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Summary

This article proposes a new method of construction of Markov chains with a given stationary distribution.

The method is based on constructing an auxiliary chain with some other stationary distribution and picking

elements of this auxiliary chain a suitable number of times. The proposed method is easy to implement and

analyze; it could be more efficient than some related MCMC techniques. The main attractive feature of the

associated Markov chain is that it regenerates whenever it accepts a new proposed point. This makes the

algorithm easy to adapt and tune for practical problems. Theoretical study and numerical comparisons with

some other available MCMC techniques are made.

Key Words: Adaptive method; Bayesian inference; Independence Sampler; Metropolis–Hastings algorithm;

Regeneration.

1 Introduction

Markov Chain Monte Carlo (MCMC) is a key technique for calculating analytically intractable integrals

in high dimensions. The propagation and advancement of model based Bayesian statistical inference and

prediction have had a symbiotic relationship with the development, analysis and discovery of new computing
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algorithms. The spectacular success of the current methodologies is mostly due to their easy programmability

and universal applicability.

The techniques of constructing a Markov chain with a given stationary distribution, π, (sometimes called

the target distribution) are based on the general methodology commonly known as the Metropolis-Hastings

algorithm (Metropolis et al., 1953 and Hastings, 1970). At each iteration of the algorithm, a candidate

is generated from a proposal distribution and is accepted with a probability which depends on both the

current and the candidate point. This ensures that π is the equilibrium distribution of the Markov chain so

constructed. There is a huge literature in this area, see e.g., Gelfand and Smith (1990); Gilks et al. (1996);

Robert and Casella (1999); Smith and Roberts (1993); Tierney (1994); Chib and Greenberg (1995) and

references therein.

In this article we propose and study a new MCMC algorithm which we call self-regenerative (SR). This

algorithm belongs to the general family of MCMC algorithms proposed by Hastings (1970). In the algorithm,

given a draw from a proposal density, we compute how many times we want to keep the proposed point in

the sample. The latter is a draw from the geometric distribution with an appropriate success probability.

Once this has been performed, we go on to simulate another independent candidate point from the proposal

distribution and iterate.

A regeneration point of a Markov chain is a time where its future becomes independent of the past, see

e.g., Ripley (1987), Mykland et al. (1995), Robert (1995) and Gilks et al. (1998). In the sequel it is shown

that the times when SR accepts new candidate points are its regeneration times. Thus, the regeneration times

of the SR are identified without any extra work, such as Markov chain splitting (Nummelin, 1984), unlike for

the MCMC algorithms based on the regular Metropolis-Hastings version. This regenerative property gives

the name to the algorithm and permits a simple analysis of it.

The regenerative property provides a framework for Markov chain adaptation. Gilks et al. (1998) propose

adaptations at regeneration points of the Markov chain. They obtain theoretical results that such adaptation

does not disturb the stationary distribution of the Markov chain and maintains consistency of the sample

path averages. Their setup can be used for adapting the SR algorithm. Although there is huge flexibility

in devising adaptive methods, a simple (to implement) adaptation scheme is proposed in this paper. The

proposal distribution is adapted every time the SR comes across a trouble point in the target space where

the target and the current proposal distributions have large disparities between them. Theoretical results

proved in Section 4.2 show that this adaptation scheme never makes the algorithm infinitely worse. Moreover,

substantial improvements are seen in the examples we have looked at.

In the subsequent sections the SR and its adaptive version are compared with other MCMC schemes
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including the Gibbs sampler and the slice sampler. The slice sampler has been shown to be uniformly better

than the Metropolis-Hastings independence sampler by Mira and Tierney (2001). This article shows that

the SR can be more efficient than the slice sampler. The proposed methods are also shown to be better than

the Gibbs sampler as implemented in Winbugs, a general purpose software for making Bayesian inference

(Spiegelhalter et al., 1996).

The plan of the remainder of this article is as follows. In Section 2 the SR algorithm is introduced.

Section 3 contains the main theoretical results of this paper. In Section 4 an adaptive methodology for the

SR is proposed and some theoretical results are proved. Section 5 illustrates our methods with four examples.

A few summary remarks are made in Section 6. Proofs of the main results are given in the Appendix.

2 The SR Algorithm

2.1 Description

Let (E, E) be a measurable space and π(dx) and ψ(dx) be probability measures on it. Let π and ψ have

respective densities with respect to a σ-finite measure µ :

π(dx) = π(x)µ(dx), ψ(dx) = ψ(x)µ(dx).

We assume that π(x) is the target density and ψ(x) is the proposal density. To avoid trivialities we assume

throughout in this paper that

ψ(x) = 0 for some x implies that π(x) = 0. (1)

Condition (1) on support of the distributions is typical in MCMC simulation.

In typical problems where MCMC is used, the normalizing constant of the target distribution π(x) is

not known. We also assume that the normalizing constant of ψ(x) is unknown. Let π̃(x) and ψ̃(x) denote

non-normalized versions of the densities. Let w(x) = π(x)/ψ(x) and w̃(x) = π̃(x)/ψ̃(x). If the normalizing

constant of ψ(x) is known, then we simply set ψ̃(x) = ψ(x).

Let c > 0 be a constant such that c w̃(x) = w(x) and κ be an arbitrary positive constant. Define the

function

α(x) =
1

1 + κw(x)
=

1
1 + κ c w̃(x)

, (2)

which we shall call the rejection function.

Let N be the total number of samples to be drawn from the proposal distribution ψ(x). The main

algorithm is as follows. Assume that n = 1 and m = 0.
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Algorithm 1: (Self Regenerative MCMC.)

STEP I: Generate Zn ∼ ψ.
STEP II: Generate U ∼ Uniform(0, 1).

STEP III: If U ≤ 1− α(Zn), set Xm+1 = Zn and return to Step II with m = m+ 1.

STEP IV: If n = N then stop, else set n = n+ 1 and return to Step I.

In Section 3 we analyze this algorithm theoretically; we show, in particular, that the associated Markov

chain has π(x) as its stationary density.

Observe that for fixed n and Zn, Steps II and III of the above algorithm simulate Bernoulli trials with

success probability α(Zn) until the first success. Hence the two steps can be coalesced. Let ξ ∼ G(p) denote

a geometric random variable with success probability p and probability mass function Pr(ξ = i) = (1− p)ip
for i = 0, 1, . . . Now Algorithm 1 can be expressed in the following simpler but probabilistically equivalent

form.

Let n = 1 and m = 0.

Algorithm 2:

STEP I: Generate Zn ∼ ψ.
STEP II: Generate ξn ∼ G(α(Zn)). If ξn > 0, set Xm+j = Zn for j = 1, . . . , ξn and m =

m+ ξn.

STEP III: If n = N then stop, else set n = n+ 1 and return to Step I.

