A characterization of the arcsine distribution

Karl Michael Schmidt* and Anatoly Zhigljavsky*

Abstract

The following characterization of the arcsine density is established: let ξ be a r.v. supported on $(-1,1)$, then ξ has the arcsine density $p(t)=1 /\left(\pi \sqrt{1-t^{2}}\right),-1<t<1$, if and only if $\mathbb{E} \log (\xi-x)^{2}$ has the same value for almost all $x \in[-1,1]$.

1 Introduction

The arcsine density on the interval $(-1,1)$ is

$$
\begin{equation*}
p(t)=\frac{1}{\pi \sqrt{1-t^{2}}}, \quad-1<t<1 \tag{1}
\end{equation*}
$$

To define a r.v. ξ with the arcsine density (1) we can use the formula $\xi=\cos (\pi \alpha)$, where α is a r.v. with uniform distribution on $(0,1)$. The arcsine density has several non-trivial appearances in probability theory and statistics. For example, for a general random walk $\left\{S_{n}\right\}$ satisfying the LindebergLévy condition, the limiting distribution of $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left[S_{i}>0\right]}($ as $n \rightarrow \infty)$ has the arcsine density on $(0,1)$, see $\S 11$ in Billingsley (1968), Erdős and Kac (1947), Lévy (1948). The arcsine density (1) is an invariant density for a number of maps of the interval $(-1,1)$ onto itself, see e.g. Rivlin (1990), Theorem 4.5. This density is the limiting density of the roots of the orthogonal polynomials which are defined on $(-1,1)$ and orthogonal with respect to any weight function $w(\cdot)$ continuous on $(-1,1)$, see Ullman (1972), Erdős and Freud (1974), van Assche (1987).

In probability theory, the arcsine density has a number of characterizations, see Norton $(1975,1978)$, Arnold and Groenveld (1980), Kemperman and Skibinsky (1982). Below we consider a characterization of the arcsine density that is of a different nature than the ones considered in these papers.

Our main result is as follows.

Theorem. Let ξ be a r.v. supported on $(-1,1)$. This r.v. has the arcsine density (1) if and only if $\mathbb{E} \log (\xi-x)^{2}$ has the same value for almost all $x \in[-1,1]$.

As a motivation for the above theorem, assume that we have a sequence of points x_{1}, x_{2}, \ldots in the interval $(-1,1)$ that has an asymptotic c.d.f. $F(\cdot)$ in the sense that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{j=1}^{k} h\left(x_{j}\right)=\int_{-1}^{1} h(t) d F(t) \tag{2}
\end{equation*}
$$

for any continuous function $h(\cdot)$ such that $\int|h(x)| d F(x)<\infty$. Consider an associated sequence of polynomials $H_{k}(x)=\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2} \cdots\left(x-x_{k}\right)^{2}$. Then the result of the Theorem implies that the values of the normalized ratios $R_{k}(x, y)=\left[H_{k}(x) / H_{k}(y)\right]^{1 / k}$ tend to 1 (as $k \rightarrow \infty$) for almost all $x, y \in(-1,1)$ if and only if the c.d.f. $F(\cdot)$ has the arcsine density (1). Indeed,

$$
\log R_{k}(x, y)=\log \left[H_{k}(x)\right]^{1 / k}-\log \left[H_{k}(y)\right]^{1 / k}=\frac{1}{k} \sum_{j=1}^{k} \log \left(x-x_{j}\right)^{2}-\frac{1}{k} \sum_{j=1}^{k} \log \left(y-x_{j}\right)^{2} .
$$

[^0]Using (2), for almost all $x, y \in[-1,1]$ we obtain

$$
\begin{equation*}
\log \left[\lim _{k \rightarrow \infty} R_{k}(x, y)\right]=\lim _{k \rightarrow \infty} \log R_{k}(x, y)=\int_{-1}^{1} \log (x-t)^{2} d F(t)-\int_{-1}^{1} \log (y-t)^{2} d F(t) \tag{3}
\end{equation*}
$$

The theorem implies that the r.h.s. of (3) is zero for almost all $x, y \in[-1,1]$ if and only if the c.d.f. $F(\cdot)$ has the arcsine density (1).

