25

Pub. Inst. Stat. Univ. Paris
LIV, fasc. 3, 2010, 25 a 40

Estimating and Testing for Influence of Specific Structural
Factors on Aging of Refrigerated Vehicles

Livio Corain', Girolamo Panozzo’, Andrey Pepelyshev’, Stefano Rossi’, Luigi Salmaso'

' Department of Management and Engineering, University of Padova, Italy
? Ttalian National Research Council, Construction Technologies Institute, Padova, Italy
? Department of Stochastic Simulation, St. Petersburg State University, Russia

Abstract

This paper introduces a mathematical formulation for the aging curve to study the
effects that structural characteristics, as well as operation and maintenance practices,
have on the life of refrigerated transport units. From a large database of measurements
and real aging data, we fitted the proposed model and we performed inference on
parameters using a nonparametric permutation approach. The proposed testing
permutation approach, we validated via a Monte Carlo simulation study, appears to be a
flexible method, suitable to be implemented for nonlinear models, such as the presented
aging curve. The proposed algorithm, although general in its kind, offers a well-rounded
approach to make inference on nonlinear model via permutation test. As final results of
this, we were able to identify and quantify the most relevant specific structural factors
affecting the aging of refrigerated vehicles, which are the presence of meat rails in the
roof and the number of leafs for the first and second door.
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1. The aging curve of refrigerated vehicles

The Accord Transport Perishable (ATP), established in 1970 among some European
countries and ratified in Italy in 1977, defines the precise structural characteristics of
isothermal units at controlled temperature to be used in the transport of perishable
products. Over time the insulated capacity of refrigerated transportation vehicles tends
to diminish, thus allowing for an increase in the so-called overall coefficient of heat
transfer K which represents the insulating capacity of the equipment and is defined as
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where W is the thermal capacity required in a body of mean surface area S to maintain
the absolute difference 47 between the mean inside temperature 7; and the mean outside
temperature 7., during continuous operation, when the mean outside temperature 7, is
constant. The mean surface area S of the body is the geometric mean of the inside
surface area S; and the outside surface area S, [1].

Several factors contribute to the increase in K: some maybe regarded as structural
deformation due to wear and tear while others are related to an increase of water in the
polyurethane slab. A mathematical formulation of the aging curve can be taken into
consideration to study the effects that structural characteristics, as well as operation and
maintenance practices, have on the life of refrigerated transport units. This theoretical
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model is derived as a combination of the physical processes involved in the heat transfer
within the insulating panel. That model has been calibrated with respect to the data
available through the ATP database (for details, see [2]). This model formulation allows
to compare the effective age of different type of refrigeration units independently from
their manufacturing, structure or use.

Based on this model, the theoretical aging, Y; of a refrigeration unit at its time-life 7 can
be computed according to:

Y,=100-[TC’—l]-H, (1)
0

where TCy and TC, are the thermal conductivities respectively computed at time =0 (i.e.
when the refrigeration unit is new) and at time 7 during the life of the unit (i.e. while the
refrigeration unit is in use). These thermal conductivities (see [2]) are obtained using
expressions:
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where (in brackets we report the value of constant K;, i=1,...,15) K; (0.97) is the
porosity of the polyurethane slab, which is given by the ratio of the volume occupied by
the air and gas and the total volume of the slab; K (0.85) is the fraction of volume
occupied by the solid in the selected geometrical representation of the polyurethane
structure. For this particular derivation, the insulating material is represented as in line
cubic cells of equal dimensions surrounded by a layer of gas. Constants K3 (0.29
W/mK), K; (0.026 W/mK), K; (0.0078 W/mK) and Kj4 (0.6163 W/mK) are the thermal
conductivity coefficients of the solid, the air, the compressed gas (R11) and the water in
the polyurethane slab, respectively; Ks (1000 Pa) and K; (90000 Pa) are the initial
partial pressures of the air and of the compressed gas, respectively, Py, is the total
pressure in the polyurethane slab at time 7 [Pa], and is given by the sum of P, and
Pgi1,, the partial pressures of the air and gas (R11) at time ¢, respectively; Py, and Pg;j
are computed according to the following expressions:

P

air t

=K, +(K;s-K,)-(1-P(t.A,)), )

air

PR||,1=K7'P(I’ARH), (5)
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where Kj3 (3.0e-12 mc/mc-s) is the flux of condensed water in the slab; Kg (5.6704E-8
W/mK? ) is the Stephan-Boltzmann constant; Ky (298 K) is the mean temperature of two
faces of polyurethane slab; Kj((0.0005 m) is the mean equivalent diameter of the cells
and Kj; (35 Kg/mc) and K, (1200 Kg/mc) are the densities of the foam and the solid,
respectively.

