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Abstract

Through the use of the Stirling numbers of the first kind, a general class of approximations

is derived for the negative moments of the Poisson distribution.
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1 Introduction

The approximation of negative moments of the Poisson distribution is an important practi-

cal problem and has attracted significant attention in literature, see for example Chao and

Strawderman (1972), Gupta (1979), Stancu (1968), Stephan (1945) and Tiku (1964). The

main applications of the first negative moment are related to the theory of mixed Poisson

distributions: indeed, if ηi (i = 1, 2, . . . n) are i.i.d.r.v. with variance σ2 and the sample size

n has the positive Poisson distribution, then the variance of the sample mean 1
n

∑n
i=1 ηi is

σ2E (1/n), see e.g. Grab and Savage (1954). The negative moments of the Poisson distribu-

tion are known to be useful in life testing problems, as shown in Bartholomew (1957), David

and Johnson (1956) and Epstein and Sobel (1954).

A recent application has occurred in the field of multi-centre clinical trials, which involves

the simultaneous recruitment of patients to numerous centres. The approximation of negative

moments are required in the subsequent calculations of MSE’s of the mean treatment effect

differences. As demonstrated in Dragalin et al. (2002), three least squared estimators can

be defined for the mean treatment difference based on fixed effect models of increasing

†E-mail address: matthew.jones@cardiff-research-consortium.co.uk
††E-mail address: ZhigljavskyAA@cardiff.ac.uk
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complexity. In particular, the MSE of the Type III estimator is

σ2

N2

N∑

i=1

(
1

ni2
+

1

ni1

)
, (1)

where N is the number of centres, σ2 is the variance of the response observed at each centre,

and nij is the number of patients of treatment j at centre i. If nij are assumed to be

positive Poisson random variables then (1) becomes a random variable, with moments that

are expressed through the negative moments of the Poisson distribution. Similar phenomena

occurs with the Type I and II estimators, however, with a more complicated form. See

Fedorov et al. (2003) for further details.

Let Poisson(λ) denote the Poisson distribution with parameter λ, and let ξ be a random

variable, ξ ∼ Poisson(λ). Additionally, let ξ+ be the so-called positive Poisson r.v. with

parameter λ; that is,

Pr(ξ+ = x) =
1

1− e−λ
λx

x!
e−λ, for x = 1, 2 . . .

The negative moments of the Poisson distribution are defined as the negative moments of ξ+ :

µ−α = E

(
1

ξ α
+

)
=

e−λ

1− e−λ
∞∑

x=1

λx

xα x!
for any α > 0 . (2)

We develop the following kth order approximations for µ−α, with integer α:

µ−α ∼= µ
(k)
−α =

k∑
u=α

s(u, α)

λu
, (3)

where s(u, α) are the so-called signless Stirling numbers of the first kind, see Section 3.1.

The case of non-integer α is considered in Section 3.6.

Approximations of the negative moments µ−α introduced in Tiku (1964) have been cited

in a number of reference books; see, for instance, Haight (1966), Johnson et al. (1992). We

shall use these approximations as a benchmark for comparison in subsequent calculations,

and we will demonstrate that our approximations are more precise. Tiku’s approximations

for the first negative moment (see Equation (11) in Tiku (1964)) are defined as follows:

µ−1
∼= T

(1)
j =

(
1 +

∑j
r=3 βr

)

(λ− 1)(1− e−λ) ; with T
(1)
0 =

1

(λ− 1)(1− e−λ) , (4)
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where βr = a(r)/λ(λ+ 1)(λ+ 2) . . . (λ+ r− 1), r = 3, 4, 5, . . . with a(3) = 1, a(4) = 7, a(5) =

43, a(6) = 271, etc.

Note that a number of alternative approximations to µ−1 can be constructed through

using the fact that

µ−1 =
e−λ

1− e−λ (Ei(λ)− log λ− γ) , (5)

where γ ' 0.5772 . . . is Euler’s constant and Ei(λ) =
∫ λ
−∞(eu/u) du is the exponential inte-

gral, see for example Grab and Savage (1954). Note that the relation (5) is often used to

approximate values of the exponential integral Ei(λ); consequently, this broadens the scope

of our approximation into several other fields.

