A characterization of the arcsine distribution
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Abstract. The following characterization of the arcsine density is established: let £ be a r.v. supported
n (—1,1), then & has the arcsine density p(t) = 1/(7v1—12), —1 < t < 1, if and only if Elog(¢£ — )2
has the same value for almost all x € [—1, 1].

1 Introduction

The arcsine density on the interval (—1,1) is

(t) L l<t<1 (1)
P /11—t '

To define a r.v. & with the arcsine density (1) we can use the formula ¢ = cos(ma), where « is
a r.v. with uniform distribution on (0,1). The arcsine density has several non-trivial appearances in
probability theory and statistics. For example, for a general random walk {S,,} satisfying the Lindeberg-
Lévy condition, the limiting distribution of % S 1(5,>0) (as n — o0) has the arcsine density on (0,1),
see §11 in Billingsley (1968), Erdés and Kac (1947), Lévy (1948). The arcsine density (1) is an invariant
density for a number of maps of the interval (—1,1) onto itself, see e.g. Rivlin (1990), Theorem 4.5. This
density is the limiting density of the roots of the orthogonal polynomials which are defined on (-1,1) and
orthogonal with respect to any weight function w(-) continuous on (—1,1), see Ullman (1972), Erdés and
Freud (1974), van Assche (1987).

In probability theory, the arcsine density has a number of characterizations, see Norton (1975, 1978),
Arnold and Groenveld (1980), Kemperman and Skibinsky (1982). Below we consider a characterization
of the arcsine density that is of a different nature than the ones considered in these papers.

Our main result is as follows.

Theorem. Let & be a r.v. supported on (—1,1). This r.v. has the arcsine density (1) if and only if
Elog(¢ — x)? has the same value for almost all x € [—1,1].

As a motivation for the above theorem, assume that we have a sequence of points x1, xs, ... in the interval
(—1,1) that has an asymptotic c.d.f. F(-) in the sense that

k 1

lim * S e = [ woydr) )

for any continuous function h(-) such that [ |h(z)]dF(xz) < co. Consider an associated sequence of
polynomials Hy(z) = (v — x1)? (x — 22)?--- (2 — 2%)?. Then the result of the Theorem implies that
the values of the normalized ratios Ry(x,y) = [Hy(x)/Hy(y)]'/* tend to 1 (as k — oo) for almost all
x,y € (—=1,1) if and only if the c.d.f. F(-) has the arcsine density (1). Indeed,

??'M—‘

log Ry, (x,y) = log[Hy(x)]"/* — log[Hy(y)]"/* = Zlog

K
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Using (2), for almost all z,y € [—1, 1] we obtain

1 1

log nggo Ry (x, y)] = klirrolo log Ry (z,y) = / log(z — t)? dF(t) — / ) log(y — t)? dF(t). (3)

-1 —
The theorem implies that the r.h.s. of (3) is zero for almost all z,y € [—1,1] if and only if the c.d.f. F()
has the arcsine density (1).

The fact that Ri(z,y) — 1 (as k — oo) for almost all 2,y € (—1,1) means that the ratios Hy(x)/Hy(y)
are almost never very large (these ratios are smaller than §* with any 6 > 1 for sufficiently large k:
k > k*(z,y)) and very rarely are very close to 0 (they are larger than any 6 with any 6 < 1 and
k > k.(z,y)). Note that if k is fixed and z; = cos (7(2j — 1)/(2k)) for j = 1,...,k, then Hy(z) = ¢, TZ(t)
where ¢, is some constant and Ty (x) = cos[k arccos(x)] is the k-th Chebyshev polynomial. In this case,
the fact that Ri(x,y) = 1 (as k is large) for typical z,y € (—1,1) follows from the properties of the
Chebyshev polynomials.

2 Auxiliary statements and proofs

The proof of the theorem is based on three Lemmas. In Lemma 1 we observe that the expected value
of log(¢ — x)? is finite for almost all € [0,1]. In Lemma 2 we derive a specific characterization of
the uniform measure on the interval [0, 7]. To prove Lemma 2 we use a general characterization of the
Lebesgue measure on the interval [0, 7] established in Lemma 3.

Lemma 3 uses Fourier series, which may seem surprising but is a natural reflection of the intrinsic
relationship between the arcsine distribution and trigonometric powers, as apparent in the Chebyshev
polynomials.

Lemma 1. For any r.v. & supported on (—1,1), the expectation Elog(¢é — x)? is finite for almost all
xz € [-1,1].