The fact that $R_{k}(x, y) \rightarrow 1$ (as $\left.k \rightarrow \infty\right)$ for almost all $x, y \in(-1,1)$ means that the ratios $H_{k}(x) / H_{k}(y)$ are almost never very large (these ratios are smaller than δ^{k} with any $\delta>1$ for sufficiently large k : $\left.k>k^{*}(x, y)\right)$ and very rarely are very close to 0 (they are larger than any δ^{k} with any $\delta<1$ and $\left.k>k_{*}(x, y)\right)$. Note that if k is fixed and $x_{j}=\cos (\pi(2 j-1) /(2 k))$ for $j=1, \ldots, k$, then $H_{k}(x)=c_{k} T_{k}^{2}(t)$ where c_{k} is some constant and $T_{k}(x)=\cos [k \arccos (x)]$ is the k-th Chebyshev polynomial. In this case, the fact that $R_{k}(x, y) \cong 1$ (as k is large) for typical $x, y \in(-1,1)$ follows from the properties of the Chebyshev polynomials.

2 Auxiliary statements and proofs

The proof of the theorem is based on three Lemmas. In Lemma 1 we observe that the expected value of $\log (\xi-x)^{2}$ is finite for almost all $x \in[0,1]$. In Lemma 2 we derive a specific characterization of the uniform measure on the interval $[0, \pi]$. To prove Lemma 2 we use a general characterization of the Lebesgue measure on the interval $[0, \pi]$ established in Lemma 3.

Lemma 3 uses Fourier series, which may seem surprising but is a natural reflection of the intrinsic relationship between the arcsine distribution and trigonometric powers, as apparent in the Chebyshev polynomials.

Lemma 1. For any r.v. ξ supported on $(-1,1)$, the expectation $\mathbb{E} \log (\xi-x)^{2}$ is finite for almost all $x \in[-1,1]$.

Proof of Lemma 1. Let $F(\cdot)$ be the c.d.f. of the r.v. ξ and $-1<t<1$. The integral

$$
\int_{-1}^{1} \log (t-x)^{2} d x=(1+t) \log (1+t)^{2}+(1-t) \log (1-t)^{2}-4
$$

is bounded and continuous as a function of t, so the integral

$$
\int_{-1}^{1} \int_{-1}^{1} \log (t-x)^{2} d x d F(t)
$$

exists. By the Fubini-Tonelli theorem,

$$
\mathbb{E} \log (\xi-x)^{2}=\int_{-1}^{1} \log (t-x)^{2} d F(t) \in L^{1}([-1,1])
$$

so in particular it is finite for almost all $x \in[-1,1]$.

Lemma 2. Let φ be a r.v. distributed according to a probability measure $\mu(\cdot)$ on $[0, \pi]$. Then the expectation

$$
E_{x}(\mu)=\mathbb{E} \log (\cos \varphi-x)^{2}
$$

is constant for almost all $x \in[-1,1]$ if and only if the measure $\mu(\cdot)$ is uniform on $[0, \pi]$; in this case, the expectation $E_{x}(\mu)$ has the same value for all $x \in[-1,1]$.