Let M denote the final value of m, that is,

M =
N∑
n=1

ξn. (3)

Thus, M is the total number of MCMC samples drawn from the target distribution after simulating N

samples from the proposal distribution. Clearly, M is a random variable. The stopping criteria in the above

algorithms can be modified if it is desired to keep M , the total number of MCMC samples, fixed. In this

case N becomes a random variable. We shall investigate the asymptotic relationship between M and N in

Section 3.3.
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2.2 Choice of κ

To implement the SR we need to specify the product of the positive constants κ and c in (2). There are

accurate methods available to estimate c, see for example Chib (1995), Chib and Jeliazkov (2001) and the

references therein. In our case, however, we do not need to know the constant c exactly since the

implementation of SR requires only the product κ c and Xm is shown to be a Markov chain with π as its

unique stationary distribution for any κ > 0. A rough estimate of c can be obtained by using the following

guideline.

We have

Eψ
π̃(Z)
ψ̃(Z)

=
1
c
.

With B draws from ψ, a Monte Carlo estimate ĉ of c is given by

1
ĉ

=
1
B

B∑

i=1

π̃(Zi)
ψ̃(Zi)

. (4)

Hence we can set c−1 to be this estimate. Also this can be automated, i.e. this can be performed before

running the algorithm. Although the ĉ defined in (4) only provides a rough estimate of c, it suffices to

run the algorithm with this estimate since the algorithm is shown to work for any positive value of κ. An

inaccurate estimate of c will only imply a different value of κ in (2).

In Section 3.5 we shall see that the efficiency of the SR is an increasing function of κ. If κ is chosen to be

very large, then the rejection probability α(x) in equation (2) will be very small. As a result, the accepted

proposals will be repeated many times, see step III of Algorithm 1. This will increase the auto-correlation

of the SR chain. If κ is chosen to be very small, then α(x) will be large and many proposed moves will

be rejected. In practice we set a value of κ which does not lead to either too many rejections or too many

repetitions of the same candidate point. This is the only tuning needed to implement the algorithm, although

we remark that κ can be adapted during the course of simulation, see Section 4.

3 Analysis

3.1 Basic Properties

The sequence Xm in Algorithm 1 forms a Markov chain by definition. To discuss convergence properties of

Xm we introduce the following notations. Let w∗ = supx w(x) and δx(y) denote the point mass at x. We

also define the density

φ(y) =
{1− α(y)}ψ(y)∫ {1− α(z)}ψ(z)µ(dz)

. (5)
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Finally recall the definition of the total variation norm of a bounded sign measure λ on (E, E) :

||λ|| = sup
A∈E

λ(A)− inf
A∈E

λ(A).

Theorem 1 Assume that the support condition (1) holds. Then:

(i) The sequence X1, X2, . . . form a Markov chain with the transition kernel

K(x, dy) =
[
α(x)φ(y) + {1− α(x)}δx(y)

]
µ(dy) (6)

with π being an invariant distribution of K; that is,
∫
π(dx)K(x, dy) = π(dy). (7)

(ii) The transition kernel K(x, dy) is reversible, π-irreducible and aperiodic. It is also ergodic, i.e. for every

x ∈ E
||Km(x, ·)− π(·)|| → 0 as m→∞. (8)

Corollary 1 Under the conditions of Theorem 1, the pair {α(x), φ(dy)} provides a Nummelin splitting of

the transition kernel K(x, dy).

Using Corollary 1 we see that every time a new candidate y is accepted is a regeneration time. See e.g.

Nummelin (1984) and Gilks et al. (1998) for more on splitting and regeneration.

With a further assumption on π and ψ the SR achieves a geometric rate of convergence in (8).

Theorem 2 If w∗ = supx w(x) <∞, then Theorem 1 holds and K(x, dy) is uniformly ergodic.

Hence the SR can be used in MCMC simulation. Moreover, we have the following results.

Corollary 2 Under the conditions of Theorem 2, β = 1
1+κw∗ is an upper bound on the rate of convergence

of the SR.

3.2 SR and the Metropolis-Hastings Algorithm

The Hastings (1970) algorithm generates a candidate point y from the proposal distribution q(y|x) (where

x is the current point) and accepts it with probability

αH(x, y) =
s(x, y)

1 + tH(x, y)
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where s(x, y) is a symmetric function of x and y such that 0 ≤ αH(x, y) ≤ 1 and

tH(x, y) =
π(x) q(y|x)
π(y) q(x|y)

. (9)

The algorithm is also valid without the symmetry requirement on s(x, y) if the resulting transtion kernel sat-

isfies an appropriate invariant condition like (7). When the proposal distribution is taken to be independent

of the past we assume q(y|x) = q(y) and tH(x, y) in (9) simplifies to

t(x, y) =
π(x) q(y)
π(y) q(x)

. (10)

The support condition (1) guarantees that φ(y) is a proper probability distribution. Now we choose the

proposal distribution q(y) of the Hastings algorithm to be φ(y) and

s(x, y) ≡ sSR(x, y) = α(x) {1 + t(x, y)} , (11)

where α(x) is given in equation (2). Note that in this case s(x, y) is not symmetric. Now we have

αH(x, y) = α(x).

The resulting transition kernel, K(x, dy) given in (6), is now seen to be the transition kernel of the Hastings

type algorithm which generates independent proposals from φ(y) and accepts with probability α(x). Thus

we have proved the following result.

Lemma 1 Under the support condition (1), K(x, dy) has the form of the transtion kernel of the Hastings

algorithm with φ(y) as the proposal density.

The Metropolis-Hastings sampler with φ(y) as the independent proposal distribution chooses

s(x, y) ≡ sMH(x, y) = 1 + min{t(x, y), t(y, x)}

see for example, Hastings (1970) and Peskun (1973). Clearly, sMH(x, y) 6= sSR(x, y) for all x and y which

proves that SR is not Metropolis-Hastings corresponding to the proposal density φ(y). Similarly, it is

straightforward to show that the SR is not Metropolis-Hastings corresponding to the proposal density ψ(y)

as well as any other proposal density. Thus we have established that the SR algorithm is not a special case

of the Metropolis-Hastings algorithm.

3.3 Sample Size

If N independent draws from ψ are performed, then we obtain M MCMC samples from π, where M is

a random variable. M is the sum of N independent geometric random variables, ξn, with random success
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probabilities α(Zn), Zn ∼ ψ, see equation (3). The following result is an easy consequence of this hierarchical

setup.

Lemma 2 Let ξ ∼ G(α(Z)) where Z ∼ ψ. Then:

E(ξ) = κ and Var(ξ) ≡ τ2
ξ = κ+ κ2 {2Eπ(w(X))− 1} . (12)

Note that ξn in (3) are i.i.d. with the above mean and variance. Hence we have the following result.

Theorem 3 Assume that τ2
ξ is finite. Then

1√
N

(M −Nκ)⇒ N(0, τ2
ξ ) as N →∞,

where “⇒” denotes convergence in distribution and N(a, σ2) denotes the normal distribution with mean a

and variance σ2.

