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ABSTRACT

The issue of whether to test components individually, or alternatively in groups, in or-

der to detect certain chemical properties remains an important issue in the pharmaceutical

industry. Economic viability is of paramount importance since, for multi-stage procedures,

the cost of additional stages must be taken into consideration, along with the cost of testing

mixtures of components. Optimum groups sizes are calculated for the two-stage, three-stage

(both members of Li’s family of algorithms) and the row-and-column procedures. The γ-

two-stage design is investigated, which involves using a γ-separating design at the first stage,

followed (if necessary) by a strongly separating design at the second stage. Finally, compar-

isons are made between the costs of single and multi-stage procedures, for both optimum

and standard groups sizes, through the use of two different cost functions.

1. INTRODUCTION

As company chemical libraries continue to expand, strategies to efficiently screen com-

pounds remains an important issue. The principle aims are to use the minimal amount of

resources in the smallest time scales, whilst maintaining the quality of the resultant data.

A method currently in use is the pooling of samples, which entails the analysis of mixtures

of compounds. If a pooled sample produces a positive result, the individual components are
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assayed separately to identify which component or components were active.

A number of statistical issues arise from this strategy: what is the optimal number of

compounds to pool, how will the strategy affect false positive (a component that is labelled

as active when it is inactive) and false negative (a component that is labelled as inactive

when it is active) error rates, and, how does this strategy compare economically to a single

stage screen of assaying all individual compounds.

Additionally there are practical constraints: much of the assay work is performed by

robots, thus the final strategy needs to be compatible with an automated procedure, also

random access to samples of single compounds in the compound library is performed man-

ually, this adds a substantial amount of time to multi-stage processes.

In a particular test, either an individual component or a mixture of components are

tested for activity. The result is given in the form of a numerical value. The distribution

of the activity measurements over all components is positively-skewed, and it is only those

components in the extreme right-hand tail of the activity scale that are of interest. In a

typical experiment between 10 and 100 (d) of the most active components amongst 106 (n)

components would be searched for. A cut-off point is specified such that a component having

an activity reading exceeding this point is deemed to be a hit. If the activity is less than this

arbitrary point, then the component is judged to be inactive. To determine the importance

of active components relative to one another, they are arranged in ascending order of activity.

The problem of false positives can be overcome in an obvious way: after the active

components are identified, they are individually re-tested for their activity. The issue of

false negatives is only relevant to those components fringeing around the cut-off point. It is

assumed that the errors in the tests are small, therefore it is unlikely that the very active

components are classified as false negatives.

There are two slightly different ways of formalising the problem in the form of a rigorous

group testing problem. One way is to consider it as the so-called hypergeometric group testing

problem where the number d of the active components is fixed (d can also be the upper bound

for the number of active components). Alternatively, the problem can be considered as a
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binomial group testing problem, where it is assumed that the probability of finding an active

component by one simple trial is p = d/n, and that the activity of different components are

independent (cf. [1]).

The principal difference between the present study and previous papers on group testing

is the consideration both of costs (penalties) for additional stages, and for the number of

components in a test group. These cost functions have been introduced in [2], where some

preliminary results have also been reported. The cost associated with the additional stages

is due to alterations that must be made to the machinery used in pooling the samples.

Let Λ represent the cost incurred between successive stages and let cs be the cost of

testing a mixture of s components. It is assumed that c1 = 1 (that is the cost of individually

testing the components is 1). Let λ represent the normalised cost between successive stages

(λ = Λ
n

), in pharmaceutical applications typical values are 0.1 ≤ λ ≤ 0.3 .

Two simple cost functions that can be used are:

(i) cs = 1 + κ(s− 1)ζ with 0 ≤ κ < 1 and 0 ≤ ζ ≤ 1

(ii) cs = 1 + κ log s with κ ≥ 0.

