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Abstract We consider moment based estimation methods for estimating param-
eters of the negative binomial distribution that are almost as efficient as maximum
likelihood estimation and far superior to the celebrated zero term method and
the standard method of moments estimator. Maximum likelihood estimators are
difficult to compute for dependent samples such as samples generated from the
negative binomial first-order autoregressive integer-valued processes. The power
method of estimation is suggested as an alternative to maximum likelihood esti-
mation for such samples and a comparison is made of the asymptotic normalized
variance between the power method, method of moments and zero term method
estimators.
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1 Introduction

Parameter estimation for independent samples from the negative binomial distri-
bution (NBD) has been thoroughly investigated in [5] and [6] using the maximum
likelihood approach. The maximum likelihood estimator for the shape parameter of
the NBD cannot be presented in an explicit form and must be found as the solution
to an equation. Anscombe in [2] noted that the maximum likelihood equation for
the shape parameter can be tedious to compute and therefore considered moment
based estimators for the parameters of an independent and identically distributed
(i.i.d.) NBD sample.

In this paper we study a family of moment based estimation methods, called the
power method estimators, for estimating parameters of the NBD. These estimators
are almost as efficient as maximum likelihood estimators and are far superior to the
celebrated zero term method and method of moments. We further investigate the
power method estimators when used to estimate NBD parameters for dependent
NBD samples generated from the NBD first-order autoregressive integer-valued
process, or INAR(1) process.

In Section 2 the maximum likelihood estimators and generalized moment based
estimators for the mean m and shape parameter k of an i.i.d. NBD sample are
presented. We discuss reasons why maximum likelihood estimators are unsuitable
for use in practice when analyzing, say, market research data and show that, in such
cases, it is preferable to use moment based estimators. In Section 3 we prove that
the asymptotic normalized variance of the power method estimator can be smaller
than the asymptotic normalized variance of both the method of moments and
zero term method estimator discussed in [2]. Simple approaches of implementing
the power method in practice are offered. Finally, in Section 4 the power method
of estimation for dependent NBD samples generated from an INAR(1) process is
studied.

2 Background

2.1 The negative binomial distribution

The NBD is a two parameter distribution usually defined by the mean m and
shape parameter k. The probabilities of the NBD are given by

px = P(X = x) =
Γ (k + x)
x!Γ (k)

(
1 +

m

k

)−k
(

m

m + k

)x
x = 0, 1, 2, . . .
k > 0, m > 0.

(1)

The distribution has a number of different parameterizations. The parameter pair
(k, m) is statistically preferred as the maximum likelihood estimators (k̂

ML
, m̂

ML
)

and all natural moment based estimators (k̂, m̂) are asymptotically uncorrelated
given an i.i.d. NBD sample (see [2]).

Market research is an example of one of the areas in which the distribution has
been successfully applied. Ehrenberg in [4] used the NBD to model the purchase
frequencies of brands and categories by a population of individuals. Ehrenberg
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showed, using empirical evidence, that the number of purchases of a product by
a population could be modeled using two NBD parameters called the penetration
and purchase frequency. The penetration b = 1−p0 represents the probability for
a random individual to make at least one purchase and w = m/b (w > 1) denotes
the mean purchase frequency per buyer.

In this paper we use a slightly different parametrization, namely (b, w′) with
w′ = 1/w. Its appeal lies in the fact that the corresponding parameter space
is within the unit square (b, w′) ∈ [0, 1]2, which makes it easier to make a vi-
sual comparison of different estimators for all parameter values of the NBD. The
NBD is only defined for the parameter pairs (b, w′) ∈ (0, 1)× (0, 1) such that
w′<−b/ log(1−b). Note that there is a one-to-one correspondence between the
parameter pairs (b, w′) and (k, m).

2.2 Parameter estimation

Maximum likelihood Parameter estimation using maximum likelihood (ML) for
independent observations from a NBD has been investigated by Fisher in [5] and
Haldane in [6]. The ML estimator for m is simply given by the sample mean x̄,
however there is no closed form solution for k̂

ML
and the estimator is obtained as

the solution in z to the equation

log
(
1 +

x̄

z

)
=

∞∑

i=1

ni

N

i−1∑

j=0

1
z + j

, (2)

where ni denotes the observed frequency of i = 0, 1, 2, . . . of the sample and N is
the size of the sample.

Difficulties with maximum likelihood Anscombe noted in [2] that the ML estimator
is impractical even in the case of i.i.d. samples. In market research, for example,
analyzing consumer purchase data often requires investigating data over different
time periods of varying lengths. The ni therefore differ according to the analysis
period taken into consideration. Fitting the NBD to such data using the ML ap-
proach will require calculation of the ni from raw transaction data for each analysis
period. This data must record the date and the frequency of the product bought
per household over a continuous time period. It is, however, very uneconomical to
store and very difficult to obtain such raw transaction data and ML estimation is
therefore hardly ever used in the practice of market research.

