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SUMMARY

The design and analysis of multicentre trials based on a random effects model is well

developed for a continuous response, but is less well developed for a binary response. Here

we describe a random effects model for a binary response for two treatments and show how

maximum likelihood estimates for the unknown treatment difference can be derived using

an approximation to the likelihood. From these results we develop an expression for the

Fisher information matrix of the treatment parameters and show how this can be used to

determine an optimal design for a multicentre trial for two treatments. The results extend

those previously reviewed by Agresti and Hartzel (2000).
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1. Introduction

In a multicentre trial patients are enrolled at multiple centres and the patient responses

from these centres are combined to give a single estimate of the treatment difference. When

the responses are normally distributed, methods for combining the results from multiple

centres are well understood and there is a large and growing literature on the topic. For

a review of these results see Fedorov and Jones (2005), for example. They describe and

compare the well-known fixed effects models and present a random effects model for the case

where the treatment effects are a random sample from a population of centres. They also give

a brief account of a quasi-linear approximate method for the analysis of binary data using

a random effects model. Here we adopt a more conventional maximum likelihood approach,

which extends the results reviewed by Agresti and Hartzel (2000). In Section 2 we introduce

our notation and the random effects model. In Section 3 we define the likelihood for binary

multicentre data and develop an approximation to the required likelihood that avoids the use

of numerical integration. This is done using approximating integrals, which is shown to be

very accurate. Having developed this approximation we derive expressions for the estimates

of the mean response under each treatment. In Section 4 we derive an approximation for

the Fisher information matrix of the treatment mean estimators. Particular difficulties that

arise when there are no observed successes or failures in a centre are considered in Section 5;

solutions to overcome these are derived.

2. Random effects models for multicentre data

Let yijk denote the binary response observed on patient k, who received treatment j in

centre i, where i = 1, 2, . . . , N ; j = 1, 2 and k = 1, 2, . . . , nij. If the response is a success,

yijk = 1 and if it is a failure yijk = 2. Let rijq denote the number of patients on treatment j

in centre i, that give the response q = 1 or 2; we have nij = rij1 + rij2.

Let πij denote the probability of a success for treatment j in centre i. We assume that all

the responses in centre i are independent and identically distributed (i.i.d.) Bernoulli random

variables with success probabilities πij. This implies that rijq has a Binomial distribution

with parameters (nij, πij).

We will model the success probabilities on the logit scale, where logit(πij)=log[πij/(1−πij)] :

µi1 = logit(πi1) = µi +
δi
2

µi2 = logit(πi2) = µi − δi
2
.
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Here µi is the effect of centre i and δi is the difference between the two treatment effects in

centre i, i.e., δi = µi1− µi2. For the success probabilities πij (j = 1, 2) we have the following

expressions:

πi1 =
exp (µi1)

1 + exp (µi1)
=

exp
(
µi + δi

2

)

1 + exp
(
µi + δi

2

) ,

πi2 =
exp (µi2)

1 + exp (µi2)
=

exp
(
µi − δi

2

)

1 + exp
(
µi − δi

2

) .

This model allows a unique treatment difference to occur in each centre, i.e., it allows for

treatment-by-centre interaction. In the random effects setting, µi1 and µi2 are considered as

random variables having some bivariate distribution. We shall assume that the bivariate dis-

tribution is normal N(ν,V) with unknown mean ν = (ν1, ν2)T and known variance-covariance

matrix

V =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

That is, we assume that the vectors µi = (µi1, µi2)T , (i = 1, 2, . . . , N) are random, indepen-

dent and follow the bivariate normal distribution with density

f(µi;ν,V)=
1

2πσ1σ2

√
1−ρ2

exp

{
− 1

2(1−ρ2)

[
(µi1−ν1)2

σ2
1

−2ρ
(µi1−ν1)(µi2−ν2)

σ1σ2

+
(µi2−ν2)2

σ2
2

]}
.

As the estimation of the treatment difference is the main aim of the trial, primary interest

focuses on the expectation and variance of δi. To obtain these we note that

µi =
µi1 + µi2

2
and δi = µi1 − µi2.

The joint distribution of µi and δi is given in the following lemma (the proof of this lemma

is straightforward and therefore omitted).