The approximations of Tiku (1964) for the higher order integer negative moments (α ≥ 2)

are defined as

µ−α ∼= T (α) =
1

(λ− 1)(λ− 2) . . . (λ− α)
. (6)

The suggested approximations are far more precise than Tiku’s approximations. The

criterion by which we determine the accuracy of the approximations is through studying

their relative error:

RelativeError =
Exact V alue − Approximate V alue

Exact V alue
.

Note that positive values for the relative error indicate that the respective approximation is

underestimating the true value.

In this paper we are only interested in moderate and large values of λ. For small λ the

moments can be easily computed using the definition (2). In particular, the relative error of

the following simple approximation

µ−α =
e−λ

1− e−λ
∞∑

k=1

λk

kα k!
∼= e−λ

1− e−λ
3λ+10∑

k=1

λk

kα k!
;

is smaller than 10−10 in absolute value for all λ > 0 and α ≥ 1.
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2 Deriving recurrence relations and approximations

2.1 General Recurrences

Denote

Al,m(λ) =
∞∑

x=1

e−λλx

xl(x+m− 1)!
. (7)

In particular,

µ−α =
1

1− e−λAα,1(λ) . (8)

For each l, m > 0, we obviously have

1

xl
=

1

xl−1(x+m)
+

m

xl(x+m)
. (9)

Through applying Equation (9) to (7) we obtain the basic recurrence:

Al,m(λ) =
∞∑

x=1

e−λλx

xl−1(x+m)!
+
∞∑

x=1

me−λλx

xl(x+m)!
= Al−1,m+1(λ) +mAl,m+1(λ) , (10)

and from (7) we have

A0,m(λ) =
1

λm−1

(
1−

m−1∑

x=0

e−λλx

x!

)
. (11)

Note that for any fixed m ≥ 1 and λ ≥ 1 we have

1

λm−1

(
1−mλm−1e−λ

)
≤ A0,m (λ) ≤ 1

λm−1
(12)

so that the difference A0,m(λ)− 1/λm−1 is exponentially small as λ→∞.

Through performing several iterations of the basic recurrence (10), we obtain

Al,m(λ) = Al−1,m+1(λ) +mAl−1,m+2(λ) +m(m+ 1)Al,m+2(λ) = . . .

=
N∑

r=0

(m+ r − 1)!

(m− 1)!
Al−1,m+r+1(λ) +

(m+N)!

(m− 1)!
Al,m+N+1(λ) . (13)

Rather than using the definition (7), we can define Al,m(λ) through the recurrences (13)

and the initial conditions (11). Let the quantities Bl,m(λ), which can be considered as a

simplified version of Al,m(λ), be defined through the recurrences (13), that is,

Bl,m(λ) =
N∑

r=0

(m+ r − 1)!

(m− 1)!
Bl−1,m+r+1(λ) +

(m+N)!

(m− 1)!
Bl,m+N+1(λ) for all N > 0, (14)
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and the initial conditions that are similar to (11) but exclude the exponential terms:

B0,m(λ) =
1

λm−1
. (15)

Deriving approximations using Bl,m(λ) as opposed to Al,m(λ) implies that we ignore all the

terms that are exponentially decreasing when λ→∞. Since B0,m(λ) = 1
λm−1 ≥ A0,m(λ) for

all m, see (12), we have Bl,m(λ) ≥ Al,m(λ) for all l ≥ 0, m ≥ 1.

2.2 Deriving approximations and determining their precision

Let m, l and k be fixed. Consider the expansions of Al,m(λ) and Bl,m(λ) of the form:

Al,m(λ) =
k∑

r=0

al,m(r)

λr
+ o

(
1

λk

)
, λ→∞ ; (16)

Bl,m(λ) =
k∑

r=0

bl,m(r)

λr
+ o

(
1

λk

)
, λ→∞ , (17)

where al,m(r) and bl,m(r) are some coefficients. The properties of these coefficients are

summarized in the following statement.

Theorem 1. Let l, k ≥ 0, m ≥ 1 be some integers and let Al,m(λ) and Bl,m(λ) be defined

through (16) and (17), respectively. Then we have

(i) al,m(r) = bl,m(r) for all l,m, r;

(ii) al,m(r) = 0 for all r < l +m− 1;

(iii) al,m(r) = 1 for r = l +m− 1;

(iv) al,m(r) ≥ 0 for all r.