When modeling the number of purchase occasions by the NBD it may be
the case that the data are not independent. In this paper we additionally consider
estimation for dependent NBD samples generated from the NBD INAR(1) process.
The dependency in the observations makes it extremely difficult to both formulate
and solve the ML equations in order to obtain ML estimators. Since the NBD
INAR(1) process is a stationary and ergodic process, moment based estimators
provide a simple way of estimating parameters of the NBD in the case where ML
estimators cannot be formulated.
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Table 1 Three moment based estimation methods for the NBD

Method f(x) Ef(X) Sample moment f̄

Method of moments (MOM) x2 m(m+1)+ m2

k
x2 = 1

N

PN
i=1 x2

i

Zero term method (ZTM) I[x=0]

`
1 + m

k

´−k bp0 = n0
N

Power method (PM) cx
“
1 + m(1−c)

k

”−k ccX = 1
N

PN
i=1 cxi

Table 2 Estimators for k

Method Notation Estimator or equation for k̂

Maximum Likelihood (ML) k̂ML Equation (2)

Method of Moments (MOM) k̂MOM
x̄2

s2−x̄

Zero Term Method (ZTM) k̂ZT M bp0 =
`
1 + x̄

z

´−z

Power Method (PM) k̂P M
ccX =

“
1 + x̄(1−c)

z

”−z

Generalized moment based estimators As an alternative to ML estimation, the use
of moment based estimation methods were considered by Anscombe in [2]. The
first moment used in estimation is the sample mean x̄ as this is both a natu-
ral estimator and ML estimator for m. An additional sample moment, given by
f̄ = 1

N

∑N
i=1 f(xi), is required to estimate k; this is done by equating the sample

moment to Ef(X), with m replaced by m̂ = x̄, and solving the equation with re-
spect to k. Here N denotes the sample size and f(x) can be any convex or concave
function on the non-negative integers.

In this paper we shall consider three different functions as shown in Table 1. (In
Table 1, I[x=0] denotes the indicator function of the event x = 0, n0 denotes the
number of zeros in the sample and c 6= 1 is a positive constant.) Table 2 presents
the estimators of k for the ML method and the three moment based methods of
Table 1. (In Table 2, ni denotes the frequency of i = 0, 1, 2, . . . in the sample and
s2 denotes the sample variance.)

The MOM estimator for k is the only closed form estimator for k. The ML, PM,
ZTM methods all require a numerical solution with respect to z for estimating k.
Anscombe in [2] noted that all the equations in Table 2 for estimating k provide
solutions which are uniquely defined with probability one, note however that there
is a small probability that the estimator for k may be negative. The estimators for
k considered above all have finite means and variances.

Note that the PM at c = 0 is equivalent to the ZTM. The PM at c = 1 yields
no direct solution for estimating k. As c → 1, however, the PM estimator tends to
the MOM estimator. The PM therefore generalizes the MOM and ZTM methods
of estimation. In literature and in practice the ZTM has been the most preferred
method of estimation in the field of market research. This is related to the fact that
the parameter b = 1− p0 has a natural interpretation and that the estimator n0/N
for b is often readily available. In consumer research, for example, the penetration
may be estimated either from questionnaires, retail data or even shipment data.



Efficient estimation of NBD parameters 5

2.3 Asymptotic efficiency of estimators

In this section we compare the relative efficiencies of moment based estimators
of k with respect to the ML estimator. The estimator m̂ = x̄ for m remains
the same for all methods and since the parameters m̂ and k̂ are asymptotically
uncorrelated for an i.i.d. sample (see e.g. [2]), only a comparison of the variance of
k̂ is required. The variances of the ML estimators are in fact the minimum possible
asymptotic variances attainable in the class of all asymptotically normal estimators
and therefore provide a lower bound for the moment based estimators. In separate
papers both Fisher [5] and Haldane [6] derived expressions for the asymptotic
variances of the NBD parameter estimators. The asymptotic normalized variance
of k̂

ML
obtained from the Fisher information matrix is given by

v
ML

= lim
N→∞

N V ar
(̂
k

ML

)
=

2k(k+1)p2

(p−1)2
(

1+2
∑∞

j=2

(
p−1
p

)j−1
j!Γ (k+2)

(j+1)Γ (k+j+1)

) (3)

where p = 1 + m/k. (We use the notation p rather than m as it simplifies the
formulae.)

The asymptotic normalized variances for the moment based estimators of k for
a given function f(·) were derived by Anscombe (1950) to be

lim
N→∞

N V ar
(
k̂
)

=
Ef2(X)− [Ef(X)]2 −

(
m + m2

k

) [
∂

∂mEf(X)
]2

[
∂
∂kEf(X)

]2 . (4)

The asymptotic normalized variances of k̂ for MOM, ZTM and PM estimation
methods are respectively given by

vMOM = lim
N→∞

N V ar(k̂MOM )=
2k (k + 1) p2

(p− 1)2
, (5)

vZT M = lim
N→∞

N V ar(k̂ZT M )=
pk+2 − p2 − kp(p− 1)

[p log(p)− p + 1]2
, (6)

v
P M

(c) = lim
N→∞

N V ar(k̂
P M

)=

(
p−pc2+c2

)−k
g2k+2−g2−kp(p−1)(1−c)2

[g log(g)− g + 1]2
(7)

where p = 1 + m/k (as above) and g = p− pc + c.

