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Block tensor train decomposition for missing data
estimation

Namgil Lee ! Jong-Min Kim 2

We propose a new method for imputation of missing values in large scale matrix
data based on a low-rank tensor approximation technique called the block tensor
train (TT) decomposition. Given sparsely observed data points, the proposed
method iteratively computes the soft-thresholded singular value decomposition
(SVD) of the underlying data matrix with missing values. The SVD of matrices is
performed based on a low-rank block T'T decomposition, by which storage and time
complexities can be reduced dramatically for large scale data matrices with a low-
rank tensor structure. We implemented an iterative soft-thresholding algorithm
for missing data estimation [6], and the SVD with block TT decomposition was
computed based on alternating least squares iteration. Experimental results on
simulated data demonstrate that the proposed method can estimate a large amount
of missing values accurately compared to a matrix-based standard method.

1 Introduction

A tensor refers to a multi-dimensional array, which can be considered as a general-
ization of vectors and matrices. Tensor decomposition, like matrix SVD, has been
developed for a wide scope of applications in signal processing, machine learning,
chemometrics, and neuroscience [3]. Traditional tensor decompositions include
Candecomp/Parafac (CP) decomposition and Tucker decomposition; see, e.g., [3].
Modern tensor decompositions have been developed more recently to cope with
the problem called as the curse-of-dimensionality, which means an exponential
rate of increase in the storage and computational costs as the dimensionality of
tensors increases [2]. The tensor train (TT) decomposition is one of the mod-
ern tensor decompositions which generalize the matrix SVD to higher-order (i.e.,
multi-dimensional) tensors [7]. Modern tensor decompositions such as the TT de-
composition applies not only to higher order tensors, but also to large scale vectors
and matrices, by transforming the vectors and matrices into higher-order tensors
via a tensorization process [1]. Once the large scale vectors and matrices have
been decomposed by TT decomposition, algebraic operations such as the matrix-
by-vector multiplication can be performed much efficiently with logarithmically
scaled computational costs [7].
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In this work, we consider the singular value decomposition (SVD) of a large

matrix Y € RIX% J2-JN where the goal is to compute the Ry largest singular
values and the corresponding left/right singular vectors as

Y~ USV', (1)
where U € RI*Ex S = diag(sy,...,sr,), and V € R/1IvXEx  We consider
that a large “tall-and-skinny” matrix V € R/1"/¥*XEx g reshaped and permuted
into a tensor V of size J; X --- X J,, X Rx X Jp41 X --- X Jy. The block-n tensor

train (TT) decomposition of V is defined by a product of a series of low-order
tensors as

VaV=V elye ey, (2)
where V,,, € Rftm-1XJmXEBm (1, £ n) are third-order tensors, V,, € REn-1XJnxRx xR,
is a fourth-order tensor. The tensors Vi,...,Vn are called the TT-cores and

Ry,...,Ry_1 are called the TT-ranks. We assume that Ry = Ry = 1. Note
that when the large matrix V is decomposed by the block TT decomposition,
the storage cost reduces from O(JY R) to O(NJR?), where J = max({J,,}) and
R = max({Rn}, Rx). See, e.g., [4, 5, 7], for further properties of TT decomposi-
tion and algebraic operations.
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