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A stochastic model for the MHD-Burgers system

Belopolskaya Ya. 1

The aim of this article is to construct a stochastic representation of the Cauchy
problem solution for a class of systems of nonlinear parabolic equations. In other
words we aim to reduce the original Cauchy problem to a certain stochastic prob-
lem and moreover to construct the required solution via this stochastic system.
The systems under consideration can be treated as systems of conservation laws
arising in physics, chemistry, biology and other fields and were studied by many
authors (see [1] – [3] and references there). We suggest an alternative interpreta-
tion for systems of this class and consider them as systems of nonlinear forward
Kolmogorov equations for some nonlinear Markov processes. At the first step we
find generators of these Markov processes. Unfortunately it appears that we need
not these processes but their time reversal and their multiplicative functionals.
We illustrate our approach studying as an example the Cauchy problem of the
MHD-Burgers system.

Consider a PDE system which describe hydrodynamics in magnetic field in-
cluding the MHD equation
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and the Burgers equation with pressure provided by the magnetic field
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We construct a probabilistic representation of a weak solution u = (u1, u2) to (1),
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Along with PDE system (1),(2) we consider a stochastic system of the form
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dξ̂m(θ) = −σmdw(θ), ξ̂m(0) = x, (3)

η̃m(t) = exp
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Connections between (1),(2) and (3)–(5) are described in the following asser-
tions.

Theorem 1.Assume that there exists a unique weak solution u = (u1, u2)
to (1), (2) which is strictly positive, bounded and differentiable. Then functions
um(t, x) admit a representation of the form (5).

We can prove as well an alternative statement.
Theorem 2.Assume that there exists a unique solution ξ̂m(θ), η̃(θ), um(t, x) to

(3)– (5) and um are strictly positive, bounded and differentiable. Then functions
um(t, x) of the form (5) satisfy (1), (2) in a weak sense.

Finally we can prove one more assertion.
Theorem 2.Assume that um0, m = 1, 2 are strictly positive, bounded and

differentiable. Then there exists a solution to the stochastic system (3)– (5), func-
tions um(s, x) are strictly positive, bounded and differentiable and thus they satisfy
(1), (2) in a weak sense.
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