In (4), K5 (101325 Pa) is the partial pressure of the air outside the refrigeration unit and
P(t,A;), where i=2.3 are referred to air and gas respectively, is a function of (6) that
computes the partial pressure of a gas at time ¢ based on the parameter A; which is in
turn given by (7):
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where K6 (0.1 m) is the mean thickness of the polyurethane layer and f; is a calibrated
unknown parameter corresponding to the coefficient of diffusivity of the air or of the

compressed gas respectively for ﬁz and /;’3. Equation (6) represents the mean pressure

over time and across the polyurethane layer and was derived as a simplification of the
diffusivity processes of the gases present in the polyurethane layer, based on Fick’s Law
[3]. For a more detailed introduction on the mathematical formulation of the aging curve
we refer the reader to [2].

From an engineering point of view, the parameter £in (1) can be interpreted as the aging
velocity of the refrigeration unit. To account for structural characteristics and
specifications that might contribute to the overall aging of the isothermal unit, we can
represent the expected value of & as an additional linear model such as in (8). This
allows evaluating the aging results of refrigerated transportation systems that might
differ by structural factors or by method of employment.

6
E(0)=B+BX,+ 2 B, Xy, + BXs+ B X, + B X+ X+ B X, +
Jj=1

+B, X5 + B, X,

(®)

where f is a constant, 3, i= 4,0,...,12, and Sy, j= 1,...,6 are parameters related to the
possibly relevant factors potentially affecting the aging velocity. The variables under
study (some binary or nominal categorical, some other numerical) are: X,: Type of use;
Xoj, j= 1,...,6: Type of transported perishables (j= Dairy, Fish, Fruit and vegetables,
General Perishable, Meat, Poultry); X3;: Number of leafs for the second door; Xj:
Number of leafs for the first door; Xs: Total perimeter doors; Xe: Presence of
refrigerating unit in the vehicle; X7: Presence of meat rails in the roof of the vehicle; Xg:
Average thermal thickness,;Xo: Average geometrical thickness.
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2. Descriptive data analysis

For this study, a database of nearly 3,300 records of measurements and real aging data,
was available from the Laboratories of Chill Techniques (LCT) within the Italian
National Research Council, Construction Technologies Institute, Padova, Italy, for the
decade 1998 to 2007. The LCT is one of the centres certified to measure the overall
coefficient of heat transfer in transported refrigeration systems.

In fact, the ATP prescribes specific rules to employ and to maintain refrigerated
transportation units. Among these are quality compliance standards and quality control
tests and their frequency. In particular, checks for conformity with the standards
prescribed in the accord are to be made: (a) before the equipment is put into service; (b)
at least once every six years and (c) whenever required by the competent authority.
Equipment checks are performed in insulated chambers by measuring the overall
coefficient of heat transfer in specific operating conditions and in selected environment
settings. In particular, insulating capacity is measured in continuous operation either by
the internal heating method (i.e. a heating source is placed inside the empty isothermal
unit and the heat transferred to the outside is measured) or by the internal cooling
method (i.e. a cooling source is placed inside the refrigeration system and the heat
exchange between inside and outside is measured).

At the LCT, tests are conducted either on road or railroad refrigerated truck in a 28 m-
long insulated chamber. Measurements and environment conditions within the insulated
chamber are computer controlled. The aging process in insulated units is measured as
the increase in the heat transferred between the inside and the outside of the unit also
known as increase in the thermal conductivity.

As first basic statistics on the available dataset, a classification of these data based on
age of the vehicles and year in which the observation was taken is presented in Table 1.
The last column in Table 1 “All G.” represents the number of vehicles of a specific age
over the course of the ten-year monitoring period (from 1998 to 2007) for which data
are available. It is evident from this table that for several “Age” groups there are no
sufficient data to calibrate the model. Therefore, only the subset from Age = 6 to Age =
20 will be used to fit the aging model in this study.

