
Abstracts of the Ninth Workshop on Simulation (2018) 1-2

A Quasi-Newton Algorithm for Optimal

Approximate Linear Regression Design

Norbert Gaffke 1

1 Introduction

Given a linear regression model and an experimental region for the independent
variable, a problem of optimal approximate design leads to minimizing a convex
criterion function Φ(M) over the set of all information matrices M(ξ) of feasible
approximate designs ξ. The set M =

{
M(ξ) : ξ any approximate design

}
is

typically given as a convex hull of the set of all information matrices of elementary
designs,

M = Conv
{
M(x) : x ∈ X

}
, (1)

where X denotes the experimental region and M(x) is the elementary information
matrix at the design point x which is a nonnegative definite p × p -matrix. The
optimization problem reads as

minimize Φ(M) over M ∈M∩A , (2)

where A is a given ‘feasibility cone’ constituting the domain of Φ, i.e., A is a
convex cone of symmetric p × p -matrices containing all positive definite p × p
-matrices. It is assumed that the generating set {M(x) : x ∈ X} is compact, its
convex hull M contains some positive definite matrix, and the (convex) criterion
function Φ is twice continuously differentiable on int(A), the interior of A. More-
over, the algorithm requires that linear minimization overM, or equivalently over
its generating set, can easily be done, i.e., a subroutine is available to solve the
problem

minimize tr
(
AM(x)

)
over x ∈ X , (3)

for any given symmetric p×p -matrix A. Note that for a finite experimental region
X linear minimization is trivial, unless X is tremendously large. The quasi-Newton
algorithm for solving (2) was originally established in [2]. The recent paper [3] has
demonstrated new possibilities of applications of the algorithm.

2 Outline of the algorithm

As a main tool the algorithm employs a subroutine which provides minimization
overM of any given convex quadratic function via repeatedly solving linear mini-
mization problems (3). The subroutine is an adaptation of a more general method
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in [4] and therefore we call it the ‘Higgins-Polak subroutine’. The outline given
next of the quasi-Newton algorithm for solving (2) employs p(p+1)/2-dimensional
column vectors m obtained by vectorization of symmetric p×p -matrices M which
is convenient in view of quadratic approximations and BFGS-updates. By g(m)
we denote the gradient of Φ at m ∈M∩ int(A).

Quasi-Newton algorithm:
(o) Initialization: choose any m1 ∈M∩ int(A); compute g1 = g(m1); choose any
B1 ∈ PD

(
p(p+ 1)/2

)
; set t = 1. Go to step (i).

(i) Quasi-Newton step: apply the Higgins-Polak subroutine to compute an optimal
solution mt ∈M to the convex quadratic minimization problem

minimize (gt −Btmt)
Tm + 1

2m
TBtm over m ∈M.

Go to step (ii).

(ii) Line search: apply an adaptation of Fletcher’s line search procedure ([1],
Chapter 2.6) which computes a suitable αt ∈ ( 0 , αmax], where αmax is a pre-
defined constant in (0 , 1) usually close to 1, e. g., αmax = 0.99. Set mt+1 =
(1− αt)mt + αtmt and compute the gradient gt+1 = g(mt+1). Go to step (iii).

(iii) BFGS update: let δt = mt+1 −mt and γt = gt+1 − gt. Set

Bt+1 = Bt + (γTt δt)
−1γtγ

T
t − (δTt Btδt)

−1Btδtδ
T
t Bt, if γTt δt > 0,

and set Bt+1 = Bt otherwise, i. e., if γTt δt = 0.
Go to step (i) with t replaced by t+ 1.
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