Proof of Lemma 2. As $x \in[-1,1]$, we can set $\psi:=\arccos x \in[0, \pi]$. Let us extend μ to $[0,2 \pi]$ as an even measure (that is, we set $\mu(A)=\mu(2 \pi-A)$ for all Borel sets $A \subset[\pi, 2 \pi])$ and note that $\mu([0,2 \pi])=2$. Using $\cos \varphi=\cos (2 \pi-\varphi)$ for all $\varphi \in \mathbb{R}$, we calculate

$$
\begin{gather*}
E_{x}(\mu)=\frac{1}{2} \int_{0}^{2 \pi} \log (\cos \varphi-x)^{2} \mu(d \varphi)=\frac{1}{2} \int_{0}^{2 \pi} \log \left(2 \sin \frac{\varphi-\psi}{2} \sin \frac{\varphi+\psi}{2}\right)^{2} \mu(d \varphi) \\
=\frac{1}{2}\left[\int_{0}^{2 \pi} 2 \log 2 \mu(d \varphi)+\int_{0}^{2 \pi} \log \left(\sin \frac{\varphi-\psi}{2}\right)^{2} \mu(d \varphi)+\int_{0}^{2 \pi} \log \left(\sin \frac{\varphi+\psi}{2}\right)^{2} \mu(d \varphi)\right] \\
=2 \log 2+\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi-\psi / 2)\right) \tilde{\mu}(d \varphi)+\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi+\psi / 2)\right) \tilde{\mu}(d \varphi), \tag{4}
\end{gather*}
$$

where $\tilde{\mu}(A)=\frac{1}{2} \mu(2 A)$ for all Borel sets $A \subset[0, \pi]$.
As $\tilde{\mu}$ and $\sin ^{2}$ are π-periodic and even, we obtain by making the substitution $\tilde{\varphi}=\pi-\varphi$:

$$
\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi+\psi / 2)\right) \tilde{\mu}(d \varphi)=\int_{0}^{\pi} \log \left(\sin ^{2}(\pi-\tilde{\varphi}+\psi / 2)\right) \tilde{\mu}(d \tilde{\varphi})=\int_{0}^{\pi} \log \left(\sin ^{2}(\tilde{\varphi}-\psi / 2)\right) \tilde{\mu}(d \tilde{\varphi}) .
$$

This implies that the two integrals in (4) are identical and therefore

$$
E_{x}(\mu)=2 \log 2+2 \int_{0}^{\pi} \log \left(\sin ^{2}(\varphi-\psi / 2)\right) \tilde{\mu}(d \varphi)
$$

Hence the expectation $E_{x}(\mu)$ is constant for almost all $x \in[-1,1]$ if and only if

$$
\begin{equation*}
\log \sin ^{2} \star \tilde{\mu}(y)=\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi-y)\right) \tilde{\mu}(d \varphi) \quad \text { is constant for almost all } y \in[0, \pi] \tag{5}
\end{equation*}
$$

The Fourier series for $\log \sin ^{2}$ is not uniformly convergent, but it converges in the $L^{2}([0, \pi])$ sense, as $\log \sin ^{2} \in L^{2}([0, \pi])$ and $\left\{e^{2 i k x} \mid k \in \mathbb{Z}\right\}$ is an orthonormal basis of this Hilbert space. Moreover, all (complex) Fourier coefficients of $\log \sin ^{2}$ are real and non-zero. Indeed,

$$
\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi)\right) \sin (2 k \varphi) d \varphi=0 \quad \forall k \in \mathbb{Z}
$$

and

$$
\int_{0}^{\pi} \log \left(\sin ^{2}(\varphi)\right) \cos (2 k \varphi) d \varphi=2 \pi \int_{0}^{1} \log (\sin (\pi t)) \cos (2 \pi k t) d t=\left\{\begin{array}{cl}
-2 \pi \log 2, & k=0 \\
-\pi / k, & k \in \mathbb{Z} \backslash\{0\}
\end{array}\right.
$$

see formula 4.384 .3 in Gradshtein and Ryzhik (1965). The statement of Lemma 2 now follows from Lemma 3 below.

