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Abstract. The following characterization of the arcsine density is established: let ξ be a r.v. supported
on (−1, 1), then ξ has the arcsine density p(t) = 1/(π

√
1− t2 ), −1 < t < 1, if and only if E log(ξ − x)2

has the same value for almost all x ∈ [−1, 1].

1 Introduction

The arcsine density on the interval (−1, 1) is

p(t) =
1

π
√

1− t2
, −1 < t < 1 . (1)

To define a r.v. ξ with the arcsine density (1) we can use the formula ξ = cos(πα), where α is
a r.v. with uniform distribution on (0,1). The arcsine density has several non-trivial appearances in
probability theory and statistics. For example, for a general random walk {Sn} satisfying the Lindeberg-
Lévy condition, the limiting distribution of 1

n

∑n
i=1 1[Si>0] (as n →∞) has the arcsine density on (0,1),

see §11 in Billingsley (1968), Erdős and Kac (1947), Lévy (1948). The arcsine density (1) is an invariant
density for a number of maps of the interval (−1, 1) onto itself, see e.g. Rivlin (1990), Theorem 4.5. This
density is the limiting density of the roots of the orthogonal polynomials which are defined on (-1,1) and
orthogonal with respect to any weight function w(·) continuous on (−1, 1), see Ullman (1972), Erdős and
Freud (1974), van Assche (1987).

In probability theory, the arcsine density has a number of characterizations, see Norton (1975, 1978),
Arnold and Groenveld (1980), Kemperman and Skibinsky (1982). Below we consider a characterization
of the arcsine density that is of a different nature than the ones considered in these papers.

Our main result is as follows.

Theorem. Let ξ be a r.v. supported on (−1, 1). This r.v. has the arcsine density (1) if and only if
E log(ξ − x)2 has the same value for almost all x ∈ [−1, 1].

As a motivation for the above theorem, assume that we have a sequence of points x1, x2, . . . in the interval
(−1, 1) that has an asymptotic c.d.f. F (·) in the sense that

lim
k→∞

1
k

k∑

j=1

h(xj) =
∫ 1

−1

h(t) dF (t) (2)

for any continuous function h(·) such that
∫ |h(x)| dF (x) < ∞. Consider an associated sequence of

polynomials Hk(x) = (x − x1)2 (x − x2)2 · · · (x − xk)2. Then the result of the Theorem implies that
the values of the normalized ratios Rk(x, y) = [Hk(x)/Hk(y)]1/k tend to 1 (as k → ∞) for almost all
x, y ∈ (−1, 1) if and only if the c.d.f. F (·) has the arcsine density (1). Indeed,

log Rk(x, y) = log[Hk(x)]1/k − log[Hk(y)]1/k =
1
k

k∑

j=1

log(x− xj)2 − 1
k

k∑

j=1

log(y − xj)2 .
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Using (2), for almost all x, y ∈ [−1, 1] we obtain

log
[

lim
k→∞

Rk(x, y)
]

= lim
k→∞

log Rk(x, y) =
∫ 1

−1

log(x− t)2 dF (t)−
∫ 1

−1

log(y − t)2 dF (t) . (3)

The theorem implies that the r.h.s. of (3) is zero for almost all x, y ∈ [−1, 1] if and only if the c.d.f. F (·)
has the arcsine density (1).

The fact that Rk(x, y) → 1 (as k →∞) for almost all x, y ∈ (−1, 1) means that the ratios Hk(x)/Hk(y)
are almost never very large (these ratios are smaller than δk with any δ > 1 for sufficiently large k:
k > k∗(x, y)) and very rarely are very close to 0 (they are larger than any δk with any δ < 1 and
k > k∗(x, y)). Note that if k is fixed and xj = cos (π(2j − 1)/(2k)) for j = 1, . . . , k, then Hk(x) = ckT 2

k (t)
where ck is some constant and Tk(x) = cos[k arccos(x)] is the k-th Chebyshev polynomial. In this case,
the fact that Rk(x, y) ∼= 1 (as k is large) for typical x, y ∈ (−1, 1) follows from the properties of the
Chebyshev polynomials.