In order to study the M -step transitions KM (x, dy) and compare the rate of convergence in (8) with

other MCMC techniques we modify the stopping criterion of Algorithm 1 and 2 to have M fixed. Then N

becomes a random regeneration moment where

N = inf{n :
n∑

i=1

ξi ≥M}. (13)

We thus have an analogue of Theorem 3.

Theorem 4 Assume that τ2
ξ is finite and let the random variable N be as defined in (13). Then

1√
M

(M −Nκ)⇒ N

(
0,
τ2
ξ

κ

)
as M →∞.

Theorems 3 and 4 provide qualitative descriptions of the asymptotic relation M ' Nκ which we use later

on in this paper.

3.4 Rate of Convergence

The rate of convergence of a Markov chain together with the starting value determines the number of

iterations needed for convergence to the stationarity. Let Q(x, dy) denote the transition kernel with unique

equilibrium distribution π(x) and T be a given integer. The rate of convergence, denoted by ρ, of such an

algorithm is the minimum number η ∈ [0, 1] such that

||Qt(x, ·)− π(·)|| ≤ V (x)ηt
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for a suitable function V and for all t > T . The requirement that || · ||T < ε for some small ε dictates that the

algorithm should be run a suitable multiple of (log ρ)−1 number of iterations in order to achieve the given

accuracy ε, where the multiplier depends on ε and the function V (x), which in turn depends on the starting

point x.

Suppose that we look at the M step transition kernel KM of the SR. Assume that w(x) is bounded, i.e.,

w(x) ≤ w∗ <∞ for all x. Then Theorem 2 holds and we have

||KM (x, ·)− π(·)|| ≤ V (x)[1− β]M

where 1 − β = κw∗
1+κw∗ . Since to perform M iterations of K we need N evaluations of π, it is natural to

express the rate of convergence as a function of N rather than M . Using the asymptotic relation M ' Nκ

we have

||KM (x, ·)− π(·)|| ≤ V (x)[1− β]M ' V (x)[1− β]Nκ = V (x) [(1− β)κ]N .

Hence

ρSR ≤ (1− β)κ =
(

κw∗

1 + κw∗

)κ
≤ 1− 1

w∗
+

1 + κ

2κ
1

(w∗)2
, (14)

where ρSR denotes the rate of convergence of the SR.

Note that the right hand side of (14) is a decreasing function of κ. However, (14) also suggests that it

is more important to control w∗ in the SR for faster convergence. Section 4 proposes an adaptive version of

the SR to address this issue.

Lastly, the SR being a reversible Markov chain defines a positive definite operator on L2(π), the space

of square integrable functions with respect to π(x), as do the slice sampler and other Metropolis-Hastings

schemes. Thus, for all these algorithms the characteristics related to the speed of convergence to stationarity

and to efficiency are equivalent. Next we discuss the results concerning the efficiency in estimating the

integrals.

3.5 Estimation of Integrals and Efficiency

One of the primary tasks of MCMC simulation is to estimate arbitrary (but finite) integrals with respect to

the density π by forming ergodic averages. Let f be a real valued function and

If =
∫
f(x)π(x)µ(dx) and σ2

f =
∫
f(x)2π(x)µ(dx)− I2

f .

To estimate If we form the sample average

f̄N =
1
M

M∑

j=1

f(Xj) =
1
M

N∑

i=1

ξif(Zi) =
∑N
i=1 ξif(Zi)∑N

i=1 ξi
. (15)
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After N steps of Algorithm 2, π is evaluated N times and the estimator f̄N is based on N i.i.d. draws

from the proposal distribution ψ. Hence we discuss the limiting behavior of f̄N as N →∞.

Let Lp(π) be the set of real valued functions f such that
∫ |f(x)|pπ(x)µ(dx) <∞ and f̃(x) = f(x)− If .

Theorem 5 If (1) holds, f ∈ L1(π) and N →∞, then:

(i) f̄N − If P→ 0, where “ P→” denotes convergence in probability.

(ii) Suppose also that f ∈ L2(π) and

σ2 = σ2(κ, π, ψ, f) = σ2
f/κ+ 2

∫
f̃(x)2w(x)π(x)µ(dx) (16)

is finite, then
√
N(f̄N − If )⇒ N(0, σ2).

If w∗ < ∞, then σ2, the asymptotic variance of
√
Nf̄N , is finite. Moreover, σ2 can be finite even when

w∗ =∞; two simple examples are: w ∈ L1(π) and f is bounded; w ∈ L2(π) and f ∈ L4(π).

The expression for σ2 in (16) is the sum of two positive components. The first component σ2
f/κ is N

times the variance of the standard Monte Carlo estimator of If based on M(≈ N κ) i.i.d. samples from π(x).

Therefore, the second component in (16) can be thought of as a penalty for not being able to obtain i.i.d.

samples from π(x).

Another way to understand the meaning of the second component in (16) is to consider the importance

sampling estimator of If ,

f̂N =
1
N

N∑

i=1

f(Zi)
π(Zi)
ψ(Zi)

, Zi ∼ ψ(z) i.i.d.

It is straightforward that

NVar(f̂N ) =
∫
f̃(x)2w(x)π(x)µ(dx),

which is exactly the second term in (16) without the factor 2. Of course, it is more efficient to use the

importance sampling alone but there is no Markov chain associated with this scheme. However, being in

the MCMC framework we have serious advantages over the importance sampling, e.g. regeneration and

adaptation. Moreover, the SR can be used to update components in Gibbs sampling which is often used to

simulate from high dimensional distributions where the importance sampling fails.

Observe that the asymptotic variance σ2 is a decreasing function of κ. Hence SR will be more efficient

for larger values of κ. See Section 2.2 for more insights on tuning κ.
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We remark that we have the above closed form expression (16) for the asymptotic variance of the estimator

f̄N . In general, for the MCMC samplers such simple expressions are not available. The variance of the

estimator is usually written as a suitable multiple of the integrated auto-correlation time of the process

{f(Xm)}, see e.g., Geyer (1992) and Green and Han (1992). The integrated autocorrelation time is defined

to be

ζ = 1 + 2
∞∑

k=1

ρk (17)

where ρk is the lag-k autocorrelation of {f(Xm)}.

In order to compare SR with other MCMC algorithms we recall the definition of asymptotic efficiency:

(see e.g., Tierney, 1994)

Efficiency(f) = σ2
f/ lim

N→∞
NVar(f̄N ), (18)

for any given function f(x) ∈ L2(π). When the state space is discrete with d elements, say, then the

asymptotic efficiency can be expressed as (see e.g., Peskun, 1973)

Efficiency(f) = σ2
f/f

T
(
2BR−B −BA)f (19)

where fT = (f1, . . . , fd) is the function, f , vector evaluated at the states; A = 1πT where π is the vector

of probability mass points and 1 is the unit vector; B is the diagonal matrix with diagonal elements π and

R = {I − (P −A)}−1 if this inverse exists, where P is the Markov transition matrix.