Table 1. Counting of vehicle age in each year.

Age 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | AllG.

1-5 1 1 0 1 1 1 3 1 1 1 11
6-10 89 50 30 57 27 36 41 47 38 42 457
11-15 194 207 155 247 260 255 255 268 274 215 | 2330

16-20 25 29 33 23 25 44 41 62 86 71 439
21-25 =) 3 4 6 7 6 4 5 15 13 68
26-30 2 0 0 1 0 2 0 0 2 3 10

Total 316 290 222 335 320 344 344 383 416 345 | 3315

Figure 1 displays a graphical summary of the observed measurements of aging for the
3315 vehicles. Note that the shape of the frequencies histogram is not symmetric
(skewness = 1.57).
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Descriptive Statistics
Variable: Aging

Anderson-Darling Normality Test

A-Squared: 56.895

P-Value: 0.000

Mean 38.3241

StDev 20.3461

Variance 413.965

Skewness 1.57056

| | Kurtosis 4.97458
10 35 N 3315
L ! Minimum 0.345
——'—_—-—_—-u- R 1st Quartile 24.809
Median 35.075

3rd Quartile 47.785

95% Confidence Interval for Mu Maximum 198.828
- 95% Confidence Interval for Mu

37.631 39.017

95% Confidence Interval for Sigma

- 19.868 20.848
95% Confidence Interval for Median
5 : ;
95% Confidence Interval for Median 34.363 35652

Figure 1. Graphical summary of Ageing distribution.
Figure 2 represents the scatter plot of observed ageing versus vehicle’s age, for the

subset of vehicles aged 6-20 years. Red dots, connected by a solid line, represent the
sample mean of ageing by vehicle’s age.
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Figure 2. Scatter plot of Ageing versus Age (subset Age 6-20).

Tables 2 and 3 display descriptive statistics of the specific structural factors of
refrigerated vehicles. More specifically, Table 2 summarises the counting of vehicles by
specific structural factors of categorical-type, while Table 3 shows counting, sample
mean and standard deviation by specific numerical-type structural factors.



3

0

Table 2. Counting of vehicles by specific structural factors (categorical type) and by year.

Factor / Category 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | AllG.
Type of use

Private activity 240 242 199 681
Transportation activity 142 174 146| 462
missing 316 290 222 335 320 344 344 1 2172
Type of perishables

Dairy 41 30 26 42 40 41 41 48 62 46 | 417
Fish 46 38 20 39 35 55 42 49 53 33 | 410
Fruit and vegetables 2 2 4 15 32 25 44 39 55 58 276
General Perishable 22 20 37 41 16 31 44 56 41 29 | 337
Meat 66 63 45 57 46 55 65 72 64 58 | 591
Poultry 19 15 10 12 9 26 12 24 29 23 179
missing 120 122 80 129 142 111 96 95 112 98 | 1105
Refrigerating unit

No 20 21 11 17 22 32 34 29 27 37| 250
Yes 206 269 211 318 298 312 310 354 389 308| 3065
Meat rails in the roof

No 230 191 163 225 251 279 285 320 333 277 2554
Yes 86 99 59 110 69 65 59 63 83 68| 761

Table 3. Basic statistics of vehicles by specific structural factors (numerical type) and by year.

Factor 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | AllG.
No. of leafs 2-nd door

N. 316 290 222 335 320 344 342 381 415 343 | 3308
missing 2 2 1 2 7
mean 098 098 100 1.02 1.06 1.06 1.13 1.11 1.11 1.12| 1.06
standard dev. 040 046 051 039 044 040 058 058 056 054 050
No. of leafs 1-st door

N. 316 289 221 332 316 343 344 382 415 342 | 3300
missing 1 1 3 4 1 1 1 3 15
mean 085 088 079 083 0.75 084 078 0.71 066 063 0.77
standard dev. 072 071 068 067 074 093 0.71 083 068 069 0.75
Perimeter doors

N. 320 344 344 383 411 345 | 2147
missing 316 290 222 335 5| 1168
mean 16223 16744 17507 16881 16382 16573 | 16716
standard dev. 5193 5206 7041 8346 6349 6841| 6636
Thermal thickness