Proof. The statement (i) follows from the fact that for fixed l and m the difference

between Al,m(λ) and Bl,m(λ) is exponentially small as λ→∞.

In order to prove the other three statements, we use induction in l. For l = 0 the

statements obviously follow from either (12) or (15). Assume that (ii) - (iv) hold for l − 1.

For all fixed m ≥ 1, l ≥ 1 we have for all x ≥ 1:

1

(x+m) . . . (x+m+ l − 1)
≤ 1

x l
≤ 1

(x+m) . . . (x+m+ l − 1)

(
1 +

Cm, l
x+m+ l

)
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for some positive constants Cm, l ; these constants are Cm, l = (m + l + 1) ((m+ l)!/m!− 1).

Through substituting this into (7) we obtain

A0,m+l(λ) ≤ Al,m(λ) ≤ A0,m+l(λ) + Cm, lA0,m+l+1(λ) .

In view of (12) we obtain as λ→∞
1

λm+l−1
+ o

(
1

λm+l

)
≤ Al,m(λ) ≤ 1

λm+l−1
+
Cm, l
λm+l

;

this yields (ii) and (iii).

Assume that (iv) is true for l − 1, through the recurrence relation in (13) it follows that

(iv) is true for l; as it implies that each al,m(r) is a weighted sum of non-negative coefficients

al−1, u(v) with non-negative weights. 2

In view of (8) and (16), we define the kth order approximations to µ−l as

µ
(k)
−l =

k∑

r=0

al, 1(r)

λr
. (18)

The statements (ii) and (iii) of Theorem 1 imply the summation in (18) actually starts

at r = l, they also imply that as λ→∞ the order of decrease of µ−l is 1
λl

; more precisely:

µ−l − 1

λl
= o

(
1

λl

)
as λ→∞ . (19)

Statement (iv) yields that for each l, µ−l is monotonously increasing as k grows, that is

µ
(k)
−l ≤ µ

(k+1)
−l for all k.

Assume that we able to compute the coefficients al, 1(r) (which we can, unlike the coef-

ficients al,m(r) for m > 1). Thus, we can compute the kth order approximations µ
(k)
−l to µ−l

with k > l, with Theorem 1 implying that the precision is:

|µ(k)
−l − µ−l| = O

(
1

λk+1

)
as λ→∞ . (20)

Formulae (19) and (20) yield that the relative error of µ
(k)
−l with k > l is:

|µ
(k)
−l − µ−l
µ−l

| =
O
(

1
λk+1

)

1
λl

+ o
(

1
λl

) =
O
(

1
λk−l+1

)

1 + o(1)
= O

(
1

λk−l+1

)
asλ→∞ . (21)
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Despite the rate of decrease (as λ → ∞) of the relative error, µ
(k)
−l increases as k grows,

we cannot take k arbitrarily large. This is attributable to the constant in O
(

1
λk−l+1

)
in (21)

rapidly increasing as k grows. This constant, as follows from (2) has the order of at least

s(k + 1, l), which is roughly k!(log k). Numerical results (shown below) demonstrate that

one can guarantee extremely precise approximations by taking k up to dλe+ l.

Note also that Theorem 1 implies that to construct a kth order approximation to µ−l, we

are free to ignore the last terms in (14) and use

Bl,m(λ) ∼=
N∑

r=0

(m+ r − 1)!

(m− 1)!
Bl−1,m+r+1(λ) , (22)

for any N ≥ k − (m+ l).

3 Construction of the approximations

In the approximations that follow we will need the so-called signless Stirling numbers of the

first kind.

3.1 Signless Stirling numbers of the first kind

Denote the signless Stirling numbers of the first kind as s(n, j), see Pólya et al. (1983) and

Comtet (1974). These numbers satisfy the recurrence

s(n, j) = (n− 1)s(n− 1, j) + s(n− 1, j − 1), n, j ≥ 1 ,

with the initial conditions s(n, j) = 0 if n ≤ 0 or j ≤ 0, except s(0, 0) = 1. Values for

these numbers can be obtained from numerous combinatorial books, for example Pólya et

al. (1983).