Lemma 1. If
(
µi1
µi2

)
∼ N

[(
ν1

ν2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)]
,

then
(
µi
δi

)
∼ N

[(
ν0

δ

)
,

(
1
4

(σ2
1 + σ2

2 + 2ρσ1σ2) 1
2
(σ2

1 − σ2
2)

1
2
(σ2

1 − σ2
2) σ2

1 + σ2
2 − 2ρσ1σ2

)]
,

where ν0 = (ν1 + ν2)/2 and δ = ν1 − ν2.
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3. Estimating the centre and treatment effects

3.1. Approximating the likelihood function.

To estimate the unknown parameters ν = (ν1, ν2)T we use the following likelihood function,

where integration is over the joint distribution of µi = (µi1, µi2)T :

l(ν,V) =
N∏
i=1

∫ +∞

−∞

∫ +∞

−∞

2∏
j=1

(πij)
rij1(1− πij)rij2f(µi;ν,V)dµi , (1)

where dµi = dµi1dµi2.

The expression (1) for the likelihood function generalizes (to the case of general covariance

matrix V) the formula given on page 1120 of Agresti and Hartzel (2000), but note that the

product over j (which is k in their expression) should have been moved inside the integrals.

In order to evaluate the likelihood we must integrate the joint mass function of the re-

sponses with respect to the random effects distribution. A common approach to this is

to approximate the likelihood function using numerical integration methods, such as Gauss-

Hermit quadrature, as discussed by Agresti and Hartzel (2000) and used in SASr (Statistical

Analysis System, SAS Institute Inc., Cary, NC, USA) as a standard. We also approximate

the integrals but use a different approach based on approximating the intergrands in such a

way that the integrals can be easily evaluated. This allows us to obtain good approximations

and explicit formulas for both estimators and their asymptotic variances.

Let us rewrite the likelihood function as l(ν,V) =
N∏
i=1

Ii, where

Ii =

∫ ∞
−∞

∫ ∞
−∞

[
eµi1

1+eµi1

]ri11
[
1− eµi1

1+eµi1

]ri12
[
eµi2

1+eµi2

]ri21
[
1− eµi2

1+eµi2

]ri22

f(µi;ν,V)dµi

=

∫ ∞
−∞

∫ ∞
−∞

exp (µi1ri11)

[1 + exp(µi1)](ri11+ri12)

exp (µi2ri21)

[1 + exp(µi2)](ri21+ri22)
f(µi;ν,V)dµi . (2)

Let us introduce the function

φ(t;x, y) =
exp(xt)

[1 + exp(t)]x+y
, (3)

where x ≥ 0 and y ≥ 0 are parameters and t is the variable. Then we can write

Ii =

∫ ∞
−∞

∫ ∞
−∞

φ(µi1; ri11, ri12)φ(µi2; ri21, ri22)f(µi;ν,V)dµi . (4)

Assume that x > 0 and y > 0. The function (3) achieves its maximum value at the point

t∗ = log(x/y). Expanding the logarithm of the function (3) around the point t∗ we obtain
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after some simplifications:

log φ(t;x, y) = log

[
xxyy

(x+ y)x+y

]
− xy(t− log(x/y))2

2(x+ y)
+O

(| t− log(x/y) |3) .

This gives us the following approximation for the function (3):

φ(t;x, y) ' ψ(t;x, y) =

[
xxyy

(x+ y)x+y

]
exp

{
−xy(t− log(x/y))2

2(x+ y)

}
. (5)

If x and y are not too small, the quality of approximation (5) is very good; Figure 1

illustrates this in the case x = 3, y = 4. The fact that the tails of the functions φ(t;x, y) and

ψ(t; x, y) behave differently is of no importance in the present circumstances as the functions

are to be multiplied by a normal density and then integrated.

t

-2

0.004

2

0.006

1

0.008

0-3

0

3-1

0.002

Figure 1. Graphs of the functions φ(t;x, y) (solid line) and ψ(t;x, y) (dash-

dot) for x = 3 and y = 4
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Thus, we can approximate the components of the likelihood function as follows:

Ii'Ji =

∫ ∞
−∞

∫ ∞
−∞

(ri11)ri11(ri12)ri12

(ri11 + ri12)ri11+ri12
exp




−1

2

ri11ri12

(
µi1 − log

(
ri11

ri12

))2

ri11 + ri12





× (ri21)ri21(ri22)ri22

(ri21 + ri22)ri21+ri22
exp




−1

2

ri21ri22

(
µi2 − log

(
ri21

ri22

))2

ri21 + ri22




f(µi;ν,V)dµi

= Ai
1

2πsi1si2

1

2πσ1σ2

√
1− ρ2

∫ ∞
−∞

∫ ∞
−∞

exp

{
−(µi1 − γi1)2

2s2
i1

− (µi2 − γi2)2

2s2
i2

}
×

exp

{
− (µi1 − ν1)2

2σ2
1(1− ρ2)

− (µi2 − ν2)2

2σ2
2(1− ρ2)