The costs are thus parameterised with additional two or three parameters, namely λ, κ, and

perhaps ζ. If κ = 1 and ζ = 1, the cost function in case (i) is cs = s (if Λ = 0), and the cost

of the experiment is exactly the number of tests performed. The cost function (ii) seems

to be the more natural in the pharmaceutical applications that we have in mind. This is

due to the common belief that the number of substances required to test s components is

proportional to log s, where s is large. The cost function (i) is very flexible and describes an

intermediate case between cost function (ii) and cs = s (i.e. the number of test performed).

When the cost incurred between stages (Λ) is taken into account, the standard sequen-

tial procedures become inefficient (even with respect to individual testing). Thus, we only

consider these procedures when the cost is equal to the number of tests.

2. MINIMISING NUMBER OF TESTS

Different group testing strategies, as well as upper and lower bounds for the length of

optimal algorithms, have been extensively studied for both formulations of the problem. In
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this section costs shall be ignored (that is assume λ = 0 and cs = 1 for any s) and different

methods are characterised by the number of tests only.

References will be provided for some of the most well-known results, with the assumption

that the total number of components n is large, the number of active components d is

relatively small, and (in the binomial group testing model) the probability that a random

component is active, p, is small. These assumptions conform with practical requirements.

The origin of group-testing is credited to [3] from whose work future studies stemmed.

[1] extensively studied the binomial group testing model. For their main procedure, it was

found that the expected number of group tests required to detect the d active components

is as follows:

E(N) ∼= −n log2

(
1

(1− p)

)
+ np log2

[
log2

1

(1− p)

]−1

, n→∞ . (1)

Li’s s-stage algorithm [4] was set to minimise the worst case number of tests using com-

binatorial group testing to detect the d active components. Let N denote the number of

tests required to determine the active components, it has been found that:

N ≤ e d(log n− log d), where e = 2.7182818... (2)

Hwang’s generalised binary splitting algorithm [5] is an extension of the binary splitting

procedure, Hwang suggested a way to include d (number of active components), into ap-

plications of binary splitting such that the total number of tests can be reduced. If n is

sufficiently large the number of tests for this algorithm satisfies:

N ≤ d(log2 n− log2 d+ 3) (3)

more precise bounds are given in [6] and it is these values that appear in Table I. General

formulas for the expected number of tests to determine active components in multi-stage

procedures are also discussed in [7].

An alternative literature on the hypergeometric group testing problem deals with the

probabilistic technique of derivation of the existence theorems for the one-stage designs.

The pioneering work in this area was done by [8]. Many authors have continued this work,
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some examples are listed in [6]. For a fixed number of active components d and n→∞, the

best known upper bound has been derived in [9], see also [6], Theorem 7.2.15:

N ≤ dAd(1 + o(1)) log2 n

where:

1

Ad
= max

0≤q≤1
max

0≤Q≤1

{
−(1−Q) log2(1− qd) + dQ log2

q

Q
+ d(1−Q) log2

1− q
1−Q

}

and Ad = 2
d

log2 e(1 + o(1)) as d→∞. Asymptotically, when both n and d are large,

N ≤ N∗(n, d) ∼ e

2
d2 log n , n→∞, d = d(n)→∞, d(n)/n→ 0.

In the case where d is fixed and the number of components in every test group, say s, is

also fixed, the upper bound for the length of optimum one-stage design is derived in [10]:

N ≤ N∗ = N∗(n, d, s) where N∗ is the minimum over k = 1, 2, . . . such that

1

2

d−1∑

i=0

(
n

i d−i d−i n−2d+i

)

1− 2 ·

(
n−t
s

)
−
(
n−2d+i

s

)
(
n
s

)


k

< 1

where
(

n
a b c d

)
= n!/(a!b!c!d!) is the multinomial co-efficient. When n → ∞, the results in

[10] imply that N(n, d, s) = dN (as)(n, d, s) + o(1)e where

N (as)(n, d, s) =
(d+ 1) log n− log(d− 1)!− log 2

− log(1− 2 s
n
(1− s

n
)d)

. (4)

Analogous results hold when d is the upper bound for the number of active components.

