \theta_2^o = 1$

Trajectories of differential equation



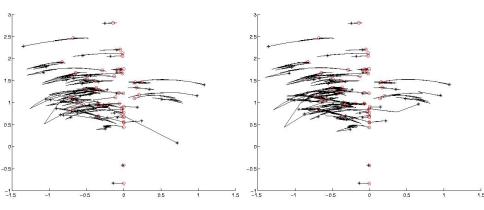
Fedorov, Pepelyshev, Pronzato, Zhigljavsky

Best intention sequential designs in clinical trial studies

500

Bozzin-Zarrop approach $\theta_1^o = -0.4, \theta_2^o = 1, n = 200$

50 trajectories of LSE (left) and SA (right)



14/17 Fedorov, Pepelyshev, Pronzato, Zhigljavsky Best intention sequential designs in clinical trial studies

How to modify the procedure to improve

D-optimal design {-1,0,1}, put points at boundary points for large n, i.e. try doses with low efficacy or high toxicity
control the rate of convergence

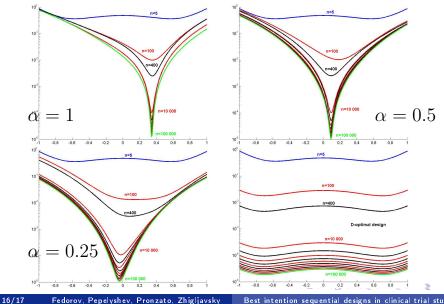
$$\tilde{x}_{k} = \begin{cases} x_{k} & |x_{k} - \tilde{x}_{k-1}| \ge \frac{1}{k^{\alpha}} \\ x_{k} - \frac{1}{k^{\alpha}} & \tilde{x}_{k-1} - \frac{1}{k^{\alpha}} < x_{k} < \tilde{x}_{k-1} \\ x_{k} + \frac{1}{k^{\alpha}} & \tilde{x}_{k-1} < x_{k} < \tilde{x}_{k-1} + \frac{1}{k^{\alpha}} \end{cases}$$

$$\tilde{\xi}_n = \{\tilde{x}_1, \dots, \tilde{x}_n\}$$
 consistent if $\alpha < 0.25$

Fedorov, Pepelyshev, Pronzato, Zhigljavsky

Modified best intention designs $heta_0^* = 0, heta_1^* = 0, heta_2^* = 1$

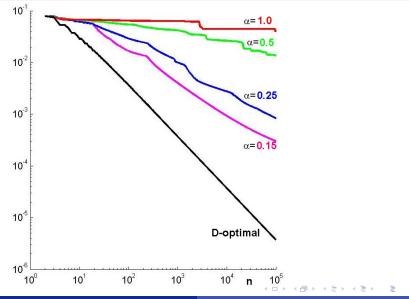
 $d(x,\xi_n)$ for the model $heta_0+ heta_1x+ heta_2x^2$



Fedorov, Pepelyshev, Pronzato, Zhigljavsky

Modified best intention designs $\theta_0^* = 0, \theta_1^* = 0, \theta_2^* = 1$

 $c^T M^-(\widetilde{\xi}_n) c$ for the model $heta_0 + heta_1 x + heta_2 x^2$



17/17

Fedorov, Pepelyshev, Pronzato, Zhigljavsky