+
ρ(µi1 − ν1)(µi2 − ν2)

σ1σ2(1− ρ2)

}
dµi ,

where

si1 =

√
ri11 + ri12

ri11ri12

, si2 =

√
ri21 + ri22

ri21ri22

, γi1 = log

(
ri11

ri12

)
, γi2 = log

(
ri21

ri22

)

and Ai = Ci(ri11, ri21); for 0 < x < ni1 and 0 < y < ni2 the function Ci(x, y) is defined as

Ci(x, y) = 2π
xx−1/2yy−1/2(ni1 − x)ni1−x−1/2(ni2 − y)ni2−y−1/2

(ni1)ni1−1/2(ni2)ni2−1/2
. (6)

After integration we obtain the following expression for Ji:

Ji = Ai
1

2π
√

(s2
i1 + σ2

1)(s2
i2 + σ2

2)− σ2
1σ

2
2ρ

2

× exp

{
−(s2

i2 + σ2
2)(ν1 − γi1)2 − 2ρσ1σ2(ν1 − γi1)(ν2 − γi2) + (s2

i1 + σ2
1)(ν2 − γi2)2

2 [(s2
i1 + σ2

1)(s2
i2 + σ2

2)− σ2
1σ

2
2ρ

2]

}
.

The expression for Ji/Ai is in fact a value of a density function of a suitable bivariate normal

distribution taken at ν = (ν1, ν2)T ; that is, Ji = Aif(ν;γi, Ṽi) with

γi =

(
γi1

γi2

)
and Ṽi =

(
σ̃2
i1 ρ̃σ̃i1σ̃i2

ρ̃iσ̃i1σ̃i2 σ̃2
i2

)
,

where

σ̃i1 =
√
s2
i1 + σ2

1, σ̃i2 =
√
s2
i2 + σ2

2, and ρ̃i = ρ
σ1 σ2

σ̃i1 σ̃i2
.
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3.2. Computing the maximum likelihood estimates.

Taking the logarithm of our likelihood function (1) and using the properties of the log

function we have

log l '
N∑
i=1

log(Ji) = Q(ν1, ν2) . (7)

Here Q is a quadratic function in ν1 and ν2:

Q(ν1, ν2) = −1

2
K1ν

2
1 −

1

2
K2ν

2
2 +K3ν1ν2 +K4ν1 +K5ν2 +K6 ,

where Kj =
∑N

i=1Kji with

K1i =
1

(1− ρ̃i2)σ̃2
i1

=
s2
i2 + σ2

2

(s2
i1 + σ2

1)(s2
i2 + σ2

2)− σ2
1σ

2
2ρ

2
,

K2i =
1

(1− ρ̃i2)σ̃2
i2

=
s2
i1 + σ2

1

(s2
i1 + σ2

1)(s2
i2 + σ2

2)− σ2
1σ

2
2ρ

2
,

K3i = (ρσ1σ2)−1 ρ̃i
2

(1− ρ̃i2)
=

ρσ1σ2

(s2
i1 + σ2

1)(s2
i2 + σ2

2)− σ2
1σ

2
2ρ

2
,

K4i = γi1K1i − γi2K3i, K5i = γi2K2i − γi1K3i, and

K6i = −1

2
γ2
i1K1i + γi1γi2K3i − 1

2
γ2
i2K2i + log(Ai)− log

(
2πσ̃i1σ̃i2

√
1− ρ̃i2

)
.

Differentiating Q with respect to ν1 and ν2 and equating the derivatives to zero we get

∂Q

∂ν1

= −K1ν1 +K3ν2 +K4 = 0

and
∂Q

∂ν2

= −K2ν2 +K3ν1 +K5 = 0 .

Solving these equations we obtain

ν̂1 =
K3K5 +K2K4

K1K2 −K2
3

and ν̂2 =
K1K5 +K4K3

K1K2 −K2
3

. (8)

We note that these estimators can be evaluated directly without the need to apply iterative

procedures. This is an important advantage because in the traditional approach iterative

procedures are needed to compute the maximum likelihood estimators (e.g., see Agresti and

Hartzel, 2000). Some results of comparison of the estimators (8) with SASr estimators are

provided in Table 1 and Figure 2 (To compute the SASr estimators, we have used exactly

the same code as given in Agresti and Hartzel, 2000). The general conclusion is that the

estimators (8) and the estimators produced by SASr are very similar, with the estimators

(8) often having slightly smaller MSE’s.
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Figure 2. A sample of 200 estimators computed using (8) (depicted as circles)

and adaptive Gaussian quadratures in SASr (crosses) in the case of 50 centres,

100 patients on each arm, centre effect ν0 = 0.1, treatment effect δ = 0.5,

σ2
1 = σ2

2 = 3
4

and ρ = 1
3
.

