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Abstract

Mixed Poisson processes have been used as natural models for events occur-

ring in continuous or discrete time. Our main result is the derivation of the joint

asymptotic distributions of statistics, including parameter estimators, computed

in different time intervals from data generated by mixed Poisson processes. These

distributions can be used, for example, to test the hypothesis about the adequacy

of the mixed Poisson process against data. We provide some simulation results and

test the model on actual market research data.
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1 Introduction

Mixed Poisson processes have been used as natural models for events occurring in contin-

uous or discrete time in many different fields including accident proneness (Greenwood

et Yule (1920)), accidents and sickness (Lundberg (1964)), market research (Ehrenberg

(1988)), risk theory (Grandell (1997)) and clinical trials (Cook et Wei (2003)). The main

result of this paper is the derivation of the joint asymptotic distributions of statistics,

including parameter estimators, computed in different time intervals from data generated

by mixed Poisson processes.

The structure of the paper is as follows. In this section we introduce mixed Poisson

processes and our main special case, the gamma-Poisson process. We also discuss the

market research interpretation of this process which we will use throughout the paper. In

Section 2 we give a general expression for the asymptotic covariance matrix of functionals

of data from mixed Poisson processes. Using this general setup, in Section 3 we derive the

asymptotic distributions between different statistics and estimators computed in different

time intervals. These distributions allow hypothesis testing to assess goodness of fit of

the mixed Poisson process. In Section 4 we apply general results of Section 3 to the case

of the gamma-Poisson process. We provide some simulation results and test the model

on actual market research data.

Mixed Poisson processes

Define the multivariate Poisson distribution as

P (Z = x|Λ = λ) =
n−1∏
i=0

[λ(ti+1 − ti)]
xi+1−xi

(xi+1 − xi)!
exp (−λ(ti+1 − ti)), (1)

where λ > 0 is the intensity, Z = {Z(t1), Z(t2), . . . , Z(tn)} is a random vector, the set

x = {x0, x1, x2, . . . , xn} is a set of non-negative integers with 0 = x0 6 x1 6 . . . 6 xn

and 0 = t0 6 t1 6 . . . 6 tn represents an increasing sequence of time points. The mixed

Poisson process is then defined as a process whose finite-dimensional distributions are

P (Z = x) =

∫ ∞

0−
P (Z = x|Λ = λ) dUΛ(λ; θ). (2)

Here UΛ(λ; θ) is the distribution function for the random variable Λ and θ is a vector

of unknown parameters. The function UΛ(λ; θ) is commonly known as the structure

distribution of the mixed Poisson process.

The most common distribution function for Λ is that of the gamma distribution with

probability density function

g(λ; a, k) =
1

akΓ(k)
λk−1e−λ/a, a > 0, k > 0, λ > 0. (3)
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The mixed Poisson process in this case is often referred to as the gamma-Poisson process.

The one-dimensional distribution of the gamma-Poisson process is the negative binomial

distribution (NBD) with probabilities

px = P (Z(t1) = x) =
Γ(k + x)

Γ(k)x!

(
1

1 + at1

)k (
at1

1 + at1

)x

x = 0, 1, 2, . . . . (4)

In literature the parametrization (m, k), where m = ak, is often used. In addition to

the gamma distribution, Grandell (1997) considered other distributions including beta,

shifted-gamma, generalized inverse Gaussian and lognormal distributions as structure

distributions for the mixed Poisson process.

Fitting the mixed Poisson process

The fitting of mixed Poisson processes to observed data has mainly focussed on fitting the

one-dimensional mixed Poisson distribution when considering data observed over fixed

time intervals. Fitting the one-dimensional distribution only gives partial information as

to the adequacy of the process being fitted; in particular the dynamical behavior of the

mixed Poisson process is not considered by fitting the one-dimensional distribution. The

derivation of the joint asymptotic distributions of statistics and estimators allows testing

the hypothesis as to whether parameter estimates computed in the two different time

intervals could have been generated from the same process. This will allow us to verify

the dynamical properties of the underlying model against data.

Note that it is easy to construct methods of testing the adequacy of mixed Pois-

son processes which are based on testing whether each individual realization follows the

standard Poisson process; the distribution of the intensities of the individual Poisson pro-

cesses can then be checked against a specified structure distribution. However, in practice

the individual behavior basically never follows the pure Poisson model (see e.g. Cox et

Hinkley (1978) ; Ehrenberg (1988)) and therefore the related tests would almost certainly

reject the Poisson process assumption. At the same time, it is widely known that the

Poisson and mixed Poisson models often work fairly well when the data is aggregated

over either time or realizations, or both.