Optimisation of the right-hand side in (4) with respect to s, the size of the test groups,

gives sopt = s(n) = n/(d+ 1) and

N (as)(n, d) ∼ e

2
d2 log n .

The approximations (upper bounds) for the lengths of different group testing strategies are

compared in Table I for n = 106 and d = 10, 50, and 100 (with the corresponding values of

p equal to 0.00001, 0.00005, and 0.0001).
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Table I: Approximations for expected number of tests in various procedures for n=1000 000.

Procedure p=0.00001 p=0.00005 p=0.0001
(d = 10) (d = 50) (d = 100)

Sobel and Groll alg. (1) 176 761 1 421

Li’s s-Stage alg. (2) 313 1 347 2 504

Hwang alg. (3) 184 810 1 521

One-stage alg. (4) 1 904 38 110 140 930

As we see from Table I, both the Sobell and Groll and Hwang’s algorithm are about d

times better than the best one-stage procedures. But the situation alters when the cost λ

for additional stages is taken into account. As we show later, see Figures 4, 5 and 6, for

reasonable values of λ, multi-stage strategies, from the family of the Li’s algorithms, with

three or more stages become less efficient than the one-stage and two-stage strategies. This

also applies to other sequential algorithms.

The formula (4) giving the upper bound for the length of optimal one-stage procedure

can easily be extended to calculate the normalised cost:

C̃(as)(n, d, s) =
cs
n
· (d+ 1) log n− log(d− 1)!− log 2

− log(1− 2 s
n
(1− s

n
)d)

. (5)

For the cost function cs = 1 + κ log s, optimisation of the right-hand side of (5) with respect

to s again gives the asymptotically optimum rate s = n/(d+ 1) for s. In the case of the cost

function cs = 1 + κs, 0 < κ < 1, the individual testing procedure (s = 1) is asymptotically

optimum.

3. TWO-STAGE PROCEDURE

A typical procedure used in the pharmaceutical industry to detect active components is

essentially the classical Dorfman’s procedure (see [3], a short description can also be found

in [11]), which is a particular case of Li’s family of algorithms.

The motherplate consists of m columns and k rows, giving in total km cells, with each cell

containing a different component (assume for simplicity n = km). At the first stage, a mixed
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sample of the m components in each row is taken and deposited into the daughterplate, the

mixtures are then tested for activity. At the second stage, if the mixture is active then it is

deemed to be a hit, the m components that make the hit are then tested individually to test

their activity.
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Figure 1: Mean number of tests as a function

of p for the one-stage, two-stage, three-stage

(Section 4) and row-and-column (Section 5)

procedures with optimum parameters.

Figure 2: Optimum values of m minimising

the mean number of tests for the two-stage

and the row-and-column procedures.

The binomial group testing model will be followed, and it is assumed that prior to the

experiment the probability that a component is active is p. In practice, p is very small with

a typical value being p = 0.00001 (this would correspond to d = 10 and n = 106). The

activity of every component is assumed to be independent of every other component. A

group is deemed active if it contains at least one active component, it is assumed that in an

experiment we are able to detect the activity of a group without error. Then we have:

Pr (a component is inactive) = 1− p,

Pr (a group of components is inactive) = (1− p)m,

Pr(a group of components is active) = 1− (1− p)m = Pm,p.
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Hence, the first stage can be modelled by a sequence of k = n/m Bernoulli trials with the

probability of success being Pm,p. The number of successes (that is the number of active

groups) is k′, which is a random variable with a binomial distribution k′ ∼ Bin(k, Pm,p),

thus:

Pr(k′ = i) =



k

i


Pm,pi(1− Pm,p)k−i; E(k′) = kPm,p; V ar(k′) = kPm,p(1− Pm,p)

Hence, the standardised cost of determining the number of active components is calcu-

lated as follows:

C̃(m, p, λ) =
1

m
cm +

k′m
n

+ λ

By Taylor’s expansion Pm,p ∼ mp (p→ 0), which gives:

E[C̃(m, p, λ)] ∼ 1

m
cm + pm+ λ ;

V ar[C̃(m, p, λ)] ∼ V ar(k′)m2

n2
=
mPm,p(1− Pm,p)

n
≈ m2p

n

This implies that when p is small and n → ∞, the expected cost tends to infinity but the

variance of the cost remains bounded. The optimum value of m for minimising the total cost

may be found by numerical optimisation. For the case where the cost function is cs = 1+κs,

including the case κ = 0,

dC̃(m, p, λ)

dm
= − 1

m2
+ p = 0; thus m2 =

1

p
which gives mopt =

√
1

p
.

Figure 1 shows the mean number of tests required to detect the active components for the

optimum two-stage procedure, and Figure 2 shows the optimum value of m required to

minimise the number of tests.

4. THREE-STAGE PROCEDURE

The three-stage procedure (again a particular case of the Li’s family of algorithms) has the

same first stage as the two-stage procedure. However, components from the active mixtures

are then analysed in groups of size l rather than individually to detect activity. On the third

stage, the groups that were active on the second stage are tested individually for activity.
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Figure 3: Optimum values of m and l for min-

imising the mean number of tests in three-

stage procedure.

The binomial group testing model is again adopted. The cost of determining the number

of active components for the three-stage procedure can be calculated as follows:

C(n,m, l, p,Λ) =
n

m
cm +

k′m
l
cl + lk′′ + 2Λ (6)

where k′ ∼ Bin(k, Pm,p) and k′′ ∼ Bin(k′, Pl,p′). The first term in (6) counts the number of

tests in the first stage which is k = n
m

. At the second stage we have n′ = k′m components

and these components are tested in groups of l items. This gives n′/l = k′m/l tests at the

third stage. As a result of the second stage, we have got k′′ active groups each of size l,

where analogously to the above: k′′ ∼ Bin(k′, Pl, p′), with p′ being the posterior probability

of an individual component being active. We may assume that p′ = 1
m

(as p is small).

Thus, the expected normalised cost is

E[C̃(m, l, p, λ)] ∼ 1

m
cm +

pm

l
cl + lp(1− (1− 1

l
)m) + 2λ, p→ 0.

Optimum values for m and l which minimise the number of tests to find active components

can be found by means of numerical optimisation.
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cost as the three-stage procedure with

cs = 1 + κs.

Figure 5: Values of λ as a function of κ such

that one-stage procedure has the same cost

as two-stage procedure with cs = 1 +κ log s.

Figure 1 shows the mean number of tests required to detect the active components for

the optimum three-stage procedure, Figure 3 shows the optimum values of m and l required

to minimise the number of tests.

5. ROW-AND-COLUMN PROCEDURE

A procedure that is popular in the pharmaceutical industry, is the row-and-column pro-

cedure. In this procedure the motherplate consists of m > 1 columns and k > 1 rows giving

in total km cells, each cell containing a different component. Without loss of generality we

assume that m ≤ k. The number of motherplates to be tested is r = n
km

, for simplicity we

assume that r is an integer (in a typical experiment r is large).

At the first stage, a mixed sample of the m components in each row is taken, along

with mixed samples of the k components in each column, these are then deposited in the

daughterplate. The mixtures are tested for activity. We thus make n
k

+ n
m

tests in total at

the first stage.

The number of active components in each motherplate is ξ, which is a random variable
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Figure 6: Values of λ as a function of κ

such that two-stage procedure has the same

cost as three-stage procedure with cs = 1 +

κ log s.

Figure 7: Standardised cost as a function

of κ such that two-stage procedure has the

same cost as three-stage procedure with cs =

1 + κ log s.

with a binomial distribution, ξ ∼ Bin(km, p), thus:E(ξ) = kmp, V ar(ξ) = kmp(1− p).
At the second stage we test the components that could be active. (These components

are located at the intersections of the active rows and columns). If there is either zero or one

active component in the motherplate then no further tests are required at the second stage.