If the proposal distribution ψ(x) is the same as the target distribution π(x), then the Metropolis-Hastings

independence sampler (MHIS) is uniformly better than the SR. In this case MHIS generates independent

samples from π(x) with efficiency 1; the efficiency of the SR calculated using (16) and (18) is 1/(2 + κ−1).

On the other hand, the SR with κ ≥ 1 can outperform many Metropolis-Hastings schemes when there

is large disagreement between the proposal and the target distributions; the situations, where MCMC is

needed. We give several examples here and in Section 5 to illustrate this.

Let π(x) ∝ xa−1(1 − x)b−1 for 0 < x < 1, a > 0 and b > 0. Let ψ(x) = 1, 0 < x < 1. Assume that

a = b = 3/4, f(x) = x and κ = 1. Here it is easy to see that w∗ = ∞. The asymptotic variance of the

estimator
√
Nf̄N for the SR has, however, a finite value (equal to 0.5635). On the other hand, the asymptotic

variance of the estimator
√
Nf̄N for the MHIS is infinite. (This follows from the fact that a lower bound

on the variance of the MHIS is a suitable multiple of w∗, see e.g., Liu, 1996.) Hence, in this example the

asymptotic efficiency of the MHIS is zero while it is finite for the SR.

For complex target distributions it is often hard to use (18) for calculating the efficiency. In such situations

it is suggested, see for example Kass et al. (1998), that we use the effective sample size (ESS) to compare

the algorithms. The ESS is defined to be the number of MCMC samples drawn divided by the integrated
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autocorrelation time, ζ. The estimation of ESS using the batch-means method is discussed for example by

Roberts (1996). We use the ESS to compare the SR with other algorithms in Section 5.

4 Regeneration and Adaptation

4.1 The Adaptive SR Algorithm

The performance of the SR algorithm depends on the quantity w∗ = supx w(x). The SR will exhibit slow

mixing when w∗ is very high or equivalently the α∗ = infx α(x) is too small. For very small values of α(x)

the SR will keep accepting the same proposal x in Step III of Algorithm 1 for a long time. The adaptations

are aimed at addressing these problems. We propose adaptations to occur when α(x) is less than a threshold

value, ᾱ say, to be specified by the user. As noted by one of the referees, it can also be worthwhile to adapt

the SR when supx α(x) is too close to 1 (a natural advice in this case is to increase κ). The adaptations

make the chain non-Markovian, as a result the ergodic theorems are no longer guaranteed to hold. In our

regenerative setup, however, the ergodic averages do converge appropriately, see Section 4.2 where we address

these issues using theoretical results from Gilks et al. (1998).

We introduce the following notations to describe the adaptations. Let ψ0 be the initial proposal density

and ψk be the current proposal density after k − 1 adaptations. Let

wk(x) =
π(x)
ψk(x)

, and αk(x) =
1

1 + κk ck w̃k(x)

where κk > 0 and ck is such that ckw̃k(x) = wk(x). Let εk ∈ (0, 1), k ≥ 1 be a sequence of numbers such

that ε̄ =
∑
k εk <∞. Furthermore, let χk(x|y) for k ≥ 1 be a density centered around the point y.

Our adaptation scheme is as follows. After the first k−1 adaptations, we iterate with the current proposal

density ψk−1 until we come across a candidate point z, labelled x(k), such that

αk−1(z) ≤ ᾱ.

Then we update the proposal density ψk−1 as follows:

ψk(x) = (1− εk)ψk−1(x) + εk χk(x|x(k)). (20)

Henceforth we call this the adaptive self regenerative (ASR) algorithm. Its pseudo-code is as below.

Let n = 1, m = 0 and k = 1.

STEP I: Generate Zn ∼ ψk−1.
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STEP II: Calculate αk−1(Zn). If αk−1(Zn) < ᾱ then do Step III else go to Step IV.

STEP III: Set x(k) = Zn. Construct χk(x|x(k)). Obtain ψk(x) using equation (20). Set

k = k + 1 and go to Step V.

STEP IV: Generate ξn ∼ G(αk−1(Zn)). If ξn > 0 set Xm+j = Zn, for j = 1, . . . , ξn and

m = m+ ξn.

STEP V: If n = N then stop, else set n = n+ 1 and return to Step I.

There is much flexibility in choosing χk and, as usual, the better choices are problem dependent. One

heuristic is to choose χk such that it matches the target density in a neighborhood of x(k), for example by

setting χ(x|x(k)) a normal density with mean x(k) and covariance matrix Σk, where Σk is the estimated

covariance matrix from the samples obtained so far.

There are many possible alternatives for the sequence {εk}. For example, a particular choice can be

εk = a
1
k2

with a =
6
π2
, (21)

so that
∑∞
k=1 εk = 1. In Section 5 we adopt these particular values and take ᾱ = 0.01 always. However,

these can be varied in different implementations if desired.

If the densities π and ψ are non-normalized, then the ratio of the normalizing constants ck may be

adapted as well. However, in the practical examples in Section 5 we take κk = κ and ck = ĉ for all k,

primarily because these worked reasonably well.

Implementation of the ASR is straightforward. The following further details can be used in the compu-

tation. For any k ≥ 1 we have,

ψk(x) =




k∏

j=1

(1− εj)

ψ0(x) +




k∏

j=2

(1− εj)

 ε1 χ1(x|x(1)) + · · ·+ εk χk(x|x(k)).

Observe that the coefficients in the right hand side of the above add to 1. For the εk’s given in equation (21)

the coefficients can be obtained using

k∏

j=m+1

{
1− a2

j2

}
=

Γ(k + 1− a) Γ(k + 1 + a) Γ2(m+ 1)
Γ(m+ 1− a) Γ(m+ 1 + a) Γ2(k + 1)

, m = 0, 1, . . . , k − 1,

where Γ(·) is the standard gamma function. Hence, in order to sample from ψk we can draw a candidate

point from the mixture density.

Suppose that the total number of adaptations is K. In these K adaptations, for notational convenience,

we also include the initial regime where the proposals were generated using ψ0. Let N1, N2, . . . , NK be the
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number of realizations from the corresponding proposal densities. Let N =
∑K
k=1Nk. Also let f̄Nk be the

estimator (15) for If in the kth adaptive regime. Let σ2
k/Nk be the asymptotic variance of f̄Nk (following

equation (16)) where

σ2
k = σ2(κk, π, ψk, f) = σ2

f/κk + 2
∫
f̃(x)2wk(x)π(x)dx. (22)

The final estimator of If from the ASR is

f̄N =
∑K
k=1Nkf̄Nk

N
. (23)

Using the fact that the ASR is adapted at the regeneration points, we obtain that the asymptotic variance

of f̄N is

Var(f̄N ) =
1
N2

K∑

k=1

Nkσ
2
k.