N. 316 290 222 335 320 344 344 383 416 345| 3315
missing

mean 853 849 832 830 787 795 785 782 717 770| 803
standard dev. 108 95 102 93 9.6 9.5 8.7 8.7 8.0 7.8 9.6
Geometrical thickness

N. 275 269 208 304 383 416 345| 2200
missing 41 21 14 31 320 344 344 1115
mean 856 857 847 845 820 817 808| 833
standard dev. 105 93 135 90 8.9 8.2 8.7 9.7

Linear correlation between observed aging and other specific structural factors of
refrigerated vehicles are presented in Table 4 (missing values have been handled by
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using pairwise deletion). As highlighted in the table (significant correlations in bold, at
o-level=0.05), and as we can reasonably expecting there are several factors significantly
correlated with aging.

Table 4. Correlations between aging and other specific structural factors.

Factor All cases subset Age=12
Type of use 0.08 0.08
No. of leafs 2-nd door -0.06 -0.02
No. of leafs 1-st door 0.03 001
Perimeter doors 0.22 0.25
Refrigerating unit 0.25 0.25
Meat rails in the roof 0.04 0.05
Thermal thickness 0.14 0.18
Geometrical thickness 0.19 0.22

3. Parameter Estimation

Since the distribution of aging is far to be symmetric (Figure 1), as confirmed by the fact
that mean and median of the aging distribution are respectively 38.3 and 35.1, we prefer
to perform the parameter estimation procedure via minimizing the sum of the absolute
values of the residuals. For this goal, suitable MatLab routines were implemented in
order to numerically estimate, using the Nelder-Mead algorithm [4], the three
parameters of the aging nonlinear model presented in the first section of the present
paper. Note that, as first estimation attempt, we hold fixed the velocity parameter &.
Table 5 displays the estimated values of the three aging model parameters, by several
periods of increasing length.

Table 5. Estimate of model parameters for several periods
via minimizing of sum of abs of residuals.

. > 3 7 Predicted value
Period (air dif?usivity) (gas digusivity) (velocity) N for age=12
1998-1999 5.3E-12 1.0E-18 1.27 606 380
1998-2000 6.6E-12 8.0E-19 1.13 828 38.6
1998-2001 6.3E-12 9.0E-19 1.15 1163 384
1998-2002 6.3E-12 8.1E-19 1.10 1483 36.7
1998-2003 8.3E-12 5.7E-19 0.90 1827 349
1998-2004 1.0E-11 7.5E-19 0.81 2171 342
1998-2005 1.1E-11 7.8E-19 0.79 2554 342
1998-2006 1.1E-11 8.3E-19 0.79 2970 344
1998-2007 1.2E-11 6.9E-19 0.78 3315 347

In order to measure a goodness of fit of estimated model, we can calculate the sum of
LAD - least absolute deviation of residuals which is equal to 14 4.

Hence, we fixed the estimated values of air and gas diffusivity ( /;’2 =1.2E-11, /3’] =6.9E-

19), then we proceeded to analyzing in details the relation between velocity parameter
and the effect of specific structural factors of refrigerated vehicle.
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In Table 6 and 7 the velocity parameter € has been separately estimated by subgroup of
specific categorical-type structural factors and as a linear combination of each other
numerical-type specific structural factors respectively.

Table 6. Estimate of velocity in subgroups of specific categorical-type structural factors.

Structural factor 6 (velocity) N Predicted value for age=12
Type of use

Transportation activity 0.78 462 348
Private activity 0.80 681 36.0
Type of perishables

Dairy 0.82 417 369
Fish 0.80 410 356
Fruit and vegetables 0.75 276 33.3
General Perishable 0.73 337 326
Meat 0.84 591 375
Poultry 0.69 179 31.0
Refrigerating unit

No 0.67 250 29.8
Yes 0.78 3065 35.1
Meat rails in the roof

No 0.74 2554 33.2
Yes 0.90 761 40.1

Table 7. Dependence of velocity from numerical-type specific structural factors.