In multicentre trials it is not unusual in one or more centres, for all the patients to respond

with a success or all patients to respond with a failure. As the above estimators cannot be

computed if this happens, some adjustments are needed. These are described in Section 5.

4. Estimating the variance of the treatment parameters

To estimate the variance-covariance matrix of the estimated treatment parameters we may

use the Cramer-Rao theorem, which states that for a random sample of n observations the

maximum likelihood estimators are asymptotically normal as n → ∞ with the normalised

variance-covariance matrix equal to the inverse of Fisher’s information matrix given by

I(ν) =

[
−E

(
∂2 log l

∂νi∂νj

)]

i,j=1,2

.

Using the approximation (7) for the loglikelihood function, we obtain the following approx-

imation for the Fisher information matrix:

I(ν) '
[
−E

(
∂2 logQ(ν1, ν2)

∂νi∂νj

)]

i,j=1,2

= E

[(
K1 −K3

−K3 K2

)]
=

N∑
i=1

E

[(
K1i −K3i

−K3i K2i

)]
.



9
In order to derive expressions for the expected values given in the above formula, we first

consider the special case of a trial with a single centre. The results obtained will then be

generalized to the multicentre setting.

4.1. Single Centre Problem.

Let us consider the problem of estimating the variance-covariance matrix of the estimators

(8) for a single centre, and thus we assume thatN = 1 and i = 1. We shall retain the standard

notation to avoid confusion later on when considering multiple centres.

Consider the problem of approximating the expectation of K1i which requires taking ex-

pectations with respect to ri11 and ri12. Since ri11 and ri12 have a distribution with random

parameters we need to take a double expectation, first with respect to the distribution of

ri11 and ri12 and then with respect to the distribution of (µi1, µi2).

The expectation is then given by

E [K1i] = E

[
ni1∑
x=0

ni2∑
y=0

K1i(x, y)

(
ni1
x

)
πxi1(1− πi1)ni1−x

(
ni2
y

)
πyi2(1− πi2)ni2−y

]
,

where

K1i(x, y) =
s2
iy + σ2

2

(s2
ix + σ2

1)(s2
iy + σ2

2)− σ2
1σ

2
2ρ

2

with

s2
ix =

ni1
x(ni1 − x)

and s2
iy =

ni2
y(ni2 − y)

.

Replacing the order of summation and integration, we obtain

K1i(x, y) =

ni1∑
x=0

ni2∑
y=0

K1i(x, y)

(
ni1
x

)(
ni2
y

)
Ii(x, y) ,

where

Ii(x, y) =

∫ ∞
−∞

∫ ∞
−∞

exp (µi1x)

[1 + exp(µi1)](ni1−x)

exp (µi2y)

[1 + exp(µi2)](ni2−y)
f(µi;ν,V)dµi

=

∫ ∞
−∞

∫ ∞
−∞

φ(µi1; x, ni1 − x)φ(µi2; y, ni2 − y)f(µi;ν,V)dµi .

The integral Ii(x, y) is the integral of the same type as (4) and can be approximated

in the same way. Assuming that 0 < x < ni1 and 0 < y < ni2 we obtain the following

approximation for Ii(x, y):

Ii(x, y) ' Ji(x, y) = Ci(x, y)
1

2π
√

(s2
ix + σ2

1)
√

(s2
iy + σ2

2)
√

1− ρ̃2
i,x,y

×
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exp



−

1

2
(
1−ρ̃2

i,x,y

)


(

ν1−γix√
(s2
ix+σ2

1)

)2

−2̃ρi,x,y

(
ν1−γix√
s2
ix+σ2

1

)
 ν2−γiy√

s2
iy+σ2

2


+


 ν2−γiy√

(s2
iy+σ2

2)




2





where

γix = log

(
x

ni1 − x
)
, γiy = log

(
y

ni2 − y
)
, ρ̃i,x,y = ρ

σ1√
(s2
ix + σ2

1)

σ2√
(s2
iy + σ2

2)

and Ci(x, y) is as defined in (6).

Therefore, if we ignore the terms corresponding to x = 0, x = ni1, y = 0 and y = ni2 then

we obtain the following approximation for E [K1i]:

E [K1i] '
ni1−1∑
x=1

ni2−1∑
y=1

K1i(x, y)

(
ni1
x

)(
ni2
y

)
Ji(x, y) .

The correction related to the terms x = 0, x = ni1, y = 0 and y = ni2 is considered in

Section 5.