However, if the number of active components in the motherplate ξ is larger than 1, then

we must at most test all the intersections of the active rows and columns to detect the active

components. If the active components are in different columns and rows, this will require

at most ξ2 further tests, for the case where the active components are in the same row or

column the number of tests is smaller, due to the number of intersection points to test for

the active components being less.

When there are ξ ≥ k active components then at most mk (the full motherplate) tests

will be required. This implies the upper bound for the expected number of tests required to

determine the number of active components at the second stage may be estimated as follows:

E[N(n,m, k, p)] ≤ n

mk
(p2 ·22+...+pm ·m2 +(pm+1+ ...+pkm)·km)
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where px is the probability that there are x active components in the motherplate (the terms

related to the cases of zero and one active components in the motherplate do not require

additional testing at the second stage).

Since (p332 + ...+ pmm
2+ (pm+1 + ...+ pkm))km ≤ (1−p0−p1−p2)km, we get:

E[N(n,m, k, p)] ≤ n

mk

(
4



km

2


 p2(1−p)km−2 + (1−p0−p1−p2)km

)
(7)

This inequality is sharp when p is small (which is typical in practice). Therefore, the right

hand side of the inequality (7) can be used as an estimate of the average number of tests

required to determine the active components at the second stage.
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Figure 8: Probability that there is a second stage in the

row-and-column procedure, as a function of m.

The expected normalised cost of the row-and-column procedure can be estimated as

follows:

E[C̃(n,m, k, p)] ≤ cm
1

m
+ ck

1

k
+

1

mk

(
2km(km− 1)p2(1− p)km−2 + (1−p0−p1−p2)km

)
+λQ

where Q is the probability that there is a second stage. The second stage is only required

when the number of active components on a motherplate exceeds one. As r = n/mk repre-
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sents the number of motherplates and the probability of having two or more active compo-

nents on each motherplate is 1− p0 − p1 = 1− (1− p)km − kmp(1− p)km−1. This gives:

Q = 1− ((1− p)km + kmp(1− p)km−1)r.

These probabilities, for the optimum case k = m, are plotted in Figure 8. We see from

this plot that for practical values of k and m the probability that the row-and-column is

actually a one-stage procedure is large for small values of p. The reason why we assume that

k = m is that the expected number of tests is always smaller when m = k than m < k, if

say mk = constant.

6. γ-TWO-STAGE PROCEDURE

Through the use of probability it is possible to derive upper bounds for the length of

optimal non-sequential designs; such bounds are called existence theorems.
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Figure 9: Values of c (see Equation (9))

against different values of d.

Figure 10: Number of tests required to de-

tect different number of active components.

Let the target T be an unknown group of active components, and T be a set of all

possible collections of groups containing d (or less) active components. Let X be a group

of test components in a particular test, and X be a set of all admissible test groups. For
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a pair of targets T, T ′ ∈ T , X ∈ X separates T and T ′ if f(X,T ) 6= f(X,T ′). A design

DN = {X1, ..., XN} separates T in T if for any T ′ ∈ T , such that T ′ 6= T , ∃ X ∈ DN which

separates the pair (T, T ′). A design DN is a one-stage design if all T in T are separated.

A design DN is γ − separating if :

|{T ∈ T } : design DN separates T in T |
|T | ≥ 1− γ

where γ is constant, 0 ≤ γ ≤ 1, and |A| denotes the number of elements in a set A. Designs

with γ = 0 are called strongly separating.
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Figure 11: Optimum standardised cost

for one-stage, two-stage, row-and-column

and γ-two-stage procedures for cs = 1 +

κ log s, λ = 0.2 and p = 0.00001.