We can decide whether to discard observations (for estimating If ) from the past tours using the above

expression for the variance. We illustrate this when K = 2. (The reader will see immediate extension to the

general case.) We have f̄N = N1f̄N1+N2f̄N2
N1+N2

. The question we ask is whether we shall use f̄N or f̄N2 as our

estimator of If . We should use f̄N instead of f̄N2 if and only if

Var(f̄N ) < Var(f̄N2)⇔ N1

N2
σ2

1 +
N2

N2
σ2

2 <
σ2

2

N2
⇔ σ2

1 <

(
2 +

N1

N2

)
σ2

2 .

In practice, we can estimate the two variances σ2
k from the output and decide which estimator to use.

Intuitively, if adaptation fails to provide a great improvement over the starting proposal density then we

shall include observations generated using the starting proposal distribution, otherwise we shall not.

4.2 Theoretical Results

It is clear that the stochastic process induced by the ASR is no longer Markov. However, the estimator f̄N

in (23) can still be used to estimate If . This follows from the central limit theorem for f̄N proved in Gilks et

al. (1998). This paper shows that if adaptations are performed at the regeneration points, then f̄N formed

by using the output of the adaptive process, converges to If under some regularity conditions. The main

condition to check for the theorem in Gilks et al. (1998) to hold is the convergence of σ2
k to a limiting value.

This follows from (20) and the theorem on convergence of supermartingales. Indeed, assume that εk < 1
2

and {κk} is a non-decreasing sequence (that is, κk+1 ≥ κk for all k). Then (20) and (22) give

E
(
σ2
k+1|σ2

0 , . . . , σ
2
k

)
=

σ2
f

κk+1
+2
∫
f̃(x)2wk+1(x)π(x)dx ≤ σ2

f

κk
+

2
1− εk

∫
f̃(x)2wk(x)π(x)dx ≤ (1+2εk)σ2

k.

Since
∑
k εk < ∞ the convergence of {σ2

k} follows. If ck is adapted as well, the additional requirement for

these arguments to hold is to adapt κk so that ckκk form a non-decreasing sequence.

14



Adaptations, however, can make MCMC algorithms converge slower than their non-adaptive versions.

The following result guarantees that adaptation does not make the SR algorithm infinitely worse.

Proposition 1 If w∗ = supx w0(x) ≤ ∞ then

sup
x
wk(x) ≤ w̄ w∗, for any k = 1, 2, . . .

where w̄ = exp(
∑
j εj) and ᾱ is chosen such that ᾱ ≤ 1/(1 + κ w̄).

5 Examples

5.1 The witch’s hat example

We consider the simplified rectangular version of “witch’s hat” distribution (Mira and Tierney, 2001):

π(x) =





h a < |x| < a+ b

t+ h |x| ≤ a
0 otherwise

where a, b, h and t are non-negative parameters satisfying the constraint

2(a+ b)h+ 2at = 1.

Mira and Tierney (2001) show that the uniform slice sampler (SS) is uniformly better than the MHIS.

Further, by considering the partition of the state space E = A ∪ AC , where A = {x : |x| < a}, they show

that the rate of convergence of the SS Markov chain is given by

λSS = 1− s

p

where s = a
a+b and p = a(h+t)

a(h+t)+bh . Here s is the relative base of the spike and p is its probability content.

The parameters s and p satisfy the constraints 0 ≤ s ≤ p ≤ 1.

For the SR algorithm we suppose that κ = 1, for simplicity in presentation. We let ψ(x) = 1
2(a+b) , when

|x| < a + b, as in the slice sampler case. The transition matrix of the two state (recall the partition of the

state space) SR Markov chain is given by

K =
1

p(1− p) + s(1− s)


 p {1− p+ s(1− s)} (1− p)s(1− s)

ps(1− s) (1− p) {p+ s(1− s)}


 .
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The stationary distribution for this transition matrix is π = (p, 1 − p), as expected. The eigenvalues of K

are λ0 = 1 and

λSR =
p(1− p)

p(1− p) + s(1− s) .

The SR performs better, i.e. λSR < λSS if the parameters p and s satisfy the inequality

p2 − ps− s(1− s) > 0.

The above inequality is satisfied by the wide range of values of s and p, see Figure 1.

For a given s, SR is better than SS if

p >
1
2

(
s+

√
s2 + 4s(1− s)

)
. (24)

Otherwise SS outperforms SR. However, such cases are not interesting since in these cases both algorithms

have rate of convergence much smaller than 1 (both algorithms converge very fast). For example, if p = s

then λSS = 0, but λSR = 1
2 . Thus the convergence of SR does not run into problems, though the performance

of SR is worse than that of SS.

Consider the case when s→ 0. Since the right hand side of (24) approaches 0 when s→ 0, for all values

of p ≥ s we have λSR ≤ λSS , and thus the performance of SR cannot be worse than the performance of SS.

Further, if p → 1 then λSR → 0 while λSS → 1. Thus, SR performs spectacularly better in the situation

which is the most difficult one for SS. In this limiting case, the total variation distance between the n-step

transition density and the target distribution will stay close to its maximal value of 2 for the SS for arbitrarily

large values of n, see Mira and Tierney (2001).

We further discuss the limiting case corresponding to p → 1 when s is kept fixed at some intermediate

value between 0 and 1. If p approaches 1 then λSR approaches 0. That is, if the probability content of the

spike becomes very large then SR draws independent samples from π(x). Also, the transition probability

K21 approaches 1 when p→ 1 for fixed 0 < s < 1. Thus, SR does not get stuck in the low probability region.

This is in contrast to the behavior of SS which has the transition matrix:

T =


 s+ (p− s)/p s(1− p)/p
s 1− s


 .

The transition probability T21 depends on the relative base of the spike. As Mira and Tierney (2001) point

out, SS gets stuck when p→ 1 and s→ 0 if the chain is started outside the spike. This does not happen for

SR since K21 approaches 1 when p→ 1, as mentioned earlier. However, it is possible that p→ 1 but s does

not approach zero in which case λSR will not approach 1.
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5.2 Binomial Example

Suppose that the target distribution π(x) is binomial with parameters r and θ and ψ(x) = 1/(r+1) for all x.

Let wi = πi
ψi

denote the importance weight for the state i = 1, . . . , d = r + 1. We compare the performance

of SR, MHIS and the SS. We first obtain the transition matrices for the above three MCMC schemes.

For the SR we have

αi =
1

1 + κwi
and φi =

{1− αi}ψi∑d
j=1{1− αj}ψj

.

Let αT = (α1, . . . , αd); φT = (φ1, . . . , φd) and Diag(α) be the d× d diagonal matrix with diagonal elements

αi. The transition matrix of the SR, following equation (6), is

KSR = I −Diag(α) +αφT

where I is the d× d identity matrix.