3 The power method for i.i.d. samples

3.1 Inadmissability of MOM/ZTM

Let us define the more efficient of the MOM and ZTM estimator as the ‘com-
bined MOM/ZTM’ estimator. Anscombe stated that the PM estimator is nowhere,
within the parameter space, more efficient than the combined MOM/ZTM estima-
tor. This statement has been assumed true in a number of textbooks and surveys



6 V.SAVANI, A. A. ZHIGLJAVSKY

(for example [7]) and is indeed true when comparing against the PM with fixed
c ∈ (0, 1) for all parameter values of the NBD simultaneously. The following the-
orem states that this statement is always untrue if we allow c ∈ (0, 1) to change
according to the parameter values.

Theorem 1 The combined MOM/ZTM estimator is inadmissible in the class of
PM estimators in the following sense: for any fixed k and m there exists c∗, with
0 < c∗ < 1, such that v

P M
(c∗) < min{v

ZT M
, v

MOM
}, where v

MOM
, v

ZT M
and v

P M
(·)

are the normalized asymptotic variances of k̂ as defined in (5), (6) and (7) for the
MOM, ZTM and PM respectively.

Proof See Appendix B.

Fig. 1 shows the ratio vP M(c)/vML versus c ∈ (0, 1) for different parameter
values of (k, m). Fig. 1 shows that there is, in fact, a range of values of c∗, such
that v

P M
(c∗) < min{v

ZT M
, v

MOM
}. Moreover, there is a single optimum c, which

we denote by co, that will give a PM estimator for k that is almost as efficient as
the ML estimator for k. The value of co can be obtained numerically by minimizing
vP M (c) for every (k, m).

3.2 Power method with sub-optimum c

In this section we study the efficiency of power method estimators with non-
optimum c. The first type of estimators provide a simple and practical alter-
native to ML estimators. These estimators require the collection of statistics
ĉ = 1

N

∑N
i=1 cxi for different values of c. The second estimator achieves efficiency

very close to that of the ML estimator. The implementation of these methods,
however, requires knowledge of the parameter values. Use of these methods in
practice is considered in [10].

Simple and efficient estimators. Fig. 2 shows the efficiency of two simple PM esti-
mators of k relative to the PM estimator computed at optimum c. The simple esti-
mators are obtained by computing the PM(c̃) estimator, where c̃=argminc∈CvP M

(c)
with C = {0, 1} and C = {1/4, 1/2, 3/4}. In the case of market research, this PM
estimator offers a simple and viable alternative to ML since only the statistics
ĉ = 1

N

∑N
i=1 cxi are required for each c ∈ C to estimate k. In market research such

statistics are easily requested in comparison to actual frequency counts which are
required for ML estimation.

The PM estimator computed at c̃ = argminc∈CvP M (c) in the case C = {0, 1} is
the combined MOM/ZTM estimator and is commonly used in practice. One can
verify that the efficiencies of the combined MOM/ZTM estimator with respect to
the PM(co) estimator cover the whole interval (0, 1). The graph of the efficiency
of the combined MOM/ZTM estimator relative to the ML estimator is almost
identical to Fig. 2(a).

The efficiency, with respect to the PM(co) estimator, of the PM estimator
computed at c̃ = argminc∈CvP M

(c) in the case C = {1/4, 1/2, 3/4} is shown in
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Fig.2(b). Comparing Fig. 2(a) against Fig.2(b) we can conclude that the efficiency
of PM(c̃) estimator with C = {1/4, 1/2, 3/4} is much higher than the efficiency of
the combined MOM/ZTM estimator.

Highly efficient estimators. To obtain more efficient parameter estimates than the
simple estimators proposed above, the value of c must vary according to the true
parameter values. It is possible to obtain values of co numerically. We can then
use regression techniques to approximate co. As a reasonably good approximation
to co we suggest

ĉo = (4.5w′2 − 1.9w′ + 0.5)b2 + (3.1w′3 − 2.4w′2 + 0.7w′ + 0.4)b . (8)

Fig. 3(a) shows the efficiency of the PM estimator computed at co relative to the
ML estimator. Fig. 3(b) shows the efficiency of the PM estimator at ĉo relative to
the PM estimator at co; this efficiency is practically equal to 1 for all NBD param-
eter values. The implementation of the PM(co) and PM(ĉo) estimators in practice
require knowledge of the unknown parameter values. An adaptive procedure for
updating values of c may be used. For example we may update values of b and w′

in (8) as the sample increases.