Structural factor a b N mean std. dev.
model: g, =a+b*factor
No. of leafs 2-nd door 0.72 0.05197 3315 1.071 0.530
No. of leafs 1-st door 0.68 0.13131 3315 0.784 0.798
model: S =a+b*standardized(factor)
Perimeter doors 0.82 0.05 2134 16716.3 6635.62
Thermal thickness 0.74 0.13 1752 80.32 9.60
Geometrical thickness 0.73 015 2168 83.25 9.70

It is possible to consider a more realistic aging curve model where we take into account
simultaneously for all available specific structural factors of refrigerated vehicle,
according to the linear model presented in Equation (8).

Table 8 summarises the estimates of each parameter for specific structural factors, along
with their own bootstrap standard error [5].

As a measure of goodness of fit of estimated model, we can calculate the sum of least
absolute deviation (LAD) of residuals which is 13.2. Hence, when comparing this value
with those of the three-parameter aging curve model, we can note that the reduction of
LAD of residuals is 8.5%.
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Table 8. Estimate of parameters for specific structural factors.

Factor Parameter Estimate Bootstrap SE of estimate
Constant i 0.483 0.0078
Type of use s 0.071 0.0024
Type of perishables

Dairy L1 0.027 0.0045
Fish Ps> 0.032 0.0060
Fruit and vegetables Ps3 0.007 0.0030
General Perishable Psa 0.012 0.0022
Meat Pss -0.056 0.0041
Poultry Pse -0.039 0.0032
No. of leafs 2-nd door Lo 0.117 0.0029
No. of leafs 1-st door [ 0.140 0.0019
Perimeter doors Ps 0.032 0.0014
Refrigeration unit Bo 0.083 0.0033
Meat rails in the roof Bro 0.158 0.0025
Thermal thickness P 0.051 0.0020
Geometrical thickness L2 -0.016 0.0026

4. Inference on parameters of aging model via permutation tests

Significance testing on nonlinear model parameters within the parametric approach is
traditionally a difficult topic due to the complexity of studying the null distribution of
test statistics. The main concern to determine the accuracy and the significance of the
estimates for the nonlinear regression coefficients has been addressed by literature to
classical asymptotic procedures, such as Wald test and likelihood test, or to resampling
methods, such us bootstrap and jackknife [6,7] or, more recently, to Bayesian inference
[8]. The validity of asymptotic testing approach is obviously connected with the
assumption on random error (usually normal). Moreover, when the sample size is not
particularly large asymptotic assumption may be suspected. With reference to bootstrap
and jackknife approaches, we highlight that they are basically heuristic procedures and,
more specifically, these resampling techniques are neither conditional nor unconditional
inferential method. In contrast, permutation methods are nonparametric conditional
procedures where conditioning is performed with respect to the sub-space associated
with the set of sufficient statistics under the null hypothesis for all nuisance entities,
including the underlying, known or unknown, distribution [9,10].

The importance of the permutation approach in resolving a large number of inferential
problems is well-documented in the literature, where the relevant theoretical aspects
emerge, as well as the extreme effectiveness and flexibility from an application point of
view. Provided that data are sampled from only one underlying distribution, the
permutation tests are nonparametric procedures conditional on the observations, which
are always a set of sufficient statistics under the null hypothesis, for any underlying
distribution. Supposing that the null hypothesis implies exchangeability of data with
respect to the levels of factors, the permutation tests are not only independent of the
likelihood model relative to population distribution, but also enjoy some important
properties: they are exact tests, enjoy the property of similarity and are conditionally
unbiased and consistent procedures. Furthermore, in rather general conditions, it is
possible to weakly extend the conclusions of the permutation tests to the reference
population [10].
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Hence, permutation approach is a general and flexible method, suitable to be
implemented for both linear and nonlinear models. Several authors propose the
application of permutation test for testing on single coefficients of multiple linear
regression model [11]. Mainly, literature proposals suggest to permute residuals
according some specific permutation strategy [12,13,14,15]. Note that, since the null
hypothesis actually allows for exchangeability of random errors, a permutation test
based on residuals is an approximated conditional inferential procedure. Anderson and
Legendre [16] and Anderson and Robinson [17] performed a simulation study on
several permutation test proposals for linear model showing that all approaches are
generally asymptotically equivalent. However, the reduced model permutation approach
by Freedman and Lane [12] showed the most coherent and reliable results.