We shall need the following properties of these Stirling numbers, s(n, j). Let

Hn = 1 + 1
2

+ . . .+ 1
n

be the harmonic numbers, then (see Comtet (1974), p. 217) s(n, j) = 0

for n < j and for all n ≥ j − 1

s(n+ 1, 1) = n! ; (23)
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s(n+ 1, 2) = n!
(

1 +
1

2
+ . . .+

1

n

)
= n!Hn ; (24)

s(n+ 1, 3) =
n!

2

[
H2
n −

(
1 +

1

22
+ . . .+

1

n2

)]
. (25)

Additionally, for n fixed and variable k, s(n+1, k+1) are the elementary symmetric functions

of the first n integers; that is, for p = 1, 2, . . . n we have

s(n+ 1, n+ 1− p) =
∑

1≤i1<i2<...<ip≤n
i1i2 . . . ip . (26)

3.2 Approximating the first negative moment

Through using (14) and (15) we have

B1,1(λ) =
1

λ
+

1

λ2
+

2

λ3
+ . . . =

k−1∑

r=0

r!

λr+1
+ k!B1,k+1(λ) . (27)

To construct kth order approximations for µ−1, we keep the first k terms in Equation (27),

ignoring B1,k+1(λ), respectively. In this way we obtain

µ−1
∼= B1,1(λ) ∼= µ

(k)
−1 =

k−1∑

r=0

r!

λr+1
=

1

λ
+

1

λ2
+

2

λ3
+ . . .+

(k − 1)!

λk
. (28)

Through using (23) it is evident that we can write µ
(k)
−1 in the form of (3).

Table I: Comparison of the relative errors of the approximations for the first negative moment,

against different values of λ.

Relative Error

λ µ
(5)
−1 µ

(d0.5λe)
−1 µ

(dλe)
−1 T

(1)
0 T

(1)
3 T

(1)
6

10 1.605 10−3 1.605 10−3 -1.217 10−3 1.686 10−2 1.611 10−2 1.546 10−2

15 2.606 10−4 5.539 10−5 -1.459 10−5 6.117 10−3 5.934 10−3 5.799 10−3

25 1.580 10−5 1.718 10−8 -1.305 10−9 1.912 10−3 1.855 10−3 1.837 10−3

50 4.289 10−7 1.124 10−17 -4.333 10−20 4.350 10−4 4.275 10−4 4.264 10−4

100 1.265 10−8 6.292 10−36 -1.935 10−41 1.042 10−4 1.032 10−4 1.031 10−4

200 3.847 10−10 1.496 10−72 -1.633 10−79 2.551 10−5 2.539 10−5 2.538 10−5

The accuracy of the approximations used are shown in Table I, which gives the relative

error against different values of λ; all of our approximations compare favorably to the more
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complex Tiku approximations T
(1)
j defined in Equation (4). Already the simple approxima-

tion µ
(5)
−1 = 1

λ
+ 1

λ2 + 2
λ3 + 6

λ4 + 24
λ5 , provides very good precision. The approximations µ

(3)
−1

and µ
(4)
−1 are also accurate. Table I shows that the approximation µ(d0.5λe) is very accurate

for λ ≥ 10, and always underestimates µ−1. On the other hand, µ
(k)
−1 with k = dλe always

overestimates µ−1, and it is even more precise than µ
(k)
−1 with k = dλ/2e. This yields that

any approximation µ
(k)
−1, with dλ

2
e ≤ k ≤ dλe provides an extremely accurate approximation.

3.3 Approximating the second negative moment

Using Equation (22) with l = 2 and m = 1, we obtain

µ−2
∼=

N∑

r=0

r!B1,r+2(λ) . (29)

We will be constructing approximations of the form

µ−2
∼= µ

(k)
−2 =

k∑

r=1

a2, 1(r)

λr
,

which we shall obtain from (29) with N large enough (any N > k would suffice), by the

repeated application of the approximations in (22), and keeping all the terms that contribute

to a2, 1(r)’s with r ≤ k − 1.

Table II: Comparison of the relative errors for the approximations of the second negative

moment, against different values of λ.