The variance-covariance matrix of the estimators can now be obtained by deriving the

inverse of the Fisher information matrix given by

[
V ar[ν̂1] Cov[ν̂1, ν̂2]

Cov[ν̂1, ν̂2] V ar[ν̂2]

]
' 1

E[K1i]E[K2i]− E[K3i]2

[
E[K2i] E[K3i]

E[K3i] E[K1i]

]

with entries

E [K1i] =

ni1−1∑
x=1

ni2−1∑
y=1

K1i(x, y)

(
ni1
x

)(
ni2
y

)
Ji(x, y),

E [K2i] =

ni1−1∑
x=1

ni2−1∑
y=1

K2i(x, y)

(
ni1
x

)(
ni2
y

)
Ji(x, y)

and E [K3i] =

ni1−1∑
x=1

ni2−1∑
y=1

K3i(x, y)

(
ni1
x

)(
ni2
y

)
Ji(x, y)

where

K2i(x, y) =
s2
ix + σ2

1

(s2
ix + σ2

1)(s2
iy + σ2

2)− σ2
1σ

2
2ρ

2
and K3i(x, y) =

ρσ1σ2

(s2
ix + σ2

1)(s2
iy + σ2

2)− σ2
1σ

2
2ρ

2
.
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4.2. Multiple Centre Problem.

The variance-covariance matrix of the estimators (ν̂1, ν̂2) for the multiple centre problem

can be obtained directly from the results of the single centre problem. Taking the inverse of

the Fisher information matrix we get

[
V ar[ν̂1] Cov[ν̂1, ν̂2]

Cov[ν̂1, ν̂2] V ar[ν̂2]

]
≈ 1
∑N

i=1EK1i

∑N
i=1EK2i−

(∑N
i=1EK3i

)2

N∑
i=1

[
EK2i EK3i

EK3i EK1i

]
.

Note that if the number of subjects on treatment 1, (ni1), and treatment 2, (ni2), are the

same for each centre (i = 1, 2, . . . , N) then the variance-covariance matrix is equivalent to

the variance-covariance matrix for the single centre estimates reduced by a factor of N , i.e.,
[
V ar[ν̂1] Cov[ν̂1, ν̂2]

Cov[ν̂1, ν̂2] V ar[ν̂2]

]
≈ 1

N(EK1iEK2i − [EK3i]2)

[
EK2i EK3i

EK3i EK1i

]
with i = 1.

In most cases that we have studied numerically (an example is given in Table 2), the

approximations derived above give very similar results to the results that one gets from

SASr using the adaptive Gaussian quadratures (which is the recommended way of estimating

integrals of this type). The advantage of our approximation is therefore the fact that we

have it in explicit form.

5. Zero-Term Corrections

The estimators ν̂1 and ν̂2 given in equations (8) have the disadvantage that they are

not defined when there are no observed successes or no observed failures (i.e., rijq = 0 j, q ∈
{1, 2}) for any given centre i. The chance of observing such extremes depends on the number

of patients in the centre, nij, and the success probabilities πi1 and πi2. The lower the value

of nij and the closer the success probabilities are to zero or one, the more likely we are to

observe rijq = 0, j, q ∈ {1, 2}. In Sections 5 and 5 we present two methods of adjusting the

approximation when we have centres with such extreme observations. First, in Section 5 we

consider a particular case ρ = 0.

5.1. The case ρ = 0.

If the correlation ρ between random effects µi1 and µi2 is zero then the bivariate normal

density f(µi;ν,V) is a product of two univariate normal densities:

f(µi;ν,V) = f(µi1; ν1, σ
2
1) f(µi1; ν2, σ

2
2) ,
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where f(t; ν, σ2) = 1/(

√
2πσ) exp{−(t− ν)2/(2σ2)}. Hence the double integrals Ii defined in

(2) become the products of two single integrals; that is, Ii may by written as

Ii =

∫ ∞
−∞

eµi1ri11

[1 + eµi1 ]ri11+ri12
f(µi1; ν1, σ

2
1)dµi1

∫ ∞
−∞

eµi2ri21

[1 + eµi2 ]ri21+ri22
f(µi2; ν2, σ

2
2)dµi2 . (9)

Approximating single integrals in (9) in the case when either one or two of rijq, j, q ∈ {1, 2})
is equal to zero is a relatively easy problem. In the following sections we assume ρ 6= 0.