Although recently Chiou and Mueller [18] addressed the idea of using residuals of
functional regression to develop a randomization test for functional regression,
nowadays permutation tests did not have give raise to notable interest in the field of
nonlinear model. Permutation tests for significance testing on single coefficients of a
nonlinear model have been only occasionally proposed for hypothesis testing on
parameters of piecewise regression model [19], canonical correlation analysis [20],
shape analysis [21] and Pharmacokinetics [22].

With the aim of performing inference on parameters affecting the aging of refrigerated
vehicles, we decided to fit to our aging nonlinear model the approach proposed by [12].
For this purpose, let the null hypothesis of interest be Hy: f = 0 vs. Hy: i = 0, where f;
is a single individual parameter (a scalar) from g, the whole set of parameters in the
nonlinear model at hand. The steps of the proposed algorithm are the followings:

o estimate the parameter vector B under Hy,i.e. ,5’, , and store the value of interest: ﬁk ;

o estimate the parameter vector £ under Hy, i.e. ,30 (it means that the k-th independent

variable has been excluded from the model);

(o)

calculate the vector of estimated response values (under Hy): SA{O =fX; ,[}0 ¥

calculate the vector of residuals: Ry=Y - YO (under Hy);
randomly permute the elements of R into R’
calculate Yo = Y, + Ry’

from Y, re-estimate ,3[ *_i.e. the parameter vector of £ and store the value f, *;

O 0O O O ©°

carry out B-1 independent repetitions of the last three steps, so that we have /3’k i
J=1,...,B, (i.e. a random sampling from the permutation distribution of /}k i}
o the permutation estimated p-value p for f is given by
p =#0B*=2B,1)/B;
o if p<a, the null hypothesis Hy is rejected at significance level a.

In case the interest is on simultaneously testing for a subset of parameters, the
permutation test can be carried out with the same rationale by using an appropriate test
statistic, for example S = (SSEq — SSE,)/SSE; where SSE; and SSE, are respectively the
sum of square of residuals from models under H, and under H;.
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5. Simulation study

In order to validate the proposed approach, we carried out a suitable Monte Carlo
simulation study. For this goal let us consider the following nonlinear model:

e e B =] 9
i l+ﬁze'ﬁv\'1. )

Moreover, we assume that

O= i+ Pi Xoi + fs Xzi + s Xai+ 1 Xsi (10)

where X, and X3 are dummy variables representing some sort of possible fixed effects
towards Y while X, and X5 are numerical covariates. Note that expression (9) represents
the well-known three-parameter logistic model while equation (10) allow us to change
the increasing s-shape form of (9) in relation of several factors. In practice, the model
for simulation study mimics in a more simple way the aging model presented in the first
part of the work.

We set the value of parameters as follows: fy = = 5 =1, fs= =0, =005, ;=
0.03 and we generate the value of numerical covariates and random errors as follows:
Xy; are i.i.d. from Uniform[04], X2; and X3; are i.i.d. from Bernuolli[1/2], X4 and Xs; are
iid. from a N(0,1) and & are i.i.d. from a N(0,0.1), since such distributions seem
appropriate to represent real data configurations.

Note that, in our simulation parameters fs and f; represent a possible different model
which we would like to identify using the proposed permutation testing procedure.
Suitable MatLab routines were implemented in order to numerically estimate the
parameters of the nonlinear model using the Nelder-Mead algorithm [4] and to execute
the proposed permutation test. These programs are available upon request by authors.
The considered simulation setting consists of 1000 Monte Carlo simulations for the
generation of 100 observations (n=50), where the true values are added to standard
normally distributed random errors. For each one of the 1000 simulated data we
separately estimated the permutation p-values (with 1000 random permutations)
following the proposed algorithm for each hypothesis of interest. The rejection rates
under each specific alternative are displayed in Table 9.

Table 9. Permutation test rejection rates.