The asymptotic distributions derived in this paper allow us to test the mixed Poisson

model hypotheses using the aggregated data, see Section 4.4. We are not aware of any

other procedure of testing the dynamics of the mixed Poisson models, except those based

on testing individual realizations (but these are not practical). In the practice of market

research, when using panel data, we observe multiple realizations of data which can be

aggregated.

When only a few events are registered in each individual realization, testing the pure

Poisson hypothesis is meaningless as there is not enough data. However, the methodology
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described in this paper can be perfectly suitable for testing the mixed Poisson model if

there are enough realizations in the multiple realization scheme and a suitable aggregation

is made.

The mixed Poisson model for consumer buying behavior

Consumer purchase occasions represent the rate of recurrence with which households

purchase products. Let {zl(t1), . . . , zl(tn)} represent the number of purchase occasions

for household l up until the times {t1, t2, . . . , tn}. Assume that the purchasing process

of a household follows a Poisson process with mean λl over a unit time interval. The

distribution of purchases for a fixed household is then given by equation (1). If the inten-

sity λl varies between individuals so that λl has the distribution function UΛ(λ; θ) then,

for fixed time points {t1, . . . , tn}, the number of purchase occasions {zl(t1), . . . , zl(tn)}
for a random household follows the mixed Poisson distribution (2). It is assumed that

purchasing across households are independent events. The mixed Poisson model, when

λl is gamma distributed, was applied to consumer buying behavior by many authors (see

e.g. Goodhardt, Ehrenberg, et Chatfield (1984) ; Ehrenberg (1988)).

2 Asymptotic properties of a general estimator

This section considers the asymptotic distribution of a general class of estimators for

a vector of parameters θ = (θ1, . . . , θd)
T where the estimators satisfy the equation

Gi(θ, fi) = 0 (i = 1, . . . , d), using d asymptotically normal statistics fi, with Gi(θ, fi) =

Efi(ζ; θ) − fi. The covariance matrix of the limiting normal distribution of the estima-

tors is derived. Using this methodology for the gamma-Poisson process it is possible to

derive, for example, the limiting normal distribution of the vector of parameter estimates

(k̂(1), k̂(2), . . . , k̂(t))T , where k̂(i) is an estimator for the shape parameter k of the NBD

computed using data from the i’th time interval.

The results of this section can be considered as a reformulation of the results on M-

and Z-estimators, see van der Vaart (1998, Chapters 3-5). We need this reformulation to

unify notation and simplify exposition in the next sections.

2.1 General estimation scheme

Let ζ be a random variable taking values in some set Z and let ζ have probability mass

function p(z; θ), z ∈ Z, where θ = (θ1, . . . , θd)
T (d ≥ 1) is a vector of parameters taking

values in some set Θ ⊆ Rd with non-empty interior int(Θ). For the purpose of this paper

we only need to consider Z = {0, 1, . . .}, but the results of this section can be extended

to arbitrary sets Z; in the case of continuous distributions, p(z; θ) is a density. We now
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define a general method of estimating θ∗ = (θ∗1, . . . , θ
∗
d)

T ∈ int(Θ), the true parameter

values of the sampling distribution, by using an i.i.d. sample {z1, . . . , zN} of values of ζ.

An expression for the covariance matrix of the limiting normal distribution is also given.

Let f = (f1, . . . , fd)
T ∈ Rd where fi : Z × Θ → R (i = 1, . . . , d) are some functions

which are smooth enough and possibly depend on θ; set f̄ = (f̄1, . . . , f̄d)
T ∈ Rd with

fi = 1
N

∑N
l=1 fi(zl; θ). Since {z1, . . . , zN} form an i.i.d. sample of values of ζ we have

Efi = Efi(ζ; θ). The estimator θ̂ = (θ̂1, . . . , θ̂d)
T is then defined to be the solution to the

equations

Gi(θ, fi) = 0 i = 1, . . . , d , (5)

where Gi(θ, fi) = Efi(ζ; θ)− fi.