4 The power method for the NBD INAR(1) process

In this section we consider the power method for estimating parameters of the
NBD INAR(1) process. For the rest of this section, unless otherwise stated, we
assume that Xt is a NBD INAR(1) process and we let xt, t = 1, 2, . . . N , denote
a realization from the process Xt. A non-negative integer-valued process Xt is an
INAR(1) process if

Xt
d= α ◦Xt−1 + εt, (9)

where α ◦ Xt−1 and εt are independent, the εt form a sequence of uncorrelated
random variables and Xt

d= Xt−1 for all t, with d= denoting equivalence in distri-
bution, see e.g. [1,9]. Here ‘◦’ is called the thinning operator and α ◦X is defined
as α ◦ X

d=
∑X

j=1 Zj where the Zj are i.i.d. Bernoulli random variables with
P (Zj =1) = α and P (Zj =0) = 1−α. It is assumed that the Xt and εt have finite
means and variances. Note that if α = 0 then then INAR(1) sample is i.i.d.

The INAR(1) process Xt with marginal distribution π will only be an INAR(1)
process if the random variable Xπ, with distribution π, is discrete self-decomposable
so that the probability generating function GXπ (c) = EcXπ satisfies

GXπ (c) = GXπ (1− α + αc)Gε(c; α), α ∈ (0, 1). (10)

McKenzie in [8] derived the NBD INAR(1) process. Note that if the process
Xt has a NBD marginal distribution with parameters (k,m) then Xt is discrete
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self-decomposable since the probability generating function of Xt can be written
in the form of equation (10) with

(
1 +

m(1− c)
k

)−k

︸ ︷︷ ︸
GXπ (c)

=
(

1 +
mα(1− c)

k

)−k

︸ ︷︷ ︸
GXπ (1−α+αc)

(
k + m(1− c)
k + mα(1− c)

)−k

︸ ︷︷ ︸
Gε(c; α)

. (11)

If Xt is NBD with parameters (k,m) then the errors εt must follow the NBD-
Geometric distribution with

P{εt = x} =
∞∑

j=0

(
j+x−1

x

)(
k

k+mα

)j (
mα

k+mα

)x (
k+j−1

j

)
αk(1−α)j ,

where x = 0, 1, 2 . . . .

4.1 Estimating parameters of the NBD INAR(1) process

Al-Osh and Alzaid in [1] addressed the problem of estimating the parameter α and
the mean parameter λ of a Poisson INAR(1) process using three different types of
estimators. The first two methods of estimation use moment based methods and are
asymptotically equivalent. The final method uses a maximum likelihood approach.
These estimation methods and their suitability for estimating parameters of the
NBD INAR(1) process will now be reviewed.

For the moment based estimators, the thinning parameter α is estimated from
the autocorrelation function of the INAR(1) process. Since the autocorrelation
function of the INAR(1) process is identical to that of the AR(1) process, the
problem of estimating α is well documented in many textbooks (see e.g. [3]). Once
α is estimated by α̂, Al-Osh and Alzaid obtain a sequence of estimators ε̂t through
the equation ε̂t = xt − α̂xt−1. Standard moment based estimation methods are
then used to estimate the parameters of the marginal distribution of the error
process. The distribution of the errors for the NBD INAR(1) process is not simple
and this makes inference about the estimators of (k, m) difficult.

The conditional maximum likelihood method discussed in [1] maximizes the
likelihood function given knowledge of the process at time zero (i.e. given x0).
In the case of the NBD INAR(1) model, the maximum likelihood equations are
already complex in the i.i.d. case (i.e. when α = 0) and the maximum likelihood
equations become much harder even to formulate when α > 0. It is also very
difficult to compute the Fisher information matrix and therefore difficult to obtain
the asymptotic distribution of ML estimators.

In this paper we consider estimating the distributional parameters of the NBD
INAR(1) process by using the moments of Xt as opposed to the moments of εt.
Since the INAR(1) process is a stationary and ergodic process, the expected values
of the sample moments for an observed realization and the stationary distribution
are equal. An unbiased estimator for m is therefore m̂ = x̄ = 1

N

∑N
t=1 xt. The

power method estimator k̂P M for the shape parameter of the NBD distribution is
computed by solving, in z, the equation ĉX = 1

N

∑N
t=1 cxt = (1 + x̄(1− c)/z)−z

.
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4.2 Efficiency of the power method estimator

Although computing moment based estimators for a NBD INAR(1) process and
an i.i.d. NBD sample are identical, the fact that the values of xt are correlated
for INAR(1) samples implies that the covariance matrices of the estimators of
(k, m) are different. In this section we derive the normalized asymptotic covariance
matrix for the statistics

(
x̄, ĉX

)
, from which the normalized covariance matrix of(

k̂P M , m̂
)

is consequently derived.