Lemma 3. Let $\tilde{\mu}$ be a probability measure on $[0, \pi]$ and $f \in L^{2}([0, \pi])$ be such that

$$
f(x)=\text { l.i.m. }{ }_{N \rightarrow \infty} \sum_{k=-N}^{N} \theta_{k} e^{2 i k x} \quad(x \in[0, \pi])
$$

where all Fourier coefficients are non-zero: $\theta_{k} \neq 0 \forall k \in \mathbb{Z}$. Then, extending f to \mathbb{R} as a π-periodic function, the convolution $f \star \tilde{\mu}(\cdot):=\int_{0}^{\pi} f(\cdot-t) \tilde{\mu}(d t) \quad$ is constant almost everywhere if and only if $\tilde{\mu}$ is the uniform measure on $[0, \pi]$; in this case, $f \star \tilde{\mu}$ is constant everywhere.

Proof of Lemma 3. Assume

$$
\left.f \star \tilde{\mu}(x)=\int_{0}^{\pi} f(x-t) \tilde{\mu}(d t)=C=\text { const (for almost all } x \in[0, \pi]\right) .
$$

Then, for all $k \in \mathbb{Z} \backslash\{0\}$,

$$
\begin{array}{r}
0=\int_{0}^{\pi} e^{2 i k x} C d x=\int_{0}^{\pi} e^{2 i k x}\left[\int_{0}^{\pi} f(x-t) \tilde{\mu}(d t)\right] d x=\int_{0}^{\pi}\left[\int_{0}^{\pi} e^{2 i k x} \text { l.i.m. } N \rightarrow \infty \sum_{n=-N}^{N} \theta_{n} e^{2 i n(x-t)} d x\right] \tilde{\mu}(d t) \\
=\int_{0}^{\pi} \lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \theta_{n} e^{-2 i n t}\left[\int_{0}^{\pi} e^{2 i(k+n) x} d x\right] \tilde{\mu}(d t)=\int_{0}^{\pi} \lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \theta_{n} e^{-2 i n t} \pi \delta_{n,-k} \tilde{\mu}(d t) \\
=\pi \theta_{-k} \int_{0}^{\pi} e^{2 i k t} \tilde{\mu}(d t) .
\end{array}
$$

As $\theta_{-k} \neq 0 \forall k \in \mathbb{Z} \backslash\{0\}$ we get $\int_{0}^{\pi} e^{2 i k t} \tilde{\mu}(d t)=0 \forall k \in \mathbb{Z} \backslash\{0\}$.
Now set $\mu^{\prime}=\tilde{\mu}-\tilde{\mu}([0, \pi]) \lambda / \pi$, where λ is the Lebesgue measure on $[0, \pi]$. Then

$$
\int_{0}^{\pi} \mu^{\prime}(d t)=0 \text { and } \int_{0}^{\pi} e^{2 i k t} \mu^{\prime}(d t)=\int_{0}^{\pi} e^{2 i k t} \tilde{\mu}(d t)-\frac{\tilde{\mu}([0, \pi])}{\pi} \int_{0}^{\pi} e^{2 i k t} d t=0, \quad \forall k \in \mathbb{Z} \backslash\{0\}
$$

as shown above, so $\int_{0}^{\pi} e^{2 i k t} \mu^{\prime}(d t)=0 \forall k \in \mathbb{Z}$. As every continuous function on $[0, \pi]$ can be uniformly approximated by a linear combination of $\left\{e^{2 i k t} \mid k \in \mathbb{Z}\right\}$ and μ^{\prime} is finite, this implies

$$
\int_{0}^{\pi} f(t) \mu^{\prime}(d t)=0 \quad \forall f \in C([0, \pi])
$$

and hence $\mu^{\prime}=0$. This completes the proof of the 'only if' part of Lemma 3. The converse is obvious, bearing in mind that f is π-periodic and $f(x-\cdot) \in L^{1}([0, \pi])$ for all $x \in \mathbb{R}$.

