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1 Introduction

We study approximations of boundary crossing probabilities for the maximum of moving weighted
sums of i.i.d. random variables. We demonstrate that the approximations based on classical results
of extreme value theory, see [5], [1] and [2], provide some scope for improvement, particularly for a
range of values required in practical applications.

2 Formulation of the problem

Let ε1, ε2, . . . be a sequence of independent identically distributed random variables with finite mean
µ and variance σ2 and some c.d.f. F . Define the moving weighted sum as

Sn;L,Q =

n+L+Q−1∑
s=n+1

wL,Q(s− n)εt (n = 0, 1, . . .), (1)

where the weight function wL,Q(·) is defined by

wL,Q(t) =

 t for 0 ≤ t ≤Q,
Q for Q ≤ t ≤L,
L+Q−t for L ≤ t ≤L+Q− 1.

(2)

where L and Q are positive integers with Q ≤ L.
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Figure 1: The weight function wL,Q(·), 1 ≤ Q ≤ L.

The weight function wL,Q(·) is depicted in Figure 1. In the special case Q = 1, the weighted moving
sum (1) becomes an ordinary moving sum.

The main aim of this paper is to study precision of different approximations of boundary crossing
probabilities for the maximum of the moving weighted sum; that is,

P

(
max

n=0,1,...,M
Sn;L,Q > H

)
, (3)

where H is a given threshold, M is reasonably large and L,Q are fixed parameters.
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3 Application

The particular weight function defined in (2) is directly related to the SSA change point algorithm
described in [6] (for an extensive introduction to SSA, we point the reader towards [3, 4]). More
precisely, if we let εj = ξ2j , where ξ1, ξ2, . . . are i.i.d. random variables with zero mean, variance δ2

and finite fourth moment µ4 = Eξ4i , then Sn;L,Q can be seen as a moving weighted sum of squares;
we have µ = Eεj = δ2 and σ2 = var(εj) = µ4− δ4. In this particular setting, a good approximation
for (3) is needed in the theory of sequential change-point detection because the boundary crossing
probability defines the significance levels for the SSA change-point detection statistic.
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