Theorem 2 Let {xt; t = 1, 2, . . . , N} be a sample realization from an INAR(1)

process Xt with stationary distribution π. Let β̂s =
(
x̄, ĉX

)T

with x̄ = 1
N

∑N
t=1 xt

and ĉX = 1
N

∑N
t=1 cxt , with c > 0 and c 6= 1. Then β̂s has an asymptotic normal

distribution given by limN→∞
√

N
(
β̂s −Eβ̂s

)
∼ N (0, Dc) with

Dc =

(
VX̄ C

X̄, ccX

C
X̄, ccX VccX

)
. (12)

Here

VX̄ = lim
N→∞

N V ar
(
X̄

)
=

(
1 + α

1− α

)
V ar[Xπ],

VccX = lim
N→∞

N V ar
(
ĉX

)
= V ar

(
cXπ

)

+ 2 lim
N→∞

N−1∑
r=1

(
1− r

N

){
GXπ (c [1− αr + αrc]) Gε(c; αr)−G2

Xπ
(c)

}
,

C
X̄, ccX = lim

N→∞
N Cov

(
X̄, ĉX

)
= Cov

(
Xπ, cXπ

)

+ lim
N→∞

N−1∑
r=1

(
1− r

N

){
E

[
Xπ (1−αr+αrc)Xπ

]
Gε(c; αr)− E[Xπ]GXπ (c)

}

+ lim
N→∞

N−1∑
r=1

(
1− r

N

)
{GXπ (c [1−αr+αrc])− αrE[Xπ]GXπ (c)} .

Proof See Appendix C.

Note that the asymptotic distribution of β̂s =
(
x̄, ĉX

)T

derived in Theorem 2
holds for any INAR(1) process and not just the NBD INAR(1) process. In the
case of a NBD INAR(1) sample we have V ar[Xπ] = m + m2/k, V ar

(
cXπ

)
=

GXπ (c2) − G2
Xπ

(c) and E[XπcXπ ] = mc (1 + m(1− c)/k)−k−1. The generating
functions GXπ (c) and Gε(c; α) are given in equation (11). Fig. 4 shows 95%
asymptotic bivariate normal confidence ellipses for Eβ̂s, centered at zero, given
by the equation

(
β̂s − Eβ̂s

)T

D−1
c

(
β̂s − Eβ̂s

)
6 χ0.95(2) ' 5.99 .
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Fig. 5 shows estimates β̂s − Eβ̂s obtained from 1000 simulations from a NBD
INAR(1) process together with corresponding 95% asymptotic bivariate normal
confidence ellipses. The parameters used for the NBD INAR(1) process were
m = 1, k = 2, N = 1000, α ∈ {0, 0.5} and the PM estimator ĉX was computed
using the value c = 0.5.

Corollary 1 Let {xt; t = 1, 2, . . . , N} be a sample realization from a NBD INAR(1)
process Xt with NBD parameters (k, m). Let β̂ = (k̂

P M
, m̂)T be the power method

estimators, with fixed c, 0 < c < 1, obtained from the NBD INAR(1) sample, then
β̂ has an asymptotic normal distribution with limN→∞

√
N

(
β̂ − Eβ̂

)
∼ N (0,Σα(c))

where

Σα(c) =

(
Dk̂,x̄ D

k̂,ccX

Dm̂,x̄ D
m̂,ccX

)(
VX̄ C

X̄, ccX

C
X̄, ccX VccX

)(
Dk̂,x̄ D

k̂,ccX

Dm̂,x̄ D
m̂,ccX

)T

. (13)

Here Df(ν), ν is the derivative of f(ν) with respect to ν and Df(ν), ν is evaluated
at the point (k̂, m̂) = (k,m). The matrix of partial derivatives is

(
Dk̂,x̄ D

k̂,ccX

Dm̂,x̄ D
m̂,ccX

)
=




c− 1
g log(g)− g + 1

− gk+1

g log(g)− g + 1
1 0




where g = p− pc + c = 1 + m(1− c)/k.

The asymptotic distribution of the estimators (k̂
P M

, m̂) has been derived by using
a multivariate version of the so-called δ-method (see e.g. [11]).

Fig. 6 shows 95% asymptotic bivariate normal confidence ellipses for Eβ̂, cen-
tered at zero. For α = 0 the estimators m̂ and k̂

P M
are clearly uncorrelated. For

α ∈ (0, 1), however, there is a positive correlation between the estimators m̂ and
k̂

P M
. A comparison of the efficiency of estimation methods may, therefore, no

longer be made by comparing just the variance of k̂
P M

. A traditional method for
comparing the efficiency of correlated estimators is by minimizing the determinant
of the covariance matrix.