Proof of the Theorem. Consider the expectation

$$
\begin{equation*}
I_{x}=\mathbb{E} \log (\xi-x)^{2}=\int_{-1}^{1} \frac{\log (t-x)^{2}}{\pi \sqrt{1-t^{2}}} d t \tag{6}
\end{equation*}
$$

where r.v. ξ has the arcsine density (1). By changing the variable $t=\cos \varphi$ we obtain

$$
\begin{equation*}
I_{x}=\int_{0}^{\pi} \frac{\log (\cos \varphi-x)^{2}}{\pi \sin \varphi} \sin \varphi d \varphi=\frac{1}{\pi} \int_{0}^{\pi} \log (\cos \varphi-x)^{2} d \varphi=E_{x}\left(\mu_{0}\right) \tag{7}
\end{equation*}
$$

where μ_{0} is the uniform measure on $[0, \pi]$. Hence, by applying Lemma 2 with $\mu=\mu_{0}$, we conclude that I_{x} has the same value for all $x \in[-1,1]$. This proves the 'only if' statement in the Theorem.

To complete the proof of the Theorem, we now show the converse, i.e. that if, for a random variable ξ supported on $(-1,1), \mathbb{E} \log (\xi-x)^{2}$ has the same value for almost all $x \in[-1,1]$, then ξ has the arcsine density. In view of Lemma 1 the constant value of $\mathbb{E} \log (\xi-x)^{2}$ must be finite. Denote by $F(\cdot)$ the c.d.f. of ξ. Then $F(-1)=0, F(1)=1$ and

$$
\mathbb{E} \log (\xi-x)^{2}=\int_{-1}^{1} \log (t-x)^{2} d F(t)=\int_{0}^{\pi} \log (\cos \varphi-x)^{2} d \tilde{F}(\varphi)
$$

where $t=\cos \varphi$ and $\tilde{F}(\varphi)=1-F(\cos \varphi)$. By Lemma 2 , the probability measure generated by \tilde{F} is uniform on $[0, \pi]$; that is, $\tilde{F}(\varphi)=\varphi / \pi \forall \varphi \in[0, \pi]$. This implies

$$
F(x)=1-(\arccos x) / \pi \quad \forall x \in(-1,1),
$$

so the density of ξ is $F^{\prime}(x)=1 /\left(\pi \sqrt{1-x^{2}}\right)$.

3 Explicit formulae for the integrals and a generalization

3.1 Explicit formulae for the expectations

The value of the expectation (6) can be easily computed based on our result that it is independent of x in the interval $[-1,1]$.

Corollary 1. Let the r.v. ξ have density (1). Then

$$
I_{x}=\mathbb{E} \log (\xi-x)^{2}= \begin{cases}-2 \log 2 & \text { if }|x| \leq 1 \tag{8}\\ 2 \log \left(|x|+\sqrt{x^{2}-1}\right)-2 \log 2 & \text { if }|x| \geq 1\end{cases}
$$

Proof. For $|x| \leq 1$ we use $I_{x}=I_{0}=-2 \log 2$ by evaluating the integral I_{0} :

$$
\begin{equation*}
I_{x}=I_{0}=\frac{1}{\pi} \int_{0}^{\pi} \log \left(\sin ^{2}(\varphi)\right) d \varphi=\frac{2}{\pi} \int_{0}^{\pi} \log (\sin \varphi) d \varphi=-2 \log 2 . \tag{9}
\end{equation*}
$$

Let now $x \geq 1$. From (9) we have $I_{1}=-2 \log 2$. Differentiating I_{x} we get

$$
I_{x}^{\prime}=\left(\int_{-1}^{1} \frac{\log (x-t)^{2}}{\pi \sqrt{1-t^{2}}} d t\right)^{\prime}=\int_{-1}^{1} \frac{2}{\pi(x-t) \sqrt{1-t^{2}}} d t=2 \int_{0}^{1} \frac{d s}{\pi(x+1-2 s) \sqrt{s(1-s)}}=\frac{2}{\sqrt{x^{2}-1}}
$$

