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Abstract An important problem in pharmaceutical research is whetidividual testing
of components should be made, or alternatively, the comyersiould be tested
in groups. Of more importance is that the cost of the expertriseeconomically
viable, for multi-stage procedures the cost of additioniages must be taken
into consideration along with the cost of testing the migtupf components.
Optimum group sizes are calculated for the two-stage, ibtage (both members
of Li's family of algorithms) and the row-and-column proceds, along with the
minimum number of tests required to determine all of thevactiomponents.
Finally, comparisons are made between the costs of thewagahd three-stage
procedures using two different cost functions for the cdésesting mixtures of
components.

1. INTRODUCTION
11 PHARMACEUTICAL BACKGROUND

High-throughput (HTP) drug screening is an important ardblyi used strat-
egy for identifying novel compounds as leads for future wiorkhe pharma-
ceutical industry. Leads are later submitted to furthetdgjizal investigation
through functional assays on whole cells or tissue. Theyak® used in ini-



2

tiating chemical exploration for better compounds throteghniques such as
gquantitative structure activity relationships (QSAR).

As company collections of compounds grows technologie® lieeen and
continue to be developed to efficiently screen them usingrtimemal amount
of resources in smaller time scales whilst maintaining thality of the re-
sulting data. One method implemented by a number of compasigooling
samples. If a pooled sample produces a positive result beeimdividual com-
ponents would be assayed separately to identify whichidal compound or
compounds were active.

A number of statistical issues arise from this strategy.

= What is the optimal number of compounds to pool?
= How will the strategy affect false positive and false negagrror rates?

= How does this strategy compare to a single stage screenafiagsall
individual compounds.

Additionally there are a number of practical constraints:

= Much ofthe assay work is performed by robots and hence tHesfnadéegy
needs to be compatible with robotics.

= Random access to samples of single compounds in the compibrargt
is performed manually and adds substantial amount of tineerlti-
stage process.

New assay technologies such as miniaturisation, singlecut# detection
and chip-based assays are fast improving throughput anpawirig the time
and resource savings a two-stage procedure makes. Cordpkatérom all
compounds is perceived to be a clear advantage of runningitigge step
process when data-mining of the resulting database is teghéx become the
norm.

12 STATISTICAL BACKGROUND

For simplicity, assume that we are only interested in dgtofia large number
of different components, potential drug compounds, agaiedain enzymes
relating to certain diseases.

In a particular test, either an individual component or atorix of them is
tested for activity. The result is given in the form of a nuioa&rvalue. If we
were to look at the distribution of the activity of all the cpoments we would
find a positively-skewed distribution. We are only inteegkin the components
that are on the far right tail of the activity scale. In a tygiexperiment we

would search forl = 50 the most active components among the total number

n = 500000 components.
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A cut-off point is specified whereby if a component has anvégtreading
greater than this point then it is deemed to be a "hit", howg\he activity is
less the component is judged to be inactive. When a companétielled as
being active when in fact it isn't, it is calledfalse positive In cases where
the component is judged to be inactive when it is active, saisl to be dalse
negative After all of the active components have been identified #reyanked
in ascending order of activity, which determines their imipoce relative to one
another.

The problem witHalse positivegould be overcome in an obvious way: fol-
lowing the main tests components are individually retestedheir activity.
The issue aboutlse negativess only related to those components fringeing
around the cut-off point. We assume here that the errorseindsts are rea-
sonably small, therefore tHalse negativeoroblem does not concern the very
active components.

There are two slightly different ways to formalise the pashlas a rigorous
group testing problem. One way is to consider it as the sedalypergeo-
metric group testing problerwhere the numbed! of the active components
is fixed, the problem is mathematically identical to a prablhich is called
search for defectives (cf. Sobel and Groll (1958)). Alt¢iuedy, d could be
the upper bound for the number of defectives. Another wagwknasbino-
mial group testing problerris to assume that the probability to find an active
component by one simple trialjs= d/n, the activity of different components
are independent.

An important problem in pharmaceutical research is whettwdvidual test-
ing of components should be made or, alternatively, the corapts are to be
tested in groups. (We shall call a group active if it contahkeast one active
component, we assume that in an experiment we are able tt dedeactivity
of a group without error.)