The transition matrix, KMHIS of the MHIS is obtained by Liu (1996) and Smith and Tierney (1996).

Let the states be ordered (without loss of generality) such that w1 ≥ w2 ≥ · · · ≥ wd and λi =
∑
k>i

(
ψk −

πk
wi

)
, 1 ≤ i ≤ d− 1. Now the transition matrix has elements

KMHIS
ij =





ψj , if j < i,

ψi + λi, if j = i,

πj
wi
, if j > i.

To obtain the transition matrix of the SS, KSS , we order the states in ascending order of the weights;

that is, assume v0 < v1 ≤ v2 ≤ · · · ≤ vd, where v0 = 0 and vi are the weights πi/ψi (i = 1, . . . , d). Let k be

such that vk = min(vi, vj), then

KSS
ij =

1
vi

k∑
n=1

vn − vn−1

r − n+ 2
.

The asymptotic efficiencies for the above algorithms are calculated using (19). For known value of r

the efficiency of the SR is available in analytic form as a function of θ. The efficiencies for the other

two algorithms are not available in closed form. That is why in the following discussion we calculate the

efficiencies numerically.

Figure 2 plots the efficiencies of the three algorithms for different values of θ when r is fixed at 4. The

plotted efficiencies correspond to f(x) = x. We plot the efficiency of the SR for κ = 1 and κ = 2. The SR is

seen to be more efficient than the other two samplers when θ is either near 0 or 1. We know that for θ = 1
2

the binomial distribution is symmetric and for θ near 0 or 1 it is heavily skewed. Thus the SR performs
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better than both the MHIS and SS when the distribution is skewed. With a uniform proposal distribution,

intuitively, it is more difficult to simulate from a skewed distribution than a symmetric distribution. Hence

the SR is more efficient in more difficult cases. The efficiency is higher for larger values of κ, as mentioned in

Section 3.5. For κ > 1, the SR performs better than i.i.d. sampling for values of θ near 0 and 1. The variance

formula (16) explains why this happens. For the extreme values of θ, the second term in (16) (corresponding

to the importance sampling) is small compared to the first term which has the divisor κ.

A further interesting fact to observe is that the efficiency of the SR has a strictly positive lower bound.

On the contrary, the lower bound for the MHIS is 0. Lastly, the efficiency curve for either the MHIS or the

SS is very complex with a few local maxima and minima.

The above results agree with those from the witch’s hat example, since any two point discrete distribution

can essentially be treated as a Bernoulli distribution (r = 1). For large r, the SR with small values of κ

ceases to be the most efficient sampler.

The above conclusions are only valid for the uniform proposal distribution described here and they may

change if some other proposal distribution is used instead. Our choice of uniform proposal distribution is

guided by the desire to compare the convergence properties of the algorithms where there is large discrepancy

between the (uniform) proposal and (heavily skewed) target distributions.

5.3 Dugongs Example

We consider a real data example on age and length measurements on n = 27 dugongs (sea cows). Carlin

and Gelfand (1991) provide a Bayesian analysis of the data set originally found in Ratkowsky (1983). The

length yi given the age xi for the ith individual is assumed to follow a non-linear growth curve model:

yi ∼ N(α− βγxi , σ2); 0 < γ < 1; i = 1, . . . , n.

Following the implementation of this problem in the Winbugs software (Spiegelhalter et al., 1996) we assume

that τ = σ−2 has a Gamma prior with density proportional to τa−1e−aτ , a = 10−3. Flat priors are assumed

for the remaining parameters. The joint posterior density of α, β, γ and τ is

π(α, β, γ, τ |y1, y2, . . . yn) ∝ τn/2+a−1 exp

{
−aτ − τ/2

n∑

i=1

(yi − α+ βγxi)2

}
.

We integrate out τ to obtain the marginal posterior density of regression parameters, α, β and γ which is

the target distribution for this example. The range of γ is between 0 and 1, the Winbugs software use an

adaptive slice sampler for sampling from the full conditional distribution of γ given the other parameters.

We compare this adaptive slice sampler method with the SR in this example.
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For the SR we consider a normal proposal distribution with mean at the maximum likelihood estimate

(mle) of α, β, γ and covariance matrix, Σ = σ2×I3 where σ2 = 0.042. The parameter c is set at log ĉ = −13.5,

according to the estimate (4). We implement three versions of SR corresponding to log(κ c) = −13.5,−13

and −12.5 to see the sensitivity.

Table 1 provides the effective sample size (ESS) defined in Section 3.5 and the lag-1 autocorrelations for

this example. For each sampler we generate N = 15, 000 samples from the proposal distribution and discard

the first 5,000 MCMC samples. The number of MCMC samples, M , for the SR is random, as discussed

previously. For the three implementations of the SR with different values log(κ c) the values of M were

19,233, 32,543 and 45,502, respectively. Using the asymptotic relationship M ≈ Nκ the implied values of κ

are 1.28, 2.17 and 3.03, respectively.

It is seen that all three versions of the SR are better than the Winbugs implementation. The lag-1

auto-correlation increases as κ increases since the chain accepts a particular proposal many more times

corresponding to a larger value of κ. However, the ESS also increases as κ increases since the efficiency is

an increasing function of κ, as mentioned in Section 3.5. Also M , the number of MCMC samples, increases

as κ increases. We do not increase κ further since the ESS does not improve substantially. Further, the

ESS per second (not shown) goes down since the running times for the three values of κ are 1, 2 and 3

seconds respectively. The running time for the Winbugs is 9 seconds which is longer than any of the three

SR versions.

This example illustrates that the proposed regenerative schemes can outperform the Gibbs sampler which

implements an adaptive uniform slice sampler to sample from its full conditional distribution.

5.4 A Bates-Watts example

We consider a data set given in Bates and Watts (1988, p.307), modeled by Newton and Raftery (1994) as

follows. Response yi (i = 1, . . . , n = 16) is modeled as

yi = β1 +
β2

1 + exp{−β4(xi − β3)} + εi,

where εi is assumed to be i.i.d. normally distributed with mean 0 and variance σ2. The prior for β and σ2

is taken as p(β, σ2) ∝ σ−2.

For this model we first integrate out σ2 analytically. Now the target distribution, π(β|y) is four dimen-

sional. We take a 4-dimensional normal proposal distribution, ψ. We take the maximum likelihood estimate

(mle) to be the mean. The proposal covariance matrix, Σ say, is taken as 0.1 times the diagonal matrix

having the variances of the mle’s along its diagonal.