Let us give several examples of possible functions fi (i = 1, . . . , d):

Example 2.1.1. fi(z; θ) = ∂ log(p(z; θ))/∂θi implying Efi(ζ; θ) = 0,

Example 2.1.2. fi(z; θ) = fi(z) so that the functions fi do not depend on θ,

Example 2.1.3. fi(z; θ) = zi implying Efi(ζ; θ) = Eζ i,

2.2 Asymptotic normality of estimators

Theorem 2.1. Assume that the function G is invertible as a function of θ in some

neighbourhood of (θ∗,Ef) and let θ̂ be the solution of G(θ, f̄) = 0. Assume that

E |∂gi(ζ, θ)/∂θj| < ∞ for all i, j. Additionally, assume that the estimator θ̂ is a consis-

tent estimator of θ and
√

N(f̄ − Ef) is asymptotically normally distributed N (0,Df),

where

Df = E(f − Ef)(f − Ef)T = ‖Cov(fi(ζ; θ), fj(ζ; θ))‖ d
i,j=1 .

Then asymptotically as N →∞,
√

N(θ̂ − θ∗) D⇒ N (0, V (Df) V T ) (6)

where

V =

[
lim

N→∞
∂G(θ, f̄)

∂θ

∣∣∣∣
θ=θ∗

]−1

. (7)

The proof can be found in van der Vaart (1998, Section 5.3).

Example 2.2.1. Maximum likelihood. We have fi(z; θ) = ∂ log(p(z; θ))/∂θi (i =

1, . . . , d) so that Efi = Efi(ζ; θ) = 0,

Df =

∥∥∥∥E
∂

∂θi

log p(ζ; θ)
∂

∂θj

log p(ζ; θ)

∥∥∥∥ = I(θ)

and V −1 = − lim
N→∞

∥∥∥∥∥
1

N

N∑

l=1

∂2

∂θj∂θi

log p(zl; θ)

∥∥∥∥∥ = I(θ),
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where I(θ) is the Fisher information matrix. The covariance matrix of the maximum

likelihood estimators is therefore Dθ̂ = I(θ)−1I(θ)I(θ)−1 = I(θ)−1.

Example 2.2.2. General method of moments. We have fi(z, θ) = fi(z) (i =

1, . . . , d) so that the functions fi do not depend on the unknown parameters θ. This

implies Df = ‖Cov(fi(ζ), fj(ζ))‖ and V −1 = ‖∂Ef(ζ)/∂θ‖ .

3 Covariances of statistics and estimators

In this section we derive the asymptotic distributions of different statistics and estimators

computed in two different time intervals. All of the results can be easily generalized to any

number of intervals. In Section 3.1 we consider the covariance between the statistics f̄

defined in Section 2 when computed using data over different time intervals. In Sec-

tion 3.2 we use the results of Theorem 2.1 and Section 3.1 to derive the joint asymptotic

distribution of parameter estimates of mixed Poisson processes.

The general results of this section will be specialized, in Section 4, to the case of the

gamma-Poisson process and then used to check the asymptotic covariance structure of

the parameter estimators for real data.

3.1 Covariance between statistics

In Section 3.1.1 we consider the simpler case of computing the covariance between statis-

tics for non-overlapping intervals. The results of this section will be used in Section 3.1.2

which covers the general case of possibly overlapping intervals.

3.1.1 Non-overlapping intervals

Note that since the Poisson process is a stationary process that is homogenous in time,

considering covariances between two statistics computed over the intervals [t1, t2) and

[t3, t4) with 0 ≤ t1 < t2 ≤ t3 < t4 is equivalent to considering covariances between the

same statistics over the time intervals [0, t) and [t, t + s), so that t1 = 0, t2 = t3 = t and

t4 = t + s. Let us consider the covariance between the statistics

φ̄0,t =
1

N

N∑

l=1

φ(zl(0, t)) and ψ̄t,t+s =
1

N

N∑

l=1

ψ(zl(t, t + s)),

where {z1(0, t), . . . , zN(0, t)} and {z1(t, t+s), . . . , zN(t, t+s)} are i.i.d. data from a mixed

Poisson process observed over two adjacent time intervals [0, t) and [t, t + s) respectively

(t, s > 0). Here φ and ψ are some functions possibly dependent upon the vector of

parameters θ.
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We note that for fixed u and v the observations zl(u, u+v) (l = 1, . . . , N) are mutually

independent. For fixed l, the observations zl(0, t) and zl(t, t+s) are conditionally indepen-

dent and Poisson distributed with means λlt and λls respectively. Here λl is random for

l = 1, . . . , N (e.g. different households), but is the same for fixed l (e.g. fixed household)

as time varies. The samples {z1(0, t), . . . , zN(0, t)} and {z1(t, t + s), . . . , zN(t, t + s)} are

dependent since, for each l, zl(0, t) and zl(t, t + s) are Poisson distributed with common

λl.