The main difference between the present study and the papgm®up test-
ing mentioned below is the consideration of costs (perglfe both additional
stages along with the number of components in a test group.

Let A represent the cost incurred between successive stage badhe cost
of testing a mixture o components, we shall assume that= 1 (that is the
cost of individually testing the components is 1). Reepresent the normalised
cost between successive stagesi.es % .

Two simple cost functions that can be used are as follows:

Nes=1+rs"Witho<k<land0<y<1

(i) ¢s = 1 + klog s with k > 0.

We thus parameterise the costs with additional two or thi@ameters,
namely\, , and perhaps. If k = 0, the cost function in case (i) is 1 and the
cost of the experiment is exactly the number of tests.



2. MINIMISING THE NUMBER OF TESTS

Different group testing strategies, as well as upper an@itdwunds for the
length of optimal algorithms have been extensively studdedoth formula-
tions of the problem. In this section we ignore the costst {fhassume\ = 0
andc, = 1 for all s) and characterise different methods by the number of tests
only.

Let us provide references for some of the most well-knownlteslways
assuming (which is in agreement with the practical requinets) that the total
number of components is large, the number of active componedtss rel-
atively small, and (in the binomial group testing model) inebability that a
random component is active, is small.

The origin of group-testing is creditable to R. Dorfman (3p4nd it is
from his work that future studies stemmed. Sobel and Grob@) extensively
studied the binomial group testing model. In their main pohre components
that are proven to be active or inactive are never used inubsegjuent tests,
aside from such components at every stage the componensoaiezd to be
separated into at mosttwo sets. One, which is calledefective sdicontains at
least one active component) and the othetinemial set{the components act
like independent binomial chance variables with probghiliof being active).
Let EN denote the expected number of group tests remaining to barped,
Sobel and Groll show that

1 I
EN & —n ].Og2 <@> + np ].Og2 |:10g2 m] , N —00. (11)

Li's s-Stage algorithm (1962) was set to minimise the worst casgeu of
tests using combinatorial group testing to detectdlzetive components. At
the first stage the components are divided intg groups oft; (some possibly
k1 — 1) components. All groups are then tested and those that acévie are
removed. In general at stage2 < ¢ < s, items from the active groups of
stagei -1 are pooled and arbitrarily divided ingg groups ofk; (some possibly
k; — 1) components, and a test is performed on each grayis set to be 1,
thus every component is identified at stagéet NV denote the number of tests
required to determine the active components, it has beardfthat

N < ed(logn —logd), where e =2.7182818... (1.2)

Hwang's (1972) generalised binary splitting algorithmnseatension of the
binary splitting procedure, which involves the partitiogiof n components
into two disjoint groups such that neither has size excepiilts>"1-1 ([z]
denotes the smallest integer value larger than or equal,tthen test one



Pharmaceutical applicationsof the multi-stage groupitestmethod 5

group and the outcome will indicate either the test grougnerdther is active.
Hwang suggested a way to co-ordinate th@arumber of active components)
applications of binary splitting such that the total numdf¢ests can be reduced.
The algorithm was as follows:

1. If n < 2d — 2 then perform individual testing. i > 2d — 1, define
a = |logy((n—d+1)/d) | (|=] denotes the smallestinteger value smaller
than or equal ta).

2. Test a group of siz@%, if inactive, the group is identified as good, set
n =n — 2% and return to the step 1. If the outcome is active use binary
splitting to identify an active component and an unspecifiechber say
x of inactive components. Let=n — 1 —xz andd = d — 1. Return to
step 1.

If n is large enough then the number of tests for this algorithtisfses
N < d(logyn — logy d + 3) (1.3)

General formulas for the expected number of tests to deteraxtive compo-
nents in multi-stage procedures are also discussed in (R9&2).