Fig. 7(a) shows det (Σα(c)), the determinant of the asymptotic normalized
covariance matrix as defined by equation (13), plotted against c for k = 0.5 and
m = 1 with α ∈ {0, 0.25, 0.5, 0.75}. Note that the optimal value of c is never equal
to 0 or 1. The figure shows that increasing the value of α can substantially increase
the determinant of the covariance matrix. Fig. 7(b) shows values of efficiency
defined by det (Σ0.25(c0.25)) / det (Σ0(co)) for all NBD values. Here cα is the value
of c that minimizes det (Σα(c)). Fig. 7(b) indicates that increasing the value of α
from 0 to 0.25 means that we can only hope to be at most 55% as efficient when
estimating from INAR(1) samples with α = 0.25 in comparison to estimating from
i.i.d. NBD samples for the majority of NBD parameter values. For α = 0.75 the
value of det (Σ0.75(c0.75)) / det (Σ0(co)) is at most 4% for the majority of NBD
parameter values.
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4.3 Estimating parameters of NBD INAR(1) samples under the false assumption
of independence

In practice it may happen that the dependence within samples is ignored. In the
case of dependent NBD INAR(1) samples, when implementing the power method
using the optimum value of c, the incorrect optimum value co would then be used
to compute the power method estimators rather than the true optimum value cα.
Fig. 8 shows contour levels of co and c0.75 . For fixed k and m, as α increases, the
value of optimum c also increases.

Fig. 9 shows properties of the power method estimator in the case α = 0.75.
Fig. 9(a) shows the correlation between the estimators k̂

P M
(c0.75) and m̂. Fig. 9(b)

shows the efficiency, defined by det (Σ0.75(c0.75)) / det (Σ0.75(co)), when estimating
using the k̂

P M
(co) relative to the k̂

P M
(c0.75) estimator. Fig. 9(b) therefore shows the

efficiency retained when estimating under the assumption of independent samples
when in fact the sample is a NBD INAR(1) sample with α = 0.75. Note that the
Fisher information matrix is difficult to formulate and compute for NBD INAR(1)
samples and therefore it is difficult to make a comparison between the covari-
ance matrix of moment based estimators and maximum likelihood estimators for
independent and dependent samples.

Conclusion

Standard method of moments and zero term method estimators are moment based
estimators, popular in the field of market research, for estimating the parameters
of the NBD. These moment based estimators are inefficient in certain regions of the
NBD parameter space. The proposed power method estimator is almost as efficient
as the maximum likelihood estimator and can be simple to implement in practice.
The power method estimator, when correctly implemented, is always more efficient
than the combined method of moments and zero term method estimator.

In the case of NBD INAR(1) samples, the dependency between observations
within samples makes it difficult to formulate maximum likelihood equations and
especially to obtain asymptotic normalized variances for the estimators. The power
method estimators, however, can still be easily implemented. It is straightforward
to compute the asymptotic normalized variances for the power method estimators
as presented in this paper. Unlike in the case of an i.i.d. sample, however, parameter
estimates for (k, m) are correlated for an INAR(1) sample when the value of the
thinning parameter α > 0. In implementing the power method, the optimum
value of the power method parameter c depends on α. The loss of efficiency in
assuming an i.i.d. NBD sample when in fact the sample is a NBD INAR(1) sample
with α = 0.75 is presented graphically to show the sensitivity of using the power
method estimator to changes in c. The loss of efficiency depends on values of the
NBD parameters.
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Appendicies

Appendix A: Figures

m = 0.5 m = 2

Fig. 1 vP M(c)/vML vs. c and asymptotic normalized variances for ML, MOM and ZTM.

(a) vP M (co)/vP M (c̃) with C = {0, 1}
(Black shows efficiencies 6 0.7)

(b) vP M (co)/vP M (c̃) with
C = {1/4, 1/2, 3/4}

(Black shows efficiencies 6 0.975)

Fig. 2 Efficiency of the power method using c̃ = argminc∈CvP M (c) for some set C.

(a) vML/vP M (co)

(Black shows efficiencies 6 0.95)

(b) vP M (co)/vP M (bco)

(Black shows efficiencies 6 0.999)

Fig. 3 Efficiency of the power method using (a) c = co and (b) c = bco.



Efficient estimation of NBD parameters 13

c = 0 c = 0.5

Fig. 4 95% asymptotic bivariate normal confidence ellipses for Eβ̂s (β̂s = (x̄,ccX)T ),
centered at zero, for a NBD INAR(1) sample with k = 2, m = 1, α ∈ {0, 0.25, 0.5, 0.75}
and c ∈ {0, 0.5}.

α = 0 α = 0.5

Fig. 5 1000 simulated β̂s −Eβ̂s (β̂s = (x̄,ccX)T ) with 95% asymptotic bivariate normal
confidence ellipses for a NBD INAR(1) sample with k = 2, m = 1, N = 1000, c = 0.5
and α ∈ {0, 0.5}.

c = 0 c = 0.5

Fig. 6 95% asymptotic bivariate normal confidence ellipses for Eβ̂ (β̂ = (k̂P M , m̂)),
centered at zero, for a NBD INAR(1) sample with k = 2, m = 1, α ∈ {0, 0.25, 0.5, 0.75}.
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(a) det (Σα(c)) for k = 0.5, m = 1 (b) det (Σ0.25(c0.25)) / det (Σ0(co))

Fig. 7 (a) det (Σα(c)) for k = 0.5, m = 1 and (b) det (Σ0.25(c0.25)) / det (Σ0(co)) where
c0.25 and co are values of c ∈ (0, 1) that minimize det (Σ0.25(c0.25)) and det (Σ0(co))
respectively.