Hypothesis Alpha
to be tested 01 025 05 A 2 3 4 5 .6 N 8 9
empirical size
pi=0 013 033 052 .117 .196 307 399 458 588 719 .804 928
Ps=0 013 020 065 .111 203 333 444 516 .601 706 791 915

empirical power

Bi=Ps=Ps=LF=0 109 139 179 348 512 612 711 786 836 896 945 970
Ps=0 105 170 255 340 549 634 699 765 824 869 922 954
pr=0 144 255 386 471 595 732 824 856 928 935 954 954
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Note that the proposed permutation tests show in general an appropriate behavior either
for maintaining the proper nominal level under the null hypothesis and for identifying
the true alternatives. For example, when setting the significance level « at 0.05, we
rejected the false null hypothesis 25.5% times for S5 = 0 and 38.6 % times for f; = 0.
We performed also additional simulations (not reported here in details) with different
sample sizes (n=20, n=100) and different random distributions (Exponential and
Student’s t with 2 d.f. random errors). This additional results essentially confirmed
findings on Table 9. A summary of these additional simulations (for parameter /%) are
displayed in Figure 3.
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Fig. 3. Freedman and Lane empirical power for nonlinear testing on f; by different
sample size and by different random distribution.

6. Application of permutation tests for hypothesis testing on
parameters of aging model

Hence, we can carry on to appropriately apply the Freedman and Lane [12] approach for
inference on parameters of aging nonlinear model. Presented in Table 10 are the
permutation p-values (with 1000 independent random permutations), obtained for each
factor affecting the aging curve of refrigerated vehicles. Permutation p-values has been
calculated by stratifying the dataset into one-year periods. The reason is because within
a shorter period data are more comparable and we could highlight possible time effects,
hence inference is more reliable.

Results confirm that the most relevant structural factors, affecting the aging curve of
refrigerated vehicles are

1. Meat rails in the roof;

2. Number of leafs for the first and second door;

3. Perimeters doors;

4. Thermal thickness;
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5. Refrigeration unit.

Table 10. Permutation p-values associate with the analyzed structural factors.

Year

Factor

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | all
Type of use - - - - - - - 0.029 0.006 0.347|0.024
Type of perishables 072 006 868 484 138 216 840 .196 802 341 | .030
# of leafs 2-nd door 156 054 138 019 018 617 .144 043 000 .000 | .000
# of leafs 1-st door 000 000 000 .000 000 .108 .000 .000 .000 .000 | .000
Perimeter doors - - - - 263 012 011 058 078 461 | 000
Refrigeration unit 096 150 054 396 000 335 160 .000 311 048 | 006
Meat rails in the roof 000 323 .120 283 000 .000 .011 .000 .000 012 | .000
Thermal thickness 000 090 030 .164 563 000 305 072 521 030 | 000
Geom. thickness 012 431 287 352 - - - 326 299 024 | .144

Note: the symbol “-“ means that no data were available (see Table 2 and 3).

Results in Table 10 may suggest several practical conclusions. In fact, the more relevant
factors affecting the aging curve of refrigerated vehicles are those with a smaller
permutation p-value: Number of leafs for the first door and Meat rails in the roof. When
these structural characteristics are introduced in the refrigerated vehicle we can expect a
great changing in the related aging curve.

As illustration of partial results, presented in Figure 4 we have four estimated aging
curves considering the contribution of two significant detected factors. More precisely:

= A: Meat rails in the roof = NO, Number of leafs for the first door = 0

= B: Meat rails in the roof = YES, Number of leafs for the first door =0

= C: Meat rails in the roof = NO, Number of leafs for the first door = 2

= D: Meat rails in the roof = YES, Number of leafs for the first door = 2
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Fig. 4. Four estimated aging curve by considering the contribution of few significant
detected factors



38

7. Conclusions

In this work we presented a theoretical aging curve of refrigerated vehicles as a
combination of the physical processes involved in the heat transfer within the insulating
panel. Several statistical analyses have been performed from a large database of
measurements of real aging data, which is available from the Laboratories of Chill
Techniques (LCT) within the Italian National Research Council, Construction
Technologies Institute, Padova, Italy. In our study the parameters of aging nonlinear
model have been estimated, by taking into account for several specific structural factors
of refrigerated vehicle. In order to make inference on parameters of structural factors,
we applied a proper algorithm within the nonparametric permutation framework. Hence,
by applying permutation tests on the problem of the aging of refrigerated vehicles for
transport of perishable products we can state that the most relevant specific structural
factors affecting the aging are the presence of meat rails in the roof and the number of
leafs for the first and second door.
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