Alternative literature on the hypergeometric group tesfmoblems deals
with the probabilistic technique of derivation of the egiste theorems for the
one-stage designs. The pioneering work in this area waslgoRenyi (1965)
and it has been successfully continued by many authors, saamaples are
listed in Du and Hwang (1993). For a fixed number of active congmtsd and
n — oo, the best known upper bound has been derived in Dyachkowg\Rarkd
Rashad (1989), see also Duand Hwang (1993), p\68&: dA;(1+0(1)) logs n
where

1 d
Ay 0242102021 {~0-@og1 -+
q l—q
dQlogy, — +d(1 — Q) lo } (1.4)
gZQ ( ) log, 1-Q

andAg = 2 log, e(1 + o(1)) whend — co. Asymptotically, when boti and
d are large,

N < Ni(n,d) ~ gdzlogn, n — 0o, d =d(n) — oo, d(n)/n — 0.

In the case wherd is fixed and the number of components in every test
group, say, is also fixed, the upper bound for the length of optimum dages
design is derived in Zhigljavsky (1998)V < N* = N*(n,d, s) whereN* is
the minimum ovek = 1, 2,... such that

k

I ()

d

1
§ i d—i d—i n—2d+i (Z)

L™

3
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where(, ,". ;) = n!/(alblc!d!) is the multinomial co-efficient. When —
o0, the results in Zhigljavsky (1998) imply that(n, d, s) = [N (n, d, s) +
o(1)] where

d+1)logn —log(d — 1)! — log2
“log(1—25(1— 2)7)

n

N@)(n, d,s) = ( (1.6)
Analogous results holds whehis the upper bound for the number of active
components.

Optimisation of the right-hand side in (1.6) with respect tthe size of the
test groups, gives,,; = s(n) =n/(d + 1) and

msinN(aS) (n,d,s) ~ gdz logn.

The approximations (upper bounds) for the length of difiergroup testing
strategies are compared in Table 1 foe= 500 000 andd = 10,50, and 100
(The corresponding values pfare0.00002, 0.0001, and0.0002.)

As we see from the Table 1, the multi-stage strategies ang dltimnes better
than the best one-stage procedures. But the situatiofytotednges when the
cost A\ for additional stages are taken into account. As we showhedee
Section 6. and Fig. 3(b), for reasonable values\ ohulti-stage strategies,
from the family of the Li's algorithms, with three or more g&s become less
efficient than the one-stage and two-stage strategies. darhe &olds for the
other sequential algorithms.

The formula (1.6) giving the upper bound for the length ofropi one-stage
procedure can easily be extended to calculate the cos&:irfiplies that there
exist one-stage procedures with the normalised cost

cs (d+1)logn —log(d —1)! —log2

(as) —
C'**)(n,d,s) - “log(1 = 22 (1= 2)7) . .7

For the costfunction;, = 1+« log s, optimisation of the right-hand side of (1.7)
with respect tos again gives the asymptotically optimum rate= n/(d + 1)
for s. In the case of the cost functian = 1 + ks, 0 < k < 1, the individual
testing procedures(= 1) is the asymptotically optimum.

3. TWO-STAGE PROCEDURE

Atypical procedure used in the pharmaceutical industretedt active com-
ponents is essentially the classical Dorfman’s procedsge Dorfman (1943),
a short description could also be found in Feller (1960), {49, Excercise
26), it is a particular case of the Li's family of algorithmsedhis described as
follows. The motherplate consists of columns and: rows, which gives in
total km cells, with each cell containing a different component ass for
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Table 1. Approximations for expected number of tests inowgiprocedures
for n. = 500 000.

Procedure d=10 d=50 d=100
(p =0.00002) $=0.0001) $=0.0002)
Sobel and 137 566 1032
Groll procedure(1.1)
Li's s-Stage 128 544 1006
algorithm (1.2)
Hwang 187 815 1197
algorithm (1.3)
One-stage 1801 35702 131 402

Algorithm(1.6)

simplicity n = km). At the first stage, a mixed sample of thecomponents

in each row is taken and deposited into the daughterplagentktures are then
tested for activity. At the second stage, if the mixture isvacthen it is deemed

to be a “hit”, them components that make the hit are then tested individually
to test their activity.

Let us follow the binomial group testing model and assumefhar to the
experiment the probability that a component is active, is practisep is very
small with a typical value being = 0.0001 (this would correspond t@é = 50
andn = 500000). We also assume that the activity of every component is
independent of every other component.