(see Gradshtein and Ryzhik (1965) 3.121.2 - note that interchanging the differentiation and integration is justified as the derivative of the integrand is bounded by an integrable function of t locally uniformly in $x,|x|>1)$. Therefore, for $x>1$,

$$
\begin{equation*}
I_{-x}=I_{x}=I_{1}+\int_{1}^{x} I_{z}^{\prime} d z=-2 \log 2+\int_{1}^{x} \frac{2}{\sqrt{z^{2}-1}} d z=2 \log \left(\frac{x+\sqrt{x^{2}-1}}{2}\right) \tag{10}
\end{equation*}
$$

Combining (9) and (10) we obtain (8).

3.2 Arcsine density on an arbitrary interval

The arcsine density on an interval (a, b) is

$$
\begin{equation*}
p(t)=\frac{1}{\pi \sqrt{(t-a)(b-t)}}, \quad a<t<b \tag{11}
\end{equation*}
$$

If $a=-1$ and $b=1$ then (11) is reduced to (1). A simple change of variables generalizes Theorem 1 to the following statement.

Corollary 2. Let $-\infty<a<b<\infty$ and let ζ be a r.v. supported on the interval (a, b). The r.v. ζ has the arcsine density (11) if and only if $\mathbb{E} \log (\zeta-z)^{2}$ has the same value for almost all $z \in[a, b]$.

Corollary 1 is generalized as follows.
Corollary 3. Let $-\infty<a<b<\infty$ and let r.v. ζ have density (11). Then

$$
\mathbb{E} \log (\zeta-z)^{2}= \begin{cases}2 \log (b-a)-4 \log 2 & \text { if } a \leq z \leq b \tag{12}\\ 2 \log (b-a)+2 \log \left(\left|x_{z}\right|+\sqrt{x_{z}^{2}-1}\right)-4 \log 2 & \text { if } z<a \text { or } z>b\end{cases}
$$

where $x_{z}=-1+2(z-a) /(b-a)$.

Proof. By changing variables $t=-1+2(u-a) /(b-a)$ and $x=-1+2(z-a) /(b-a)$ in the integral

$$
\int_{a}^{b} \frac{\log (u-z)^{2}}{\pi \sqrt{(u-a)(b-u)}} d u=\mathbb{E} \log (\zeta-z)^{2}
$$

we obtain $\mathbb{E} \log (\zeta-z)^{2}=2 \log (b-a)-2 \log 2+I_{x}$, where I_{x} is defined in (8). This immediately implies (12).

References

[1] B.C. Arnold and R.A. Groeneveld. Some properties of the arcsine distribution. J. Amer. Statist. Assoc., 75(369):173-175, 1980.
[2] P. Billingsley. Convergence of probability measures. John Wiley \& Sons Inc., New York, 1968.
[3] P. Erdős and G. Freud. On orthogonal polynomials with regularly distributed zeros. Proc. London Math. Soc. (3), 29:521-537, 1974.
[4] I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Academic Press, New York, 1965.
[5] J.H.B. Kemperman and M. Skibinsky. On the characterization of an interesting property of the arcsin distribution. Pacific J. Math., 103(2):457-465, 1982.
[6] P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris, 1948.
[7] R.M. Norton. On properties of the arc sine law. Sankhyā Ser. A, 37(2):306-308, 1975.
[8] R.M. Norton. Moment properties and the arc sine law. Sankhyā Ser. A, 40(2):192-198, 1978.
[9] T.J. Rivlin. Chebyshev polynomials. John Wiley \& Sons Inc., New York, second edition, 1990.
[10] J. L. Ullman. On the regular behaviour of orthogonal polynomials. Proc. London Math. Soc. (3), 24:119-148, 1972.
[11] W. Van Assche. Asymptotics for orthogonal polynomials. Springer-Verlag, Berlin, 1987.

[^0]: *School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4YH, UK (SchmidtKM@cf.ac.uk, ZhigljavskyAA@cf.ac.uk)