Relative Error

λ µ
(6)
−2 µ

(d0.5λe+1)
−2 µ

(dλe+1)
−2 T (2)

10 2.925 10−2 2.925 10−2 -1.158 10−2 9.355 10−2

15 4.148 10−3 1.425 10−3 -2.587 10−4 2.993 10−1

25 2.316 10−4 7.840 10−7 -4.671 10−8 8.338 10−3

50 6.250 10−6 1.157 10−15 -3.824 10−18 1.808 10−3

100 1.849 10−7 1.460 10−33 -4.077 10−39 4.244 10−4

200 5.639 10−9 7.871 10−70 -8.023 10−82 1.030 10−4

Rewrite (22) as

Bl,m(λ) ∼=
∑

r≥0

(m+ r − 1)!

(m− 1)!
Bl−1,m+r+1(λ) , (30)
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and, respectively, (29) as

µ−2
∼=
∑

r≥0

r!B1,r+2(λ) . (31)

Hence, from (31) and (30) we obtain

µ−2
∼=

∑

r≥0

r!B1,r+2(λ) ∼=
∑

r≥0

r!
∑

s≥0

1

λs+r+2

(s+ r + 1)!

(r + 1)!
=
∑

r≥0

1

r + 1

∑

s≥0

1

λs+r+2
(s+ r + 1)! .

Let t = r + s+ 1; using Equation (24) we obtain

µ−2
∼=

∑

r≥0

∑

t≥r+1

t!

(r + 1)λt+1
=
∑

t≥1

t!

λt+1

t−1∑

r=0

1

r + 1
=
∑

t≥1

t!Ht

λt+1
=
∑

t≥2

s(t, 2)

λt
. (32)

The kth order approximation to µ−2 is obtained when we keep the first k terms in the

right-hand side of (32).

In Table II we discover that µ
(d0.5λe+1)
−2 , µ

(dλe+1)
−2 and even the very simple approximation

µ
(6)
−2 compare very favorable against Tiku’s approximation T (2). We find that µ

dλe+1
−2 over-

estimates µ−2, whereas µ
(d0.5λe+1)
−2 understimates, this suggests any approximation µ

(k)
−2 with

dλ
2
e+ 1 ≤ k ≤ dλe+ 1 would provide an extremely accurate approximation.

3.4 Approximating the third negative moment

To approximate the third negative moment, µ−3, we express B3,1(λ) in a similar way:

µ−3
∼= B3,1(λ) ∼=

∑

r≥0

r!B2,r+2(λ) ∼=
∑

r≥0

r!
∑

s≥0

B1,r+s+3(λ)
(r + s+ 1)!

(r + 1)!

∼=
∑

r≥0

1

r + 1

∑

s≥0

(r + s+ 1)!
∑

t≥0

1

λt+r+s+3

(r + s+ t+ 2)!

(r + s+ 2)!

=
∑

r≥0

1

r + 1

∑

s≥0

1

r + s+ 2

∑

t≥0

1

λt+r+s+3
(r + s+ t+ 2)! .

Let u = r + s+ t+ 2 and s′ = r + s+ 1, so that

µ−3
∼=

∑

u≥2

u!

λu+1

u−2∑

r=0

u−1∑

s′=r+1

1

(r + 1)(s′ + 1)
. (33)
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Since

H2
u =

u−1∑

r=0

1

r+1

u−1∑

s=0

1

s+1
=

u−2∑

r=0

1

r+1

u−1∑

s=r+1

1

s+1
+

u−1∑

r=0

[
1

r+1

]2

+
u−1∑

r=1

1

r+1

r−1∑

s=0

1

s+1

= 2
u−2∑

r=0

1

r + 1

u−1∑

s=r+1

1

s+ 1
+
(

1 +
1

22
+

1

32
+ . . .+

1

u2

)
, (34)

we have from (33) and (25)

µ−3
∼=
∑

u≥2

u!

2λu+1

[
H2
u −

(
1 +

1

22
+ . . .+

1

u2

)]
=
∑

u≥2

s(u+1, 3)

λu+1
=
∑

u≥3

s(u, 3)

λu
. (35)

The kth order approximation µ
(k)
−3 is obtained by keeping the first k terms in (35).

Table III: Comparison of the relative errors for approximations of the third negative moment,

against different values of λ.