Values of co Values of c0.75

Fig. 8 Values of c optimum, co and c0.75 , for power method estimators when estimating
from a NBD INAR(1) sample with α = 0 and α = 0.75 respectively.

(a) Corr(k̂P M (c0.75), m̂)
(b) det (Σ0.75(c0.75)) / det (Σ0.75(co))

(Black shows efficiencies 6 0.92)

Fig. 9 Estimating from NBD INAR(1) samples with α = 0.75. (a) Correlation be-
tween (k̂P M (c0.75), m̂) where the power method estimator is computed at optimum c and
(b) relative efficiency det (Σ0.75(c0.75)) / det (Σ0.75(co)).
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Appendix B: Inadmissability of the MOM/ZTM

Proof of Theorem 1
Let m and k be fixed and set p = 1 + m/k. Note that 0 < k,m < ∞ and

1 < p < ∞.
i) Inadmissability of MOM. A Taylor expansion of vP M(c) in the neighbourhood

of c = 1 gives

vP M(c) =
2k(k + 1)p2

(p− 1)2
− 8k(k + 1)p2

3(p− 1)
(1− c) + O

(
(1− c)2

)
, c → 1. (14)

In view of (5) this implies v
P M

(1) = v
MOM

. Additionally, the derivative of v
P M

(c)
at c = 1 is

∂vP M(c)
∂c

∣∣∣∣
c=1

=
8k(k + 1)p2

3(p− 1)
,

which is strictly positive for all k, m. Hence, there always exists c′ such that 0 <
c′ < 1 and v

P M
(c′) < v

P M
(1) = v

MOM
.

ii) Inadmissability of ZTM. A Taylor expansion of v
P M

(c) in the neighborhood
of c = 0 gives

v
P M

(c) = v
P M

(0) + c
∂v

P M
(c)

∂c

∣∣∣∣
c=0

+ O
(
c2

)
, c → 0 . (15)

Equation (6) and (7) directly imply that vP M(0) = vZT M . The derivative of vP M (c)
at c = 0 can be written as

∂v
P M

(c)
∂c

∣∣∣∣
c=0

= − 2p(p−1)
pk [kp log(p)−(p−1)(k+1)]+(p−1)(k+1)−k log(p)

(p log(p)− p + 1)3

=− 2p(p− 1)
[h(p)]3 log(p)

∞∑

j=2

[k log(p)]j

j!
hj(p), (16)

where h(p) = p log(p)−p+1 and hj(p) = [(j − 1)p + 1] log(p)−jp+j. The infinite
series in (16) is derived by a Taylor expansion of pk (at k = 0) in the numerator.
Lemma 1 implies that h(p) > 0 and hj(p) > 0 for all p > 1 and all j > 2. All
the terms in the infinite series in (16) are therefore positive for all k and p. This
implies first, that the series is absolutely convergent for all k and p and second,
that the derivative (16) is negative for all k and p. Hence, there always exists c′′

such that 0 < c′′ < 1 and v
P M

(c′′) < v
P M

(0) = v
ZT M

.
iii) Inadmissability of MOM/ZTM. Let c′ and c′′ be particular values as above.

Define

c∗ =
{

c′ if vZT M ≥ vMOM

c′′ if vZT M < vMOM

(17)

then we obviously have v
P M

(c∗) < min{v
ZT M

, v
MOM

}. ut
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Lemma 1 The functions

h(t) = t log(t)− t + 1 and hj(t) = [(j − 1)t + 1] log(t)− jt + j

are positive for all t > 1 and j > 2.

Proof We have h(1)=0 and h′(t)=log(t)>0 for all t>1, implying that h(t)>0 for
all t>1. Similarly, for all j >2 we have hj(1)=0 and h′j(t)=(j−2) log(t)+h(t)/t >
0 for all t>1, implying that hj(t)>0 for all t>1 and j >2. ut

Appendix C: Asymptotic variances of the PM estimators for the NBD
INAR(1) process

The proof of Theorem 2 uses the statistical properties of the thinning operator
and the form of the INAR(1) process. Recall that the thinning operation α ◦X is
defined as

α ◦X
d=

X∑

j=1

Zj α ∈ (0, 1),

where the Zj are i.i.d. Bernoulli random variables with P (Zj =1) = α and P (Zj =
0) = 1−α. From the definition of the thinning operator above it follows that

E[α ◦X] = αE[X] and E[f(X)(α ◦X)] = αE[Xf(X)],

where all expectations are assumed to be finite.
Since the INAR(1) process is a stationary process we have for any s 6= t

E[f(Xs)] = E[f(Xt)] = E[f(Xπ)].

From the definition of the INAR(1) process we note that the dependence between
any two random variables Xt and Xs from the same INAR(1) process with s > t
can be written as

Xs = αs−t ◦Xt +
s−t−1∑

j=0

αj ◦ εs−j .