5.2. Zero-Term Regularization.

The simplest adjustment that can be made is to replace the zero term in the likelihood with

a regularization constant. Here we replace the case where there are no observed successes or

failures (rijq = 0, j, q ∈ {1, 2}) with a small positive constant δ, say δ = 0.1; that is, we set

rijq = δ, j, q ∈ {1, 2}. Then we can use the approximation (7) to the log-likelihood function

which remain quadratic with respect to (ν1, ν2) and therefore the estimators ν̂1 and ν̂2 have

exactly the same form. Numerical study shows that if the values of nij are not too small,

the value chosen for δ is not important, as long as it is small.

5.3. Replacing mean of a function of a random variable with the function of the mean.

Another natural approximation is obtained by replacing the mean of a function (3) of a

random parameter t (which is one of µij) by the function of the mean of t. That is, we are

going to use the approximation

Eφ(µij; rij1, rij2) ' φ(Eµij; rij1, rij2), j ∈ {1, 2} . (10)

Note, however, that the resulting approximation to the log-likelihood will no longer be

quadratic in ν1 and ν2 and in Section 5 we shall consider further simplifications leading

to retaining the quadratic form of the log-likelihood approximations.

The log-likelihood function may be written as

log l =
N∑
i=1:

rijq /∈{0,nij}
∀j,q∈{1,2}

log Ii +
N∑
i=1:

rijq∈{0,nij}
anyj,q∈{1,2}

log Ii .

Let us look at each possible case separately.

Case 1: Observed zero for one of the treatments.

Consider the case when there are no observed successes for subjects taking treatment 1
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(ri11 = 0) but no such extremes for subjects taking treatment 2 (ri21 /∈ {0, ni2}). In this case

the log-likelihood function is given by

Ii =

∫ ∞
−∞

∫ ∞
−∞

1

[1 + exp(µi1)]ni1
exp (µi2ri21)

[1 + exp(µi2)](ri21+ri22)
f(µi;ν,V)dµi .

Using the approximation (10) for the function φ(µi1; 0, ni1) we obtain

φ(µi1; 0, ni1) =
1

[1 + exp(µi1)]ni1
≈ 1

[1 + exp(ν1)]ni1
.

The integral Ii may then be approximated by

Ii ≈ 1

[1 + exp(ν1)]ni1

∫ ∞
−∞

∫ ∞
−∞

exp (µi2ri21)

[1 + exp(µi2)](ri21+ri22)
f(µi;ν,V)dµi

≈ bi
1

(1 + exp(ν1))ni1
1√

2π(s2
i2 + σ2

2)
exp

{
− (ν2 − γi2)2

2(s2
i2 + σ2

2)

}
.

Here s2
i2 and γi2 are the same functions as described in Section 3.1 and

bi =
rri21
i21 r

ri22
i22

(ri21 + ri22)ri21+ri22

(
2π(ri21 + ri22)

ri21ri22

)1/2

.

The same method may be applied when there are no observed successes for subjects on

treatment 2 (ni21 = 0) but no such extremes for subjects taking treatment 1 (ri11 /∈ {0, ni1});
in this case we obtain

Ii ≈ ai
1

[1 + exp(ν2)]ni2
1√

2π(s2
i1 + σ2

1)
exp

{
− (ν1 − γi1)2

2(s2
i1 + σ2

1)

}

with

ai =
rri11
i11 r

ri12
i12

(ri11 + ri12)ri11+ri12

(
2π(ri11 + ri12)

ri11ri12

)1/2

.

Case 2: No observed failures in either treatment.

The same procedure as used for Case 1 may be followed when there are no observed failures

in either drug or control (ri11 = ni1 or ri21 = ni2). For the case when ri11 = ni1 and

ri21 /∈ {0, ni2} the integral is approximated by

Ii ≈ bi
exp(ν1)ni1

(1 + exp(ν1))ni1
1√

2π(s2
i2 + σ2

2)
exp

{
− (ν2 − γi2)2

2(s2
i2 + σ2

2)

}
.

For the case when ri21 = ni2 and ri11 /∈ {0, ni1} the integral is approximated by

Ii ≈ ai
exp(ν2)ni2

(1 + exp(ν2))ni2
1√

2π(s2
i1 + σ2

1)
exp

{
− (ν1 − γi1)2

2(s2
i1 + σ2

1)

}
.

Case 3: Observed extremes in both treatments.
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For extreme observations on both treatments we may use the approximation (10) for both

treatments. The integrand in Ii will then consist of only the bivariate normal distribution

integrated over the whole range and will therefore be equal to one. For example, if both

ri11 = 0 and ri21 = 0, the intergal Ii is approximated by

Ii≈ 1

(1+eν1)ni1
1

(1+eν2)ni2

∫ ∞
−∞

∫ ∞
−∞

f(µi;ν,V)dµi =
1

(1+eν1)ni1
1

(1+eν2)ni2
.