Let ζu,v be a random variable whose distribution is identical to the distribution of the

i.i.d. random variables zl(u, v) (l = 1, . . . , N), the number of events occurring in the time

interval [u, v). Then

NCov
[
φ̄0,t, ψ̄t,t+s

]
= Cov [φ(ζ0,t), ψ(ζt,t+s)] . (8)

Let I[z=0] be the indicator function such that I[z=0] = 1 if z = 0 and I[z=0] = 0 other-

wise. Let p[u,v)(z; θ) denote the mixed Poisson distribution over the time interval [u, v).

Let c be a positive constant not equal to 1. Consider the following cases:

Case 1. φ(z) = zα, ψ(z) = zβ:

Cov [φ(ζ0,t), ψ(ζt,t+s)] = Eµα(Λt)µβ(Λs)− Eµα(Λt)Eµβ(Λs),

where µα(ν) = Eκα
ν and κν is a Poisson random variable with intensity ν.

Case 1a. φ(z) = z, ψ(z) = z:

Cov [φ(ζ0,t), ψ(ζt,t+s)] = Eζ0,tζt,t+s − Eζ0,tEζt,t+s = EΛ2ts− EΛtEΛs = tsVar Λ.

Case 1b. φ(z) = z, ψ(z) = z2:

Cov [φ(ζ0,t), ψ(ζt,t+s)] = Eζ0,tζ
2
t,t+s − Eζ0,tEζ2

t,t+s = ts2Cov[Λ, Λ2] + tsVarΛ.

Case 2. φ(z) = z, ψ(z) = cz:

Cov [φ(ζ0,t), ψ(ζt,t+s)] = Eζ0,tc
ζt,t+s − Eζ0,tEcζt,t+s = EΛte−Λs(1−c) − EΛtEe−Λs(1−c)

= −t [L′(s(1−c)) + EΛL(s(1−c))] .

Here L(c) = Ee−cΛ is the Laplace transform of the random variable Λ and L′(c) =
∂
∂c
Ee−cΛ = −E[Λe−cΛ].
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3.1.2 Overlapping intervals

In this section we consider covariances between statistics in the most general case when

the intervals are possibly overlapping. This includes the cases when the intervals do not

overlap and also when the intervals coincide. Let us consider the covariance between the

statistics

φ̄t1,t3 =
1

N

N∑

l=1

φ(zl(t1, t3)) and ψ̄t2,t4 =
1

N

N∑

l=1

ψ(zl(t2, t4)),

where {z1(t1, t3), . . . , zN(t1, t3)} and {z1(t2, t4), . . . , zN(t2, t4)} are data from a mixed Pois-

son process observed over two possibly overlapping intervals [t1, t3) and [t2, t4) with

0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. Similarly to (8) we have

NCov
[
φ̄t1,t3 , ψ̄t2,t4

]
= Eφ(ζt1,t3)ψ(ζt2,t4)− Eφ(ζt1,t3)Eψ(ζt2,t4) = Cov[φ(ζt1,t3), ψ(ζt2,t4)].

Computing these covariances for different functions φ and ψ can be simplified using

the fact that the Poisson process has stationary and independent increments. Some

covariances are given below.

Case 1a. φ(z) = z, ψ(z) = z:

Cov[φ(ζt1,t3), ψ(ζt2,t4)] = Eζt1,t3ζt2,t4 − Eζt1,t3Eζt2,t4

= E(ζt1,t2 + ζt2,t3)(ζt2,t3 + ζt3,t4)− (Eζt1,t2 + Eζt2,t3)(Eζt2,t3 + Eζt3,t4)

= Cov(ζt1,t2 , ζt2,t3) + Cov(ζt1,t2 , ζt3,t4) + Cov(ζt2,t3 , ζt3,t4) + Var(ζt2,t3)

and using the results of case 1a of Section 3.1 we obtain

Cov[φ(ζt1,t3), ψ(ζt2,t4)] = (t3 − t2)EΛ + (t3 − t2)
2VarΛ

+ [(t2 − t1)(t3 − t2) + (t2 − t1)(t4 − t3) + (t3 − t2)(t4 − t3)] VarΛ

= (t4 − t2)(t3 − t1)VarΛ + (t3 − t2)EΛ.