19



Our objective in this example is to compare the ASR with other tuned MCMC methods. The following

MCMC samplers are implemented. First, we implement a Metropolis-Hastings sampler with the proposal

distribution (as suggested by a referee)

q(β|φ) = ε ψ(β) + (1− ε)χ(β|φ), (25)

where ε > 0 and χ is the multivariate normal distribution with mean φ and covariance matrix Σ. The proposal

distribution is a mixture of the MHIS proposal distribution ψ and a random walk proposal distribution χ(β|φ)

where φ is the current point of the chain. Thus the proposal distribution q(β|φ) of the Metropolis-Hastings

algorithm tries to combine the best properties of the independence sampler and a random walk Metropolis

sampler. We optimize the value of ε by trial and error so that the average ESS under this scheme is the best.

Second, we consider the adaptive schemes proposed by Gilks et al. (1998) as implemented in Winbugs.

This adaptive scheme adapts the symmetric (around the current point) normal proposal distribution whose

standard deviation is tuned over the first 4000 iterations in order to get the acceptance rate between 20%

and 40%.

Lastly, for implementing the ASR we take log ĉ = 114.5 according to (4). The starting proposal for

the ASR is assumed to be ψ, as described above. The densities χk’s are chosen to be the densities of the

multivariate normal distribution with the current proposal point x(k) as the mean and the covariance matrix

Σ. Although we have experimented with an adaptive estimate of the covariance matrix, we report the results

with the above fixed covariance matrix Σ for the χk’s.

We generate N = 15, 000 samples from the proposal distribution in each case. We discard the first 5,000

iterations and use the remaining samples for making the following comparisons. In each case we calculate

the ESS. We also calculate the average of the ESS over different parameters. As in the previous example the

running times for all the implementations are negligible.

The number of MCMC samples, M , for the Metropolis-Hastings and the Winbugs implementations is

15,000. For the ASR, M is a random variable. For the three values of log(κc) reported in Table 2, the values

of M were 15,821, 25,147 and 36,848, respectively. Using the approximate result M ≈ Nκ, the implied

values of κ are 1.05, 1.68 and 2.46, respectively.

Observe that the last two versions of the ASR outperform the Winbugs and the Metropolis-Hastings

scheme using the mixture proposal distribution (25). The first version with a small value of κ performs poorly,

pointing the need to tune κ. It is possible to increase κ further. However, as mentioned in Section 2.2, larger

values of κ lead to smaller rejection probability α. As a result the auto-correlation increases and further gain

in efficiency is not substantial.
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Figure 3 plots the time series and the corresponding autocorrelation plots for β1 for the three samplers.

The top row is for the output from the Metropolis-Hastings algorithm, the middle is for the output from

Winbugs and the last row is for the ASR sampler with log(κc) = 114.5, The first two samplers show signs of

slow mixing. This is confirmed by looking at the ACF plots. The ASR is seen to be the best mixing sampler.

The plots for the remaining parameters looked similar and are not reported here.

6 Discussion

In this article we have introduced an MCMC sampler which can be superior to the Metropolis-Hastings

samplers (including the slice sampler) in terms of efficiency and convergence properties. This sampler is easy

to implement and adapt. The examples reported in the paper show that its convergence characteristics are

considerably better than that of the Metropolis-Hastings schemes when there is large disagreement between

the target and the proposal distributions.

The strength of the proposed algorithm lies in the fact that regeneration times are easily identified and

this allows on-line adaptation of the proposal distribution. As we prove in the paper the proposed form of

adaptation does not alter the ergodic behavior of the averages formed along the chain.
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Winbugs SR SR SR

log(κ c) = −13.5 log(κ c) = −13 log(κ c) = −12.5

ESS ρ1 ESS ρ1 ESS ρ1 ESS ρ1

α 3465.94 0.94 5175.55 0.88 9641.95 0.93 13999.94 0.95

β 4372.78 0.64 5205.80 0.87 9711.19 0.92 14050.49 0.94

γ 3533.84 0.91 5278.49 0.85 9771.10 0.91 14138.00 0.93

Average 3790.85 0.83 5219.95 0.86 9708.08 0.92 14062.81 0.94

Table 1: Effective sample size and lag-1 autocorrelations for the dugongs example

Metropolis-Hastings Winbugs ASR ASR ASR

log(κ c) = 114.5 log(κ c) = 115 log(κ c) = 115.5

ESS ρ1 ESS ρ1 ESS ρ1 ESS ρ1 ESS ρ1

β1 4150.90 0.70 3860.55 0.80 2882.23 0.51 6953.56 0.59 11157.05 0.70

β2 4643.01 0.58 4033.42 0.74 2757.77 0.56 6851.10 0.61 11074.89 0.71

β3 5281.82 0.45 3464.67 0.94 2672.36 0.59 6525.77 0.66 10794.10 0.74

β4 5890.32 0.35 5654.00 0.38 2748.22 0.56 6698.30 0.63 10936.29 0.73

Average 4991.51 0.52 4253.16 0.72 2765.15 0.55 6757.18 0.62 10990.58 0.72

Table 2: Effective sample size and lag-1 autocorrelations for the Bates and Watts example.

22



p[t][t]p s[t][t]s

Figure 1: The SR is better than the slice sampler in the shaded region in the Witch’s hat example.

p[t][t]θ eff[t][t]Efficiency r[t][t]r

Figure 2: Efficiency for the binomial example with r = 4.
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Figure 3: Time series and acf plots of β1 from the three samplers for the Bates and Watts example.
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Appendix: Theorem Proofs

Proof of Theorem 1 (i). Let the pair m and n be as given in Algorithm 1. Let {Uj , j = 0, 1, . . .} be an i.i.d.

sequence of Uniform(0,1) random variables. For any A ∈ E we have:

Pr(Xm+1 ∈ A|Xm = x) = Pr(U0 ≥ α(x), x ∈ A)+
∞∑

j=1

Pr
(
U0 < α(x), U1 < α(Zn+1), · · · , Uj−1 < α(Zn+j−1), Uj ≥ α(Zn+j), Zn+j ∈ A

)

= {1− α(x)}1A(x) + α(x)
∞∑

j=1

(∫
α(z)ψ(z)µ(dz)

)j−1 ∫

A

{1− α(z)}ψ(z)µ(dz)

= {1− α(x)}1A(x) + α(x)

∫
A
{1− α(z)}ψ(z)µ(dz)

1− ∫ α(z)ψ(z)µ(dz)

= {1− α(x)}1A(x) + α(x)
∫

A

φ(z)µ(dz).

This proves (6). It is straightforward to verify that
∫
K(x, dy) = 1. Let us define the transition density

K(x, y) = α(x)φ(y) + {1− α(x)}δx(y).

Hence K(x, dy) = K(x, y)µ(dy). Now we prove equation (7):

∫
π(x)K(x, y)µ(dx) =

∫
π(x)

[
α(x)φ(y) + {1− α(x)}δx(y)

]
µ(dx)

= φ(y)
∫
π(x)α(x)µ(dx) + {1− α(y)}π(y)

= {1−α(y)}ψ(y)R {1−α(z)}ψ(z)µ(dz)

∫
π(x)α(x)µ(dx) + {1− α(y)}π(y)

= {1− α(y)}
[
ψ(y)

(∫ κπ(z)ψ(z)
κπ(z)+ψ(z)µ(dz)

)−1 ∫ π(x)ψ(x)
κπ(x)+ψ(x)µ(dx) + π(y)

]

= {1− α(y)}
[
ψ(y)
κ + π(y)

]

= κπ(y)
κπ(y)+ψ(y)

ψ(y)+κπ(y)
κ

= π(y).