Proof of Lemma 1. Let F(:) be the c.d.f. of the r.v. £ and —1 <t < 1. The integral
1
/ log(t — x)*dz = (1 +t)log(1 +t)® + (1 — t) log(1 — t)* — 4
—1

is bounded and continuous as a function of ¢, so the integral

[ 11 [ 11 log(t — 2)% dz dF (1)

exists. By the Fubini-Tonelli theorem,

Elog(¢ — z)* = / log(t — )2 dF(t) € L*([-1,1]),
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so in particular it is finite for almost all z € [—1, 1]. [ |

Lemma 2. Let ¢ be a r.v. distributed according to a probability measure u(-) on [0,7]. Then the
expectation

E, (1) = Elog(cos ¢ — z)?
is constant for almost all x € [—1,1] if and only if the measure p(-) is uniform on [0, 7]; in this case, the
expectation E,(u) has the same value for all x € [—1,1].



Proof of Lemma 2. As x € [—1,1], we can set ¢ := arccosz € [0,7]. Let us extend p to [0,27] as an
even measure (that is, we set u(A) = p(2r — A) for all Borel sets A C [, 27]) and note that u([0, 27]) = 2.
Using cos ¢ = cos(2m — ) for all p € R, we calculate

1 27 1 27 . _ . + 2
E.(p) = 3 /0 log(cos ¢ — x)? p(dy) = 3 /0 log (2 sin ¥ 5 v sin 7 w) w(de)

2
27 27 _ 2 2 2
= % [/o 2 log 2 p(dy) + /0 log (sin Ld 5 ¢) w(de) + /0 log (sin L ; 1/)) ,u(dcp)]

2 log2+ /O "log (sin? (¢ — /2)) fi(de) + /O "log (sin? (¢ + 1/2)) i(dy) (4)

where fi(A) = 11(2A) for all Borel sets A C [0, 7).
As i and sin? are m-periodic and even, we obtain by making the substitution ¢ =7 — ¢:

s

/ “log (sin? (o + /2)) ldy) = [ 1os (s (x = 3 40/2) ) = | " log (sin® (5 — /2)) A(dP).
0 0 0

This implies that the two integrals in (4) are identical and therefore
Bul) = 2log2-+2 [ log (sin® (¢~ /2) 7(d).
Hence the expectation E,(p) is constant for almost all = € [—1, 1] if and only if
logsin?  fi (y) = /OTr log (sin® (¢ — y)) fi(dyp) is constant for almost all y € [0, 7] . (5)

The Fourier series for logsin® is not uniformly convergent, but it converges in the L2([0,7]) sense, as
logsin? € L%([0,7]) and {e**?|k € Z} is an orthonormal basis of this Hilbert space. Moreover, all
(complex) Fourier coefficients of logsin? are real and non-zero. Indeed,

/ log (sin®(p)) sin(2kp)dp =0 Vk € Z
0

and

! —2rlog2, k=0

/0 log (sin®(¢p)) cos(2kyp)dyp = 277/0 log (sin(7t)) cos(2wkt)dt = { “a/k keZ\ {0},

see formula 4.384.3 in Gradshtein and Ryzhik (1965). The statement of Lemma 2 now follows from
Lemma 3 below. u

Lemma 3. Let ji be a probability measure on [0, 7] and f € L*([0,7]) be such that

N

f@)=limy o > Oke”™* (z€[0,7])
k=—N

where all Fourier coefficients are non-zero: 0y # 0 Vk € Z. Then, extending f to R as a w-periodic
function, the convolution fx i (-) := fow fG—t)a(dt) is constant almost everywhere if and only if fi is
the uniform measure on [0, 7]; in this case, f * i is constant everywhere.



Proof of Lemma 3. Assume
fxi(x)= / f(z —t) i(dt) = C = const (for almost all x € [0,7]).
0
Then, for all k € Z\ {0},

s s us s s N
0= / ¥k Odr = / e2ike { / f(x—t)/l(dt)} dr= / [ / T Limy e Y ene“"@—t)dx] fi(dt)
0 0 0 0 0

n=—N
N N

:/ lim g, e 2"t {/ eZi(kJr")zdx} a(dt) :/ lim 0, e 2"t On,—k f(dt)
0 0 0

N —o00 N—o0
n=—N n=—N

= 779,;@/ eZ ikt (dt) .
0

As 0_j #£0Vk € Z\ {0} we get [ e**fu(dt) =0 Vk € Z\ {0}.
Now set u' = fi — fi([0, 7])\/7, where X is the Lebesgue measure on [0,7]. Then

/ J(dt) = 0 and / €M () — / 2t qpy — P00 / 2 E — 0, Wk € 2\ {0}
0 0 0 T 0

as shown above, so foﬂ e?®ty/(dt) = 0 Vk € Z. As every continuous function on [0, 7] can be uniformly
approximated by a linear combination of {e?***|k € Z} and /' is finite, this implies