5.4. Retaining the quadratic form of the log-likelihood function.

The use of the approximation (10) to the components of the log-likelihood function when

rijq = 0 or rijq = nij j, q ∈ {1, 2} does not retain the quadratic-form of the log-likelihood.

For example, the log-likelihood function for Case 1 where ri11 = 0 and ri21 /∈ {0, ni2} is given

by

log Ii ≈ log

[
bi

1

(1 + exp(ν1))ni1
1√

2π(s2
i2 + σ2

2)
exp

{
− (ν2 − γi2)2

2(s2
i2 + σ2

2)

}]

= −ni1 log (1 + exp(ν1))− (ν2 − γi2)2

2(s2
i2 + σ2

2)
+ Const.

Note that the approximation is a quadratic function in ν2 but not in ν1. The term involving

ν1 may be expanded using the Taylor series at ν1 = 0 to give

log Ii ≈ −ni1
(

log(2) +
1

2
ν1 +

1

8
ν2

1

)
− (ν2 − γi2)2

2(s2
i2 + σ2

2)
+ Const.

By using this approximation we maintain the quadratic form for the approximation to the

log-likelihood function and hence the estimator retains the form:

µ̂1 =
K3K5 +K2K4

K1K2 −K2
3

,

µ̂2 =
K1K5 +K4K3

K1K2 −K2
3

.

Adjustments, however, need to be made to K1i, K2i, K3i, K4i and K5i and these are given in

Table 3. (The terms K∗li of the table have to be added to respective Kli, l = 1, . . . , 5.)
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Centre Estimator

Variance Mean
√
R MSE

Center Treatment (8) SASr Difference (8) SASr Difference

0.5 1 0.1201 0.1217 -0.0016 0.3327 0.3447 -0.0120

0.8 0.1305 0.1325 -0.0020 0.1879 0.1971 -0.0092

0.6 0.0988 0.1002 -0.0014 0.3679 0.3808 -0.0129

0.4 0.0951 0.0967 -0.0016 0.2564 0.2638 -0.0074

0.2 0.0927 0.0942 -0.0015 0.3558 0.3663 -0.0105

0.25 1 0.0631 0.0642 -0.0011 0.2038 0.2063 -0.0025

0.8 0.1224 0.1240 -0.0016 0.2199 0.2282 -0.0083

0.6 0.0863 0.0877 -0.0014 0.1399 0.1431 -0.0032

0.4 0.0960 0.0973 -0.0013 0.1671 0.1712 -0.0041

0.2 0.0970 0.0981 -0.0011 0.0844 0.0866 -0.0022

0.1 1 0.1051 0.1065 -0.0014 0.0873 0.0897 -0.0024

0.8 0.0941 0.0953 -0.0012 0.1286 0.1317 -0.0031

0.6 0.1058 0.1073 -0.0015 0.0761 0.0786 -0.0025

0.4 0.0978 0.0990 -0.0012 0.0915 0.0938 -0.0023

0.2 0.0920 0.0931 -0.0011 0.0625 0.0634 -0.0009

Treatment Estimator

Variance Mean
√
R MSE

Center Treatment (8) SASr Difference (8) SASr Difference

0.5 1 0.5173 0.5249 -0.0076 0.6384 0.6699 -0.0304

0.8 0.5242 0.5332 -0.0090 0.3436 0.3698 -0.0262

0.6 0.4912 0.4995 -0.0083 0.4971 0.5140 -0.0169

0.4 0.4819 0.4893 -0.0074 0.2781 0.2783 -0.0002

0.2 0.4941 0.5010 -0.0069 0.1938 0.1989 -0.0051

0.25 1 0.4396 0.4460 -0.0064 0.8085 0.8047 0.0038

0.8 0.5361 0.5436 -0.0075 0.6833 0.7227 -0.0394

0.6 0.4865 0.4931 -0.0066 0.3325 0.3379 -0.0054

0.4 0.4946 0.5007 -0.0061 0.2999 0.3068 -0.0069

0.2 0.4945 0.5006 -0.0061 0.1133 0.1152 -0.0019

0.1 1 0.5337 0.5410 -0.0073 0.7956 0.8346 -0.0390

0.8 0.4763 0.4823 -0.0060 0.9187 0.9349 -0.0162

0.6 0.5351 0.5419 -0.0068 0.5783 0.6079 -0.0296

0.4 0.4837 0.4894 -0.0057 0.3670 0.3712 -0.0042

0.2 0.4905 0.4964 -0.0059 0.1591 0.1608 -0.0017

Table 1. Mean values of estimators along with respective MSE’s computed

for the estimators (8) and using adaptive Gaussian quadratures in SASr with

50 centres, 100 patients on each arm, R = 1000 runs, centre effect ν0 = 0.1,

treatment effect δ = 0.5, σ1 = σ2 (so that the covariance between centre and

treatment effects is zero) and different centre and treatment variances.
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Centre Estimator