2

Lemma A.1 If (1) holds then every bounded harmonic function is a constant under K.

Proof of Lemma A.1. Let h be a harmonic function i.e.,

h(x) =
∫
K(x, dy)h(y) for all x ∈ E. (A.1)

Now ∫
K(x, dy)h(y) =

∫ [
α(x)φ(y) + {1− α(x)}δx(y)

]
h(y)µ(dy)

= α(x)
∫
φ(y)h(y)µ(dy) + {1− α(x)}h(x).

25



Therefore (A.1) is equivalent to:

α(x)h(x) = α(x)
∫
φ(y)h(y)µ(dy).

The support condition (1) guarantees that α(x) 6= 0 for all x ∈ E. Hence we have,

h(x) =
∫
φ(y)h(y)µ(dy) = constant.

2

Proof of Theorem 1 (ii). The condition (1) implies that 0 < α(x) < 1 for all x ∈ E. Hence irreducibility

and aperiodicity follow.

Using Theorem 1 of Tierney (1994) we see that K is positive recurrent and π is the unique invariant

distribution of K. Now K is Harris recurrent by using Lemma A.1 and Theorem 2 of Tierney (1994). Hence

by Theorem 1 of Tierney (1994), based on the results of Nummelin (1984), the proof is complete. 2

Proof of Theorem 2. Note that w(x) ≤ w∗ <∞ for all x implies the support condition (1). Hence Theorem 1

holds. Now we show that the state space E is small i.e.,

K(x, ·) ≥ βν(·) for all x ∈ E (A.2)

for a suitable β > 0 and a probability measure ν(·) on E . Here we have the transition kernel

K(x, dy) =
[
α(x)φ(y) + {1− α(x)}δx(y)

]
µ(dy).

The choice of β = 1
1+κw∗ and ν(·) = φ(·) suffice for the minorization condition (A.2) to hold. Hence using

Proposition 2 of Tierney (1994) we have the result. 2

We shall use the following standard result, see e.g., Rao (1973, page 122).

Lemma A.2 Let Xn, X, Yn be random variables such that Xn ⇒ X, and Yn
P→ y. Then

Xn + Yn ⇒ X + y. Also
Xn

Yn
⇒ X

y
if y 6= 0.

Proof of Lemma 2.
E(ξ) = Eψ

{
E(ξ|Z)

}

= Eψ
{1−α(Z)

α(Z)

}

=
∫
κw(z)ψ(z)µ(dz)

= κ
∫
π(z)µ(dz) = κ.
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Var(ξ) = Eψ
{

Var(ξ|Z)
}

+ Varψ
{
E(ξ|Z)

}

= Eψ
{1−α(Z)
α(Z)2

}
+ Varψ

{ 1−α(Z)
α(Z)

}

= Eψ
{
κw(Z)[1 + κw(Z)]

}
+ Varψ

{
κw(Z)

}

= κ+ κ2Eψ
{
w(Z)2

}
+ κ2Varψ

{
w(Z)

}

= κ+ κ2 {2Eπ(w(X))− 1} .
2

Proof of Theorem 4. First, it is straightforward that if M → ∞ then N
P→ ∞; the proof follows from

Lemma A.2 and the Central Limit Theorem. Let Vi = ξi − κ and V̄N =
∑
Vi/N . We have:

∑N
i=1 ξi ≤ M ≤ ∑N+1

i=1 ξi

iff
∑N
i=1(ξi − κ) ≤ M −Nκ ≤ ∑N

i=1(ξi − κ) + ξN+1

iff
√
NV̄N ≤ M−Nκ√

N
≤ √

NV̄N + ξN+1√
N
.

Note that ξN+1√
N

P→ 0 and the Central Limit Theorem implies that
√
NV̄N ⇒ N(0, τ2

ξ ). Also, we can replace

N by M
κ using Lemma A.2. Hence the result follows. 2

Proof of Theorem 5. To prove the first part we obtain:

E{ξf(Z)} = Eψ {f(Z)E(ξ|Z)} = κIf . (A.3)

(See the proof of Lemma 2 for more details.) Also we have:

f̄N − If =
PN
i=1 ξif(Zi)PN

i=1 ξi
− If

=
(∑N

i=1 ξif(Zi)− If
∑N
i=1 ξi

)
/
∑N
i=1 ξi

=
(∑N

i=1 ξif̃(Zi)
)
/
∑N
i=1 ξi = V̄N/ξ̄N ,

where V̄N = 1
N

∑N
i=1 Vi, Vi = ξif̃(Zi) and ξ̄N = 1

N

∑N
i=1 ξi. Using equation (A.3) and Lemma 2 we have

that E(Vi) = 0. Note that {Vi} is a sequence of i.i.d. random variables. Now using the Khinchine’s weak

law of large numbers, see e.g., Rao (1973, page 112) we have that V̄N
P→ 0 and ξ̄N

P→ κ where κ > 0. Hence

the first part follows. 2

To prove the second part we evaluate the variance of Vi:

Var(Vi) = E
{
ξ2f̃(Z)2

}

= Eψ
{
f̃(Z)2E(ξ2|Z)

}

= Eψ
{ 1−α(Z)

α(Z)
2−α(Z)
α(Z) f̃(Z)2

}

= Eψ
{
κw(Z)[1 + 2κw(Z)]f̃(Z)2

}

= κ
∫
w(z)[1 + 2κw(z)]f̃(z)2ψ(z)µ(dz)

= κ
{
σ2
f + 2κ

∫
f̃(z)2w(z)π(z)µ(dz)

}
= κ2σ2,
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where σ2 is given in (16). Hence {Vi} is a sequence of i.i.d. random variables with mean zero and finite

variance κ2σ2. By the Central Limit Theorem we have that
√
NV̄N ⇒ N(0, κ2σ2). Using the first part of

this theorem and Lemma A.2, the result follows. 2

Proof of Proposition 1. Let ωk(x) = ψk(x)
π(x) denote the inverse importance ratio for any given k. It is

straightforward that ωk+1(x) ≥ (1− εk+1) ωk(x). From this recursion relation we have:

ωk+i(x)
ωk(x) ≥ ∏k+i

j=k+1(1− εj) ≥ ∏∞
j=1(1− εj) = exp{∑ log(1− εj)}

≥ exp{−∑ εj} ≥ exp{− log w̄} = w̄−1.

This proves that wk+i(x) ≤ w̄ wk(x), i = 1, 2, . . . which implies the required. 2
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