Figure 12: Standardised cost for one-stage,

two-stage, row-and-column and γ-two-stage

procedures for cs = 1 +κ log s, λ = 0.2, s =

500 and p = 0.00001.

The γ-two-stage procedure is investigated in this section. At the first stage a γ-separating

design is applied, this uniquely determines the unknown collection of active components with

probability 1-γ (assuming that every collection of active components is equally possible). The

second stage is only needed if the collection of active components is not uniquely determined

at the first stage; that happens with probability γ. At this stage we ignore previous results

and apply the strongly separating design.
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According to [12] the number of tests with group size s required to detect active compo-

nents in a γ-separating design asymptotically (as n →∞) is:

Nγ(n, d) =
n

2s
log2n− log2γ + c (8)

where c = c(d) is the solution of

d−1∑

p=1

2−c(d−p)/d
d!

(p!(d− p)!)2
= 1. (9)

In the asymptotic case c is disregarded, values of c for typical values of d may be seen in

Figure 9.
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Figure 13: Optimum standardised cost for

one-stage, two-stage, row-and-column and

γ-two-stage procedures for cs = 1 + κs, λ =

0.2 and p = 0.00001.

Figure 14: Standardised cost for one-stage,

two-stage, row-and-column and γ-two-stage

procedures for cs = 1 + κs, λ = 0.2, s =

500 and p = 0.00001.

Through using expressions (8) and (4), the number of tests performed using a γ-two-stage

design to detect all active components may be derived as follows:

Nγ(n, d) =
n

2s
log2n− log2γ + c+ γ

(
(d+ 1) log n− log(d− 1)!− log 2

− log(1− 2 s
n
(1− s

n
)d)

)
(10)

with the cost to detect all active components being:
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Cγ(n, d) =

(
n

2s
log2n− log2γ+c

)
cs + γ

(
(d+ 1) log n−log(d− 1)!−log 2

− log(1− 2 s
n
(1− s

n
)d)

)
cs+γΛ

The number of tests to determine the active components for Sobell & Groll procedure (1), Li’s

s-stage algorithm (2), Hwang’s algorithm (3) and optimal γ-two-stage-separating procedure

(10), against the number of active components can be seen in Figure 10. Optimum values for

γ were found to be negligible, this implies that the γ-separating procedure almost becomes

a one-stage procedure when minimising the number of tests. Figures 11 and 13 compare

the standardized costs of all procedures with optimum parameters, for the cost functions

cs = 1 + κs and cs = 1 + κ log s, respectively. Figure 12 and 14 compare the standardized

costs for all procedures, again with both cost functions, but with the group sizes fixed at 500

(a value that is often applied in practice). For small s the γ-two-stage-separating procedure

is inefficient.

7. SUMMARY

For small values of d (say d ≤ 20) the optimum one-stage procedure is as efficient as the

multi-stage procedures in determining active components.

Multi-stage procedures reduce then number of tests required to detect active components

considerably. However, when the additional costs associated with testing pooled samples,

and in particular the cost of additional stages are taken into account, the three- and more

stage procedures are inefficient. Often, the two-stage procedure can be considered to be a

good compromise.

The row-and-column procedure proves to be worse than a two-stage procedure with

related parameters. However, if d is small and λ is large, then this procedure can prove to be

very cost-effective. Moreover, the number of components to be tested at the second stage for

the row-and-column procedure is far smaller than that of the two- and three-stage procedures.

With some probability the row-and-column procedure is even a one-stage procedure.

For d ≤ 100 it was found that the optimum γ-two-stage design is more efficient than Li’s

s-stage algorithm, Sobell and Groll’s procedure and Hwang’s generalised binary splitting al-

gorithm in determining the active components. When penalty costs for additional stages are
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taken into consideration the γ-two-stage procedure proves to be by far the most economical

of the four procedures.

The γ-two-stage design proves more cost effective than both the optimum one-stage and

multi-stage procedures for the logarithmic cost function, cs = 1 + κ log s.
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