/ " () (dt) = 0 Y € ([0, 7))

and hence p/ = 0. This completes the proof of the ‘only if’ part of Lemma 3. The converse is obvious,
bearing in mind that f is m-periodic and f(z —-) € L*([0, ]) for all z € R. [ ]

Proof of the Theorem. Consider the expectation

Y log(t — x)?
I, =Elog(¢ — )= [ =8V _2)°
0g(§ — ) Vi

where r.v. £ has the arcsine density (1). By changing the variable ¢ = cos ¢ we obtain

71'1 _ 2 1 Iy
I, :/ Og(cos.—(px)siw dp = */ log(cos p — x)* dp = Ey (o), (7)
0 msin g 7 Jo

dt, (6)

where pg is the uniform measure on [0, 7]. Hence, by applying Lemma 2 with 1 = pg, we conclude that
I, has the same value for all x € [—1,1]. This proves the ‘only if’ statement in the Theorem.

To complete the proof of the Theorem, we now show the converse, i.e. that if, for a random variable
¢ supported on (—1,1), Elog(¢ — x)? has the same value for almost all x € [—1, 1], then ¢ has the arcsine
density. In view of Lemma 1 the constant value of Elog(¢ — x)? must be finite. Denote by F(-) the c.d.f.
of . Then F(—1) =0, F(1) =1 and

Blog(¢ - ) = [

1 ~

log(t — x)*dF(t) = / log(cos ¢ — )% dF(y),
1 0
where t = cosp and F(npl = 1— F(cosy). By Lemma 2, the probability measure generated by F is
uniform on [0, 7]; that is, F/(p) = ¢/7 V¢ € [0, 7]. This implies
F(z) =1- (arccosz)/m Vx € (—1,1),
so the density of £ is F'(x) = 1/(7rV/1 — z2). [



3 Explicit formulae for the integrals and a generalization

3.1 Explicit formulae for the expectations

The value of the expectation (6) can be easily computed based on our result that it is independent of x
in the interval [—1,1].

Corollary 1. Let the r.v. £ have density (1). Then
—2log?2 if x| <1
_ N2 <
L, = Elog(¢ — ) { 2log (Jo| + Va2 —1) —2log2 if |z| > 1. (8)
Proof. For |z| <1 we use I, = Iy = —2log?2 by evaluating the integral Iy:

1 [ 2 (7
IL,=1)= —/ log (sin2 (¢)) do = —/ log (sinp) dp = —2log 2. (9)
0 0

s m

Let now z > 1. From (9) we have I = —2log 2. Differentiating I, we get

;L U log(x — t)? B ! 2 B ! ds B 2
Iﬁ( 1 w1 —¢2 > /17T(x—t)\/1—t2dt2/o 7T(33‘—|—1—28)\/S(1—S)7\/l‘2—1’

(see Gradshtein and Ryzhik (1965) 3.121.2 — note that interchanging the differentiation and integration
is justified as the derivative of the integrand is bounded by an integrable function of ¢ locally uniformly
in , |x| > 1). Therefore, for z > 1,

m o2 x4+ vz —1

I ,=1,=1 —|—/ I'dz = —2lo 2—|—/ ——dz=2log | ¥—>""—=] . 10
1 ) g L V21 g 9 (10)
Combining (9) and (10) we obtain (8). [ ]

3.2 Arcsine density on an arbitrary interval

The arcsine density on an interval (a,b) is
(t) ! <t<b (11)
= s a .
P —a)®=1)

If a = —1and b =1 then (11) is reduced to (1). A simple change of variables generalizes Theorem 1 to
the following statement.

Corollary 2. Let —oo < a < b < oo and let ¢ be a r.v. supported on the interval (a,b). The r.v. ¢ has
the arcsine density (11) if and only if Elog(¢ — 2)? has the same value for almost all z € [a, b].

Corollary 1 is generalized as follows.

Corollary 3. Let —0o < a < b < 0o and let r.v. ¢ have density (11). Then

2log(b —a) — 4log 2 if a<z<b
210g(b—a)+210g(\x2|+\/x§—1) —4log2 if z<aor z>b,

where x, = —14+2(z —a)/(b— a).

Elog(¢ — 2)? = { (12)



Proof. By changing variables t = —1 4+ 2(u —a)/(b —a) and = —1 + 2(z — a)/(b — a) in the integral

b 2

log(u — z)
a ™/ (u—a)(b—u)

we obtain Elog(¢ — 2)? = 2log(b — a) — 2log 2 + I, where I, is defined in (8). This immediately implies
(12). [ ]

du = Elog(¢ — 2)?,
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