We have:

Pr(a component is inactive) E— p;

Pr(a group of components is inactive)l= p)™.

Thus,

Pr(a group of components is active) = (1 — p)™ = Py, p.

Hence, the first stage can be modelled by a sequente-of,/m Bernoulli
trials with the probability of success beig, ,. The number of successes (that
is the number of active groups)i$which is a random variable with a binomial
distribution. The normalised cost is then

~ 1 kE'm

C(mapa A) = Ecm + + A

n

In practise p is small and therefore by Taylor’s expang®yy, ~ mp (p — 0),
and we have:

~ 1
E[C(m,p, )] ~ Ecm +pm+ X;



~ Var(k'ym? P . (1—P 2
Var[C(m,p,\)] ~ Wfﬂ)m _ mPup(l = Pay) _ m7p

n n
This implies in particular that whemis small andn — oo, the expected cost
tends to infinity but the variance of the cost stays bounded.

The optimum value ofn for minimising the total cost may be found by
numerical optimisation. For the case where the cost fundte; = 1 + «s,
including the case = 0,

dC A 1 1 : : 1
dC(m,p, ) =——5 +p=0; thus m? = = which gives mgp; = 4/ —.
dm m 4 p
Figure 1(a) shows the mean number of tests required to dheeattive com-
ponents for the optimum two-stage procedure, Figure 1(@ystihe optimum
value ofm required to minimise the number of tests.

4. THREE-STAGE PROCEDURE

The three-stage procedure (again a particular case of théahily of al-
gorithms) has the same first stage as that of the two-stageduce, that is
creating a mixture of then components in each row from the motherboard,
components from the active mixture are then analysed inpgrofisize rather
than individually to detect activity. On the third stagee tiroups that were
active on the second stage are then tested individuallychirity.

We again adopt the binomial group testing model. The cosetdrchining
the number of active components for the three-stage proeedn be calculated
as follows:

n /

C(nvmvlvpv A) = Ecm + i

lmcl + K" + 2A (1.8)

wherek’ ~ Bin(k, Py, ) and k" ~ Bin(k', Py ).

The first term in (1.8) counts the number of tests in the figetwhich is
k = L. Atthe second stage we haué= k'm components and we test these
components in groups dfitems. This gives)'/l = k'm/l tests at the third
stage. As a result of the second stage, we have/§aictive groups each of
sizel, where analogously to the above” ~ Bin(k', P, p’) wherep' is the
posterior probability of an individual component beingaet Sincep is small,
the probability of two or more active components in a groupaftems in the
first stage is negligible, so we may assume tlat %

Thus, wherp is small, the expected normalised cost is

1 1
BIC(m.1,p, N)] ~ —em + Z?cl +ip(l— (1= 7)™ +2), p—0.

The optimum values ofr and! for minimising the number of tests to find
active components could be found by means of numerical agsimon.
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Figure 1.1 (a) shows the mean number of tests as a functignfof the one-stage, two-stage,
three-stage (section 4.) and row-and-column (sectionrbggalures with optimum parameters;
(b) shows the optimum values of minimising the mean number of tests for the 2-stage and the
row-and-column procedures

Figure 1(a) shows the mean number of tests required to dbeattive com-
ponents for the optimum three-stage procedure, FiguresB@ys the optimum
values ofm and! required to minimise the number of tests.
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Probability that a component is active Group size (m)

Figure 1.2 (a) shows the optimum valuesmfandl minimising the mean number of tests for the
3-stage procedure; (b) shows the probability that theresecand stage in the row-and-column
procedure, as a function af
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S. ROW-AND-COLUMN PROCEDURE

For the row-and-column procedure the motherplate consisiss > 1
columns andk > 1 rows giving in totalk - m cells, with each cell contain-
ing a different component, without loss of generality weuass thatn < k.

The number of motherplates to be tested is -, for simplicity we assume
thatr is an integer (in a typical experiments large). At the first stage, a mixed
sample of then components in each row is taken, along with mixed samples of
thek components in each column, these are then deposited indigaiaplate.
The mixtures are tested for activity, at the first stage we thake + - tests

in total. The number of active components in each motherpét, which is a
random variable with a binomial distributiof,~ Bin(km,p), thus:

pszPr(§=s>=(’“m)pS(1—p)kmS, s=0,....km

S

E() = kmp, Var(§) = kmp(1 —p).