Case 1b. φ(z) = z, ψ(z) = z2:

Cov[φ(ζt1,t3), ψ(ζt2,t4)] = Eζt1,t3ζ
2
t2,t4

− Eζt1,t3Eζ2
t2,t4

= E(ζt1,t2 + ζt2,t3)(ζt2,t3 + ζt3,t4)
2 − (Eζt1,t2 + Eζt2,t3)E(ζt2,t3 + ζt3,t4)

2

= Cov(ζt1,t2 , ζ
2
t2,t3

) + 2Cov(ζt1,t2 , ζt2,t3ζt3,t4) + Cov(ζt1,t2 , ζ
2
t3,t4

)

+ Cov(ζt2,t3 , ζ
2
t2,t3

) + 2Cov(ζt2,t3 , ζt2,t3ζt3,t4) + Cov(ζt2,t3 , ζ
2
t3,t4

)

and using the results of case 1b of Section 3.1 we obtain

Cov[φ(ζt1,t3), ψ(ζt2,t4)] = (t4 − t2)
2(t3 − t1)Cov(Λ, Λ2) + (t4 − t2)(t3 − t1)VarΛ

+ 2(t4 − t2)(t3 − t2)EΛ2 + (t3 − t2)EΛ.
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Case 2. φ(z) = z, ψ(z) = cz:

Cov[φ(ζt1,t3), ψ(ζt2,t4)] = Eζt1,t3c
ζt2,t4 − Eζt1,t3Ecζt2,t4

= E(ζt1,t2 + ζt2,t3)c
ζt2,t4 − E(ζt1,t2 + ζt2,t3)Ecζt2,t4

= Cov
(
ζt1,t2 , c

ζt2,t4

)
+ Eζt2,t3c

ζt2,t3cζt3,t4 − Eζt2,t3Ecζt2,t4 .

Using the result of case 2, Section 3.1 we have

Cov
(
ζt1,t2 , c

ζt2,t4

)
= −(t2 − t1) [L′((t4 − t2)(1−c)) + EΛL((t4 − t2)(1−c))] .

Similarly, we obtain

Eζt2,t3c
ζt2,t3cζt3,t4 = EΛ

[
E

(
ζt2,t3c

ζt2,t3 |Λ = λ
)
E

(
cζt3,t4 |Λ = λ

)]

= EΛ

[(
Λc(t3 − t2)e

−Λ(t3−t2)(1−c)
) (

e−Λ(t4−t3)(1−c)
)]

= c(t3 − t2)EΛ

[
Λe−Λ(t4−t2)(1−c)

]

= −c(t3 − t2)L′ ((t4 − t2)(1−c)) .

Noting that Eζt2,t3Ecζt2,t4 = (t3 − t2)EΛL ((t4 − t2)(1−c)) we combine the results

to obtain

Cov[ζt1,t3 , c
ζt2,t4 ] = −(t2 − t1) [L′((t4 − t2)(1−c)) + EΛL((t4 − t2)(1−c))]

− c(t3 − t2)L′ ((t4 − t2)(1−c))− (t3 − t2)EΛL ((t4 − t2)(1−c))

= − [(t2 − t1) + c(t3 − t2)]L′((t4 − t2)(1−c))− (t3 − t1)EΛL((t4 − t2)(1−c)) .

In particular if t1 = 0, t2 = t3 = t and t4 = t + s we obtain the results of Section 3.1.1,

i.e. the covariances between statistics in non-overlapping intervals, in all three cases.