Variance Sample Variance Mean Predicted Variance

Center Treatment (8) SASr Difference (8) SASr Difference

0.5 1 0.0101 0.0104 -0.0003 0.0105 0.0105 0.0000

0.8 0.0050 0.0052 -0.0002 0.0105 0.0105 0.0000

0.6 0.0116 0.0121 -0.0005 0.0105 0.0105 0.0000

0.4 0.0081 0.0083 -0.0002 0.0105 0.0105 0.0000

0.2 0.0112 0.0116 -0.0004 0.0105 0.0105 0.0000

0.25 1 0.0051 0.0052 -0.0001 0.0055 0.0055 0.0000

0.8 0.0065 0.0066 -0.0001 0.0055 0.0055 0.0000

0.6 0.0042 0.0044 -0.0002 0.0055 0.0055 0.0000

0.4 0.0053 0.0054 -0.0001 0.0055 0.0054 0.0000

0.2 0.0027 0.0027 0.0000 0.0054 0.0054 0.0000

0.1 1 0.0027 0.0028 -0.0001 0.0025 0.0024 0.0000

0.8 0.0040 0.0041 -0.0001 0.0024 0.0024 0.0000

0.6 0.0024 0.0024 0.0000 0.0024 0.0024 0.0000

0.4 0.0029 0.0030 -0.0001 0.0024 0.0024 0.0000

0.2 0.0019 0.0020 -0.0001 0.0024 0.0024 0.0000

Treatment Estimator

Variance Sample Variance Mean Predicted Variance

Center Treatment (8) SASr Difference (8) SASr Difference

0.5 1 0.0199 0.0205 -0.0006 0.0220 0.0220 0.0000

0.8 0.0103 0.0106 -0.0003 0.0180 0.0180 0.0001

0.6 0.0157 0.0163 -0.0006 0.0140 0.0139 0.0000

0.4 0.0085 0.0087 -0.0002 0.0099 0.0099 0.0000

0.2 0.0061 0.0063 -0.0002 0.0059 0.0059 0.0000

0.25 1 0.0219 0.0226 -0.0007 0.0219 0.0218 0.0000

0.8 0.0203 0.0210 -0.0007 0.0179 0.0178 0.0000

0.6 0.0103 0.0106 -0.0003 0.0138 0.0138 0.0000

0.4 0.0095 0.0097 -0.0002 0.0098 0.0098 0.0000

0.2 0.0036 0.0036 0.0000 0.0058 0.0058 0.0000

0.1 1 0.0240 0.0247 -0.0007 0.0218 0.0218 0.0000

0.8 0.0285 0.0293 -0.0008 0.0178 0.0178 0.0000

0.6 0.0171 0.0175 -0.0004 0.0138 0.0137 0.0000

0.4 0.0114 0.0116 -0.0002 0.0097 0.0097 0.0000

0.2 0.0049 0.0051 -0.0002 0.0057 0.0057 0.0000

Table 2. Sample variances and means of predicted variances for the estima-

tors (8) and computed using adaptive Gaussian quadratures in SASr with

50 centres, 100 patients on each arm, R = 1000 runs, centre effect ν0 = 0.1,

treatment effect δ = 0.5, σ1 = σ2 and different centre and treatment variances.
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ni11 ni21 K∗1i K∗2i K∗3i K∗4i K∗5i

0 /∈ {0, ni2} ni1
4

1
(s2i2+σ2

2)
0 −ni1

2
γi2

(s2i2+σ2
2)

/∈ {0, ni1} 0 1
(s2i1+σ2

1)
ni2
4

0 γi1
(s2i1+σ2

1)
−ni2

2

ni1 /∈ {0, ni2} ni1
4

1
(s2i2+σ2

2)
0 ni1

2
γi2

(s2i2+σ2
2)

/∈ {0, ni1} ni2
1

(s2i1+σ2
1)

ni2
4

0 γi1
(s2i1+σ2

1)
ni2
2

0 0 ni1
4

ni2
4

0 −ni1
2

−ni2
2

ni1 ni2
ni1
4

ni2
4

0 ni1
2

ni2
2

0 ni2
ni1
4

ni2
4

0 −ni1
2

ni2
2

ni1 0 ni1
4

ni2
4

0 ni1
2

−ni2
2

Table 3. Zero Term Adjustments