2 Auxiliary statements and proofs

The proof of the theorem is based on three Lemmas. In Lemma 1 we observe that the expected value
of log(ξ − x)2 is finite for almost all x ∈ [0, 1]. In Lemma 2 we derive a specific characterization of
the uniform measure on the interval [0, π]. To prove Lemma 2 we use a general characterization of the
Lebesgue measure on the interval [0, π] established in Lemma 3.

Lemma 3 uses Fourier series, which may seem surprising but is a natural reflection of the intrinsic
relationship between the arcsine distribution and trigonometric powers, as apparent in the Chebyshev
polynomials.

Lemma 1. For any r.v. ξ supported on (−1, 1), the expectation E log(ξ − x)2 is finite for almost all
x ∈ [−1, 1].

Proof of Lemma 1. Let F (·) be the c.d.f. of the r.v. ξ and −1 < t < 1. The integral

∫ 1

−1

log(t− x)2 dx = (1 + t) log(1 + t)2 + (1− t) log(1− t)2 − 4

is bounded and continuous as a function of t, so the integral
∫ 1

−1

∫ 1

−1

log(t− x)2 dx dF (t)

exists. By the Fubini-Tonelli theorem,

E log(ξ − x)2 =
∫ 1

−1

log(t− x)2 dF (t) ∈ L1([−1, 1]),

so in particular it is finite for almost all x ∈ [−1, 1].

Lemma 2. Let ϕ be a r.v. distributed according to a probability measure µ(·) on [0, π]. Then the
expectation

Ex(µ) = E log(cos ϕ− x)2

is constant for almost all x ∈ [−1, 1] if and only if the measure µ(·) is uniform on [0, π]; in this case, the
expectation Ex(µ) has the same value for all x ∈ [−1, 1].
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Proof of Lemma 2. As x ∈ [−1, 1], we can set ψ := arccos x ∈ [0, π]. Let us extend µ to [0, 2π] as an
even measure (that is, we set µ(A) = µ(2π−A) for all Borel sets A ⊂ [π, 2π]) and note that µ([0, 2π]) = 2.
Using cos ϕ = cos(2π − ϕ) for all ϕ ∈ R, we calculate

Ex(µ) =
1
2

∫ 2π

0

log(cos ϕ− x)2 µ(dϕ) =
1
2

∫ 2π

0

log
(

2 sin
ϕ− ψ

2
sin

ϕ + ψ

2

)2

µ(dϕ)

=
1
2

[∫ 2π

0

2 log 2 µ(dϕ) +
∫ 2π

0

log
(

sin
ϕ− ψ

2

)2

µ(dϕ) +
∫ 2π

0

log
(

sin
ϕ + ψ

2

)2

µ(dϕ)

]

= 2 log 2 +
∫ π

0

log
(
sin2 (ϕ− ψ/2)

)
µ̃(dϕ) +

∫ π

0

log
(
sin2 (ϕ + ψ/2)

)
µ̃(dϕ) , (4)

where µ̃(A) = 1
2µ(2A) for all Borel sets A ⊂ [0, π].

As µ̃ and sin2 are π-periodic and even, we obtain by making the substitution ϕ̃ = π − ϕ :
∫ π

0

log
(
sin2 (ϕ + ψ/2)

)
µ̃(dϕ) =

∫ π

0

log
(
sin2 (π − ϕ̃ + ψ/2)

)
µ̃(dϕ̃) =

∫ π

0

log
(
sin2 (ϕ̃− ψ/2)

)
µ̃(dϕ̃) .

This implies that the two integrals in (4) are identical and therefore

Ex(µ) = 2 log 2 + 2
∫ π

0

log
(
sin2 (ϕ− ψ/2)

)
µ̃(dϕ) .

Hence the expectation Ex(µ) is constant for almost all x ∈ [−1, 1] if and only if

log sin2 ? µ̃ (y) =
∫ π

0

log
(
sin2 (ϕ− y)

)
µ̃(dϕ) is constant for almost all y ∈ [0, π] . (5)

The Fourier series for log sin2 is not uniformly convergent, but it converges in the L2([0, π]) sense, as
log sin2 ∈ L2([0, π]) and {e2ikx|k ∈ Z} is an orthonormal basis of this Hilbert space. Moreover, all
(complex) Fourier coefficients of log sin2 are real and non-zero. Indeed,

∫ π

0

log
(
sin2(ϕ)

)
sin(2kϕ)dϕ = 0 ∀k ∈ Z

and
∫ π

0

log
(
sin2(ϕ)

)
cos(2kϕ)dϕ = 2π

∫ 1

0

log (sin(πt)) cos(2πkt)dt =
{ −2π log 2, k = 0

−π/k, k ∈ Z \ {0} ,

see formula 4.384.3 in Gradshtein and Ryzhik (1965). The statement of Lemma 2 now follows from
Lemma 3 below.

Lemma 3. Let µ̃ be a probability measure on [0, π] and f ∈ L2([0, π]) be such that

f(x) = l.i.m.N→∞
N∑

k=−N

θke2ikx (x ∈ [0, π])

where all Fourier coefficients are non-zero: θk 6= 0 ∀k ∈ Z. Then, extending f to R as a π-periodic
function, the convolution f ? µ̃ (·) :=

∫ π

0
f(· − t) µ̃(dt) is constant almost everywhere if and only if µ̃ is

the uniform measure on [0, π]; in this case, f ? µ̃ is constant everywhere.
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Proof of Lemma 3. Assume

f ? µ̃ (x) =
∫ π

0

f(x− t) µ̃(dt) = C = const (for almost all x ∈ [0, π]) .

Then, for all k ∈ Z \ {0},

0=
∫ π

0

e2ikxCdx=
∫ π

0

e2ikx

[∫ π

0

f(x−t) µ̃(dt)
]

dx=
∫ π

0

[∫ π

0

e2ikx l.i.m.N→∞
N∑

n=−N

θne2in(x−t)dx

]
µ̃(dt)

=
∫ π

0

lim
N→∞

N∑

n=−N

θne−2int

[∫ π

0

e2i(k+n)xdx

]
µ̃(dt) =

∫ π

0

lim
N→∞

N∑

n=−N

θne−2intπ δn,−k µ̃(dt)

= πθ−k

∫ π

0

e2iktµ̃(dt) .

As θ−k 6= 0 ∀k ∈ Z \ {0} we get
∫ π

0
e2iktµ̃(dt) = 0 ∀k ∈ Z \ {0}.

Now set µ′ = µ̃− µ̃([0, π])λ/π, where λ is the Lebesgue measure on [0, π]. Then
∫ π

0

µ′(dt) = 0 and
∫ π

0

e2iktµ′(dt) =
∫ π

0

e2iktµ̃(dt)− µ̃([0, π])
π

∫ π

0

e2iktdt = 0 , ∀k ∈ Z \ {0}

as shown above, so
∫ π

0
e2iktµ′(dt) = 0 ∀k ∈ Z . As every continuous function on [0, π] can be uniformly

approximated by a linear combination of {e2ikt|k ∈ Z} and µ′ is finite, this implies
∫ π

0

f(t)µ′(dt) = 0 ∀f ∈ C([0, π])

and hence µ′ = 0. This completes the proof of the ‘only if’ part of Lemma 3. The converse is obvious,
bearing in mind that f is π-periodic and f(x− ·) ∈ L1([0, π]) for all x ∈ R.

Proof of the Theorem. Consider the expectation

Ix = E log(ξ − x)2 =
∫ 1

−1

log(t− x)2

π
√

1− t2
dt , (6)

where r.v. ξ has the arcsine density (1). By changing the variable t = cos ϕ we obtain

Ix =
∫ π

0

log(cos ϕ− x)2

π sin ϕ
sin ϕ dϕ =

1
π

∫ π

0

log(cos ϕ− x)2 dϕ = Ex(µ0), (7)

where µ0 is the uniform measure on [0, π]. Hence, by applying Lemma 2 with µ = µ0, we conclude that
Ix has the same value for all x ∈ [−1, 1]. This proves the ‘only if’ statement in the Theorem.

To complete the proof of the Theorem, we now show the converse, i.e. that if, for a random variable
ξ supported on (−1, 1), E log(ξ− x)2 has the same value for almost all x ∈ [−1, 1], then ξ has the arcsine
density. In view of Lemma 1 the constant value of E log(ξ− x)2 must be finite. Denote by F (·) the c.d.f.
of ξ. Then F (−1) = 0, F (1) = 1 and

E log(ξ − x)2 =
∫ 1

−1

log(t− x)2 dF (t) =
∫ π

0

log(cos ϕ− x)2 dF̃ (ϕ),

where t = cos ϕ and F̃ (ϕ) = 1 − F (cos ϕ). By Lemma 2, the probability measure generated by F̃ is
uniform on [0, π]; that is, F̃ (ϕ) = ϕ/π ∀ϕ ∈ [0, π]. This implies

F (x) = 1− (arccos x)/π ∀x ∈ (−1, 1),

so the density of ξ is F ′(x) = 1/(π
√

1− x2).
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3 Explicit formulae for the integrals and a generalization

3.1 Explicit formulae for the expectations

The value of the expectation (6) can be easily computed based on our result that it is independent of x
in the interval [−1, 1].

Corollary 1. Let the r.v. ξ have density (1). Then

Ix = E log(ξ − x)2 =
{ −2 log 2 if |x| ≤ 1

2 log
(|x|+√

x2 − 1
)− 2 log 2 if |x| ≥ 1 .

(8)

Proof. For |x| ≤ 1 we use Ix = I0 = −2 log 2 by evaluating the integral I0:

Ix = I0 =
1
π

∫ π

0

log
(
sin2 (ϕ)

)
dϕ =

2
π

∫ π

0

log (sin ϕ) dϕ = −2 log 2 . (9)

Let now x ≥ 1. From (9) we have I1 = −2 log 2. Differentiating Ix we get

I ′x =
(∫ 1

−1

log(x− t)2

π
√

1− t2
dt

)′
=

∫ 1

−1

2
π(x− t)

√
1− t2

dt = 2
∫ 1

0

ds

π(x + 1− 2s)
√

s(1− s)
=

2√
x2 − 1

;

(see Gradshtein and Ryzhik (1965) 3.121.2 — note that interchanging the differentiation and integration
is justified as the derivative of the integrand is bounded by an integrable function of t locally uniformly
in x, |x| > 1). Therefore, for x > 1,

I−x = Ix = I1 +
∫ x

1

I ′zdz = −2 log 2 +
∫ x

1

2√
z2 − 1

dz = 2 log

(
x +

√
x2 − 1
2

)
. (10)

Combining (9) and (10) we obtain (8).

3.2 Arcsine density on an arbitrary interval

The arcsine density on an interval (a, b) is

p(t) =
1

π
√

(t− a)(b− t)
, a < t < b . (11)

If a = −1 and b = 1 then (11) is reduced to (1). A simple change of variables generalizes Theorem 1 to
the following statement.

Corollary 2. Let −∞ < a < b < ∞ and let ζ be a r.v. supported on the interval (a, b). The r.v. ζ has
the arcsine density (11) if and only if E log(ζ − z)2 has the same value for almost all z ∈ [a, b].

Corollary 1 is generalized as follows.

Corollary 3. Let −∞ < a < b < ∞ and let r.v. ζ have density (11). Then

E log(ζ − z)2 =

{
2 log(b− a)− 4 log 2 if a ≤ z ≤ b

2 log(b− a) + 2 log
(
|xz|+

√
x2

z − 1
)
− 4 log 2 if z < a or z > b ,

(12)

where xz = −1 + 2(z − a)/(b− a).
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Proof. By changing variables t = −1 + 2(u− a)/(b− a) and x = −1 + 2(z − a)/(b− a) in the integral

∫ b

a

log(u− z)2

π
√

(u− a)(b− u)
du = E log(ζ − z)2 ,

we obtain E log(ζ − z)2 = 2 log(b− a)− 2 log 2 + Ix, where Ix is defined in (8). This immediately implies
(12).
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