At the second stage we test the components that could be &ittese com-
ponents are located at the intersections of the active rawdscalumns) for
activity. If there is either zero or one active componentim tnotherplate then
no further tests are required at the second stage. Howévhe humber of
active components in the motherbodrd larger than 1 then we must at most
test all the intersections of the active rows and columnseteda the active
components. If the active components are in different cakiand rows, this
will require at most? further tests (if the active components are in the same
row or column then the number of tests is smaller, the reasaihis being that
the number of intersection points to test for the active comemts will be less).
Also, when there aré > k active components then at mesk (the full mother-
plate) tests will be required. This implies that the uppaurizbfor the expected
number of tests required to determine the number of activgpoments at the
second stage may be estimated as follows:

C(n,m, k,p) < %(po-owl-0+pz-22+...+pm-m
+(Pmt1 + - + Prm)) - k) (1.9

2

If the value ofp is small the following estimator may be used to estimate the
expected number of tests at the second stage:

E[N(n,m,k,p)] = % (4( km?2 )p2(1—p)km_2 + (1—po—p1 —pg)km>

Since(p332 + o pam+ (Pm+1 + oo + Pkm)km < (1 —po — p1 — p2)km.
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Figure 1.3 (a) shows the values df as a function of such that the 2-stage procedure has the
same cost as the 3-stage procedure wjte= 1 + ks ; (b) shows the values of as a function
of k such that 1-Stage procedure has the same cost as 2-stagdyuwithc; = 1 + xlog s

Therefore, the expected normalised cost of the row-angruolprocedure
may be estimated as follows:

~ 1 1 1
EIN < — E— — 1p2(1 — p)km—2
[N (n,m, k,p)] < em— + cxp + —=(2km(km — 1)p* (1 —p)*™ = +
(1 —po — p1 — p2)km) + A (1.10)

Itis easy to estimate the probability that there is a sectagksor the row-and-
column procedure. Indeed, we do not need the second staueréf is never
more than one active component in the motherplate. We haxen/(mk)
motherplates and the probability of having two or more &temponents on
each motherplate is

Q=1-py—p1=1—(1—p)F™ —kmp(l —p)Fm-1.

Therefore, the probability that there is a second stage-i§l — Q)". These
probabilities, for the optimum cade = m, are plotted in Figure 2(b). We
see from this plot that for practical values/otndm the probability that the
row-and-column is actually a one-stage procedure is lavgerhall values of
p. The reason why we assume tlat m is that the expected number of tests
is always smaller whem = k thanm < k, if saymk = constant.
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p=0.0001]

p=0.00001

p=0.0001

\
\
\
Standardised Cost

Figure 1.4 (a) shows the values afas a function ok such that 2-Stage procedure has the same
cost as 3-stage procedure with= 1 + xlog s ; (b) shows the standardised cost as a function
of k such that 2-Stage procedure has the same cost as 3-stagdyuwithc; = 1 + klog s

6. CONCLUSIONS

It was found that if the number of active components, d, issaably small
(say,d < 10) then the optimum one-stage procedures could be much more
cost-effective than the best multi-stage procedures.

By increasing the number of components in the mixtures itvilbestage pro-
cedure we can significantly reduce the number of tests redtir detect active
components (the number of tests could be reduced by a fadadppooximately
4 in the standard case, that is p=0.0001).

The reduction in the number of tests can be made even bigger dpply a
multi-stage procedure. However, if we take into accountcibss associated
with the number of components in a mixture and especiallyptmalties for
extra stages, the three- and more stage procedures coulddbdass effective.
The two-stage procedure is often a good compromise.

The row-and-column method is typically worse that the twage standard
with related parameters. However, the number of componiertte tested at
the second stage for the row-and-column procedure is mueliegnthan for
the two- and three-stage procedures. (With some probalslite Section 5.,
the row-and-column procedure is even a non-adaptive, @ge-procedure.)
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