Finally we note that since Xt
d= α ◦Xt−1 + εt the expected value of the errors are

E[εt] = E[Xt]− E[α ◦Xt−1] = (1− α)E[Xπ].

This result and many more relationships between the moments of the επ and the
moments of Xπ can be obtained using the relationship

GXπ (c) = GXπ (1− α + αc)Gε(c; α).
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Proof of Theorem 2.

Proof for Var(X̄)

V ar(X̄) = V ar

(
1
N

N∑
t=1

Xt

)
=

1
N2





N∑
t=1

V ar(Xt) +
N∑

t 6=s

Cov(Xt, Xs)





=
1

N2

{
NV ar[Xπ] + 2

N−1∑
r=1

(N − r)αrV ar[Xπ]

}

=
1
N

V ar[Xπ]

{
1 + 2

N−1∑
r=1

(
1− r

N

)
αr

}

lim
N→∞

V ar(X̄) =
(

1 + α

1− α

)
V ar(Xπ). ut

Proof for Var(ĉX)
Note that

E
[
cXtcXs

]
= E

[
cXt+Xs

]
= E

[
cXt+αs−t◦Xt

]
E

[
c
Ps−t−1

j=0 αj◦εs−j

]

= GXπ

(
c(1− αs−t + αs−tc)

) s−t−1∏

j=0

Gε(1− αj + αjc; α)

= GXπ

(
c(1− αs−t + αs−tc)

) s−t−1∏

j=0

GXπ

(
1− αj + αjc

)

GXπ (1− α + α(1− αj + αjc))

= GXπ

(
c(1− αs−t + αs−tc)

) GXπ (c)
GXπ (1− αs−t + αs−tc)

= GXπ

(
c(1− αs−t + αs−tc)

)
Gε(c; αs−t)

therefore

V ar(ĉX) = V ar

(
1
N

N∑
t=1

cXt

)
=

1
N2





N∑
t=1

V ar(cXt) +
N∑

t 6=s

Cov(cXt , cXs)





=
1

N2



NV ar

[
cXπ

]
+

N∑

t 6=s

(
E

[
cXtcXs

]− E
[
cXt

]
E

[
cXs

])




=
1

N2

{
NV ar

[
cXπ

]
+ 2

N−1∑
r=1

(N − r)
(
GXπ (c(1− αr + αrc)) Gε(c; αr)−G2

Xπ
(c)

)
}

lim
N→∞

NV ar(ĉX) = V ar
(
cXπ

)
+ 2 lim

N→∞

N−1∑
r=1

(
1− r

N

) {
GXπ (c [1− αr + αrc]) Gε(c; αr)−G2

Xπ
(c)

}
. ut
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Proof for Cov(X̄, ĉX)
Note that for t < s

E
[
Xsc

Xt
]

= E





αs−t ◦Xt +

s−t−1∑

j=0

αj ◦ εs−j


 cXt




= E
[
cXt

(
αs−t ◦Xt

)]
+ E

[
cXt

] s−t−1∑

j=0

E
[
αj ◦ εs−j

]

= αs−tE
[
cXtXt

]
+ (1− αs−t)E

[
cXt

]
E [Xt]

= αs−tE
[
cXπXπ

]
+ (1− αs−t)E

[
cXπ

]
E [Xπ] ,

Cov
(
Xs, c

Xt
)

= αs−tCov
(
Xπ, cXπ

)

and

E
[
Xtc

Xs
]

= E
[
Xtc

αs−t◦Xt

]
E

[
c
Ps−t−1

j=0 αj◦εs−j

]

= E
[
Xt

(
1− αs−t + αs−tc

)Xt
] s−t−1∏

j=0

Gεs−j
(1− αj + αjc)

= E
[
Xπ

(
1− αs−t + αs−tc

)Xπ
]
Gε(c; αs−t)

Cov
(
Xt, c

Xs
)

= E
[
Xπ

(
1− αs−t + αs−tc

)Xπ
]
Gε(c; αs−t)− E [Xπ] E

[
cXπ

]
,

therefore

Cov
(
X̄, ĉX

)
=

1
N2

{
N∑

t=1

Cov
(
Xt, c

Xt
)

+
∑
t<s

Cov(Xt, c
Xs) +

∑
t>s

Cov(Xt, c
Xs)

}

=
1

N2

{
NCov

(
Xπ, cXπ

)
+

N−1∑
r=1

(N − r)αrCov
(
Xπ, cXπ

)

+
N−1∑
r=1

(N − r)
(
E

[
Xπ

(
1− αs−t + αs−tc

)Xπ
]
Gε(c; αs−t)− E [Xπ]E

[
cXπ

])
}

lim
N→∞

NCov
(
X̄, ĉX

)
=

1
1− α

Cov
(
Xπ, cXπ

)

+ lim
N→∞

N−1∑
r=1

(
1− r

N

)(
E

[
Xπ (1−αr+αrc)Xπ

]
Gε(c; αr)− E [Xπ] E

[
cXπ

])
. ut
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