3.2 Covariances between parameter estimators

Let θ̂
(1)

and θ̂
(2)

be estimators of θ in the intervals [t1, t3) and [t2, t4) constructed using the

general scheme of Section 2.1 with the sets of functions {f (1)
i (z; θ)}d

i=1 and {f (2)
i (z; θ)}d

i=1,

respectively. Assume that Theorem 2.1 applies to θ̂
(1)

and θ̂
(2)

so that both estimators

are asymptotically normal and let V (1), V (2), Df (1) and Df (2) be the matrices associated

with θ̂
(1)

and θ̂
(2)

. We have
√

N(f̄ − Ef) is asymptotically normal N (0,Df), where

f(z; θ) =

(
f (1)(z; θ)

f (2)(z; θ)

)
, f̄ =

(
f̄

(1)

f̄
(2)

)
, Ef =

(
Ef (1)(ζt1,t3 ; θ)

Ef (2)(ζt2,t4 ; θ)

)

and

Df =

(
Df (1) C(f (1), f (2))

C(f (1),f (2))T Df (2)

)
(9)
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with

C(f (1), f (2)) =
∥∥∥Cov(f

(1)
i (ζt1,t3 ; θ), f

(2)
j (ζt2,t4 ; θ))

∥∥∥
d

i,j=1
.

The components of the matrix C(f (1), f (2)) are computed using the results of Section 3.1.

Consider the problem of estimating the vector

θ∗ =

(
θ(1)

θ(2)

)
with the estimator θ̂∗ =

(
θ̂

(1)

θ̂
(2)

)
,

where θ(1) and θ(2) are two different copies of θ. The fact that θ(1) and θ(2) are two

different copies of θ implies that the matrix of partial derivatives V , defined by equation

(7) with θ∗ substituted for θ∗, has a block diagonal structure

V =

(
V (1) 0

0 V (2)

)
. (10)

Using Theorem 2.1,
√

N(θ̂∗ − θ∗) is asymptotically normal N (0,V (Df)V T ), where Df

and V are defined by (9) and (10). The asymptotic covariance matrix is therefore

V (Df)V T =

(
V (1) Df (1) (V (1))T V (1) C(f (1),f (2)) (V (2))T

V (2) (C(f (1),f (2)))T (V (1))T V (2) Df (2) (V (2))T

)
. (11)

We shall use formulae (9) and (11) in Section 4 for deriving the asymptotic distributions

of the estimators of the gamma-Poisson process where we plot scatter-plots of different

estimators together with 95% confidence ellipses constructed using these formulae.

4 The gamma-Poisson process

In this section we derive the covariances between statistics and estimators computed in

different time periods for data observed from the gamma-Poisson process. We consider

only the case of overlapping intervals [t1, t3) and [t2, t4) where 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4

since the case of non-overlapping intervals [0, t) and [t, t + s) can be obtained by setting

t1 = 0, t2 = t3 = t and t4 = t + s. We apply these results to market research data where

we estimate parameters of the joint asymptotic normal distribution of estimators; this

asymptotic distribution is then checked against the empirical distribution of estimators

for real data.

4.1 Estimating parameters of the NBD

The one-dimensional distribution of the gamma-Poisson process is the NBD. The NBD

may therefore be used to estimate parameters of the gamma-Poisson process. Fisher
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(1941) and Haldane (1941) independently considered estimation of the parameter pair

(m, k), where m = ak, using maximum likelihood and Anscombe (1950) considered the

use of moment based estimators. Anscombe (1950) noted that the maximum likelihood

and all natural moment based estimators for the parameter pair (m, k) are asymptotically

uncorrelated for an i.i.d. NBD sample. The estimation of NBD parameters in literature

has therefore justifiably focussed on estimating the parameters m and k.

In market research the method of moments (MOM) and zero term method (ZTM)

are commonly used (see e.g. Ehrenberg (1988) ; Savani et Zhigljavsky (2006a)). In

Savani et Zhigljavsky (2006b) we consider the problem of efficient estimation using a

variation of the power method of estimation introduced by Anscombe (1950). In this

paper we consider three methods in the estimation of (m, k). The estimators m̂ and k̂

are obtained as the solutions to the equations f̄1 − Ef̄1 = 0 and f̄2 − Ef̄2 = 0, where

f̄1 = 1
N

∑N
l=1 f1(zl; m, k) and f̄2 = 1

N

∑N
l=1 f2(zl; m, k) and {z1, . . . , zN} is an i.i.d. NBD

sample observed from the gamma-Poisson process in a fixed time interval. The methods

are defined by the functions f1, f2 which are as follows:

• Standard method of moments (MOM): f1(z) = z, f2(z) = z2;

• Zero term method (ZTM): f1(z) = z, f2(z) = 1 if z = 0 and 0 otherwise;

• Power method (PM(c)): f1(z) = z, f2(z) = cz where c > 0, c 6= 1.

The ML, MOM, ZTM and PM estimators for m are identical with m̂ = 1
N

∑N
l=1 zl.

This implies that the asymptotic variances of m̂ for all four methods are identical. Table 1

shows equations for estimating k using ML and moment based methods (MOM, ZTM

and PM). In Table 1, ni denotes the observed frequency of i = 0, 1, 2, . . . within the

sample. Note that for c = 0 the PM estimator is equivalent to the ZTM estimator and

as c → 1 the PM estimator tends to the MOM estimator.

Method Estimator Equation (solution in x) or estimator for k

ML k̂
ML

log
(
1 + m̂

x

)
=

∑∞
i=1

ni

N

∑i−1
j=0

1
x+j

MOM k̂
MOM

m̂2

s2−m̂
, where s2 = 1

N

∑N
l=1 z2

l − m̂2

ZTM k̂
ZTM

n0

N
=

(
1 + m̂

x

)−x

PM k̂
PM(c)

1
N

∑N
l=1 czl =

(
1 + m̂(1−c)

x

)−x

Table 1: Maximum likelihood and moment based estimators for k.
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Efficiency of estimators

The variances and covariances of the estimators (m̂, k̂) computed in a fixed time inter-

val for different methods of estimation have been previously derived by Fisher (1941),

Haldane (1941) and Anscombe (1950). The asymptotic variances below also follow from

Theorem 2.1. We have limN→∞ NCov(m̂, k̂) = 0 for all four methods of estimation and

limN→∞ N Var(m̂) = ka(1 + a). The asymptotic variances of k̂ are

v
ML

= lim
N→∞

N Var
(
k̂

ML

)
=

2k(k + 1)(1 + a)2

a2
(
1 + 2

∑∞
j=2

(
a

1+a

)j−1 j!Γ(k+2)
(j+1)Γ(k+j+1)

) ,

v
PM

(c) = lim
N→∞

NVar
(
k̂

PM(c)

)
=

(1+a−ac2)
−k

r2k+2−r2−ka(1+a)(1−c)2

[r log(r)− r + 1]2
,

v
MOM

= lim
N→∞

NVar
(
k̂

MOM

)
=

2k(k+1)(1+a)2

a2
,

v
ZTM

= lim
N→∞

NVar
(
k̂

ZTM

)
=

(1+a)k+2−(1+a)2−ka(1+a)

[(1+a) log(1+a)−a]2
. (12)

where r = 1 + a − ac. It is easy to see that the asymptotic variance of k̂
MOM

can be

obtained by taking the limit of v
PM

(c) as c → 1 and v
ZTM

= v
PM

(0).

Fig. 1(a) shows, using solid lines, the parameter values of m and k within the param-

eter space (b, w′) where b = (1 + m/k)−k ∈ [0, 1] and w′ = b/m ∈ [0, 1]. The parameter

space (b, w′) makes a visual comparison of the efficiency of different estimators easy. The

parameters b and w = 1/w′ have a natural interpretation in consumer buying behavior

in that b represents the probability of an individual to make at least one purchase and w

represents the mean number of purchase occasions per buyer. The NBD is only defined

for values of w′ such that w′ < −b/ log(1− b).

Fig. 1(a) also shows, using dotted lines and grey shading, contour levels of the asymp-

totic normalized coefficient of variation
√

v
ML

/k of the ML estimator for k. Fig. 1(a)

shows that increasing m for fixed k decreases the coefficient of variation
√

v
ML

/k.

In Savani et Zhigljavsky (2006a) we note that there exists an optimum c, denoted by

c∗, such that v
PM

(c) is minimum and that v
PM

(c∗) is very close to v
ML

. The efficiency

v
ML

/v
PM

(c∗) is shown in Fig. 1(b), where the intensity of grey denotes the inefficiency

(black shows efficiency< 0.95) and the level sets of the ratio v
ML

/v
PM

(c∗) are shown

by dotted lines. The contour levels of c∗ are shown by solid lines. We can conclude

from inspecting Fig. 1(b) that the power method with suitable c is practically as good as

maximum likelihood; at the same time, the power method is simpler for implementing and

studying. In Savani et Zhigljavsky (2006a) we demonstrate that the practically popular

MOM and ZTM methods of estimation often produce rather inefficient estimators for k.
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(a)
√

v
ML

/k (b) v
ML

/v
PM

(c∗)
Figure 1: (