Relative Error

λ µ
(7)
−3 µ

(d0.5λe+2)
−3 µ

(dλe+2)
−3 T (3)

10 1.941 10−1 1.941 10−1 -2.834 10−2 3.159 10−1

15 3.337 10−2 1.720 10−2 -1.440 10−3 9.704 10−2

25 1.669 10−3 1.719 10−5 -5.923 10−7 2.287 10−2

50 4.534 10−5 5.567 10−14 -1.360 10−16 4.700 10−3

100 1.358 10−6 1.590 10−31 -3.855 10−37 1.081 10−3

200 4.169 10−8 1.963 10−67 -1.924 10−79 2.597 10−4

In Table III we discover that all approximations compare favorably against Tiku’s ap-

proximation T (3), and if we had and approximation of the form µ
(k)
−3 with d0.5λe+ 2 ≤ k ≤

dλe+ 2, the approximation would be extremely accurate.

3.5 General Case

For the lth order negative moment we approximate Bl,1(λ). This can be obtained by applying

the same methodology:

µ−l∼= µ̃−l=
∑

r1≥0

1

r1+1

∑

r2≥0

1

r1+r2+2
. . .

∑

rl−1≥0

1

r1+r2+. . .+rl−1+l−1

∑

rl≥0

(r1+r2+. . .+rl+l−1)!

λr1+r2+...+rl+l
.
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Let r′m =
∑m
i=1 ri + (m− 1), for 2 ≤ r ≤ l.

Thus, we have

µ̃−l =
∑

r′l≥l−1

r′l!
λr
′
l
+1

r′l−(l−1)∑

r1=0

r′l−(l−2)∑

r′2=r1+1

r′l−(l−3)∑

r′3=r′2+1

. . .

r′l−1∑

r′l−1=r′l−2+1

1

(r1 + 1)(r′2 + 1) . . . (r′l−1 + 1)
.

Let t1 = r1 + 1 and tm = r′m + 1, 2 ≤ m ≤ l. Hence, using Equation (26)

µ̃−l =
∑

tl≥l−1

tl!

λtl+1

tl−(l−2)∑

t1=1

tl−(l−1)∑

t2=t1

tl−(l−2)∑

t3=t2

. . .
tl−2∑

tl−1=tl−2

1

t1 t2 . . . tl−1

=
∑

tl≥l−1

s(tl + 1, l)

λtl+1
=
∑

r≥l

s(r, l)

λr
. (36)

Similarly to the above, the kth order approximation to µ−l is obtained when we keep the

first k terms in (36).

3.6 Approximating non-integer negative moments

Assume that α > 0 is not an integer. Set l = bαc and let θ = α − l with 0 ≤ θ ≤ 1.

Accurate approximations for non-integer negative moments can be obtained through using

the following approximation:

µ
(t+α)
−α =

t∑

r=0

s(r + 1, l) + θ [s(r + l + 1, l + 1)− s(r + 1, l)]

λα+r
. (37)

Table IV clearly demonstrates that all of the approximations for the non-integer negative

moments provide very accurate approximations for λ ≥ 50, with a relative error less than

0.003. However, it can also be seen that for larger values of α (e.g. α = 5.1 and 5.5) the

approximations are nor very accurate for small λ. This can be explained by the fact that

the approximations for the larger integer negative moments are only accurate for fairly large

values of λ. Additionally, we find that the approximations are less accurate as θ departs

further away from zero or one.
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Table IV: Comparison of relative errors of the non-integer negative moments for different

values of α versus different values of λ, for t = 5.

Relative Error

λ µ−0.1 µ−0.5 µ−2.1 µ−2.5 µ−5.1 µ−5.5

10 -6.872 10−3 -1.959 10−2 8.463 10−4 2.122 10−3 8.303 10−1 8.916 10−1

15 -3.852 10−3 -1.095 10−2 -5.835 10−3 -1.633 10−2 5.832 10−1 7.441 10−1

25 -2.072 10−3 -5.834 10−2 -3.299 10−3 -9.216 10−3 1.288 10−2 1.762 10−1

50 -9.629 10−3 -2.692 10−2 -1.225 10−3 -3.416 10−3 -1.853 10−3 -5.351 10−3

100 -4.652 10−3 -1.296 10−2 -5.245 10−4 -1.461 10−3 -7.002 10−4 -1.946 10−3

200 -2.287 10−4 -6.363 10−3 -2.429 10−4 -6.756 10−4 -2.835 10−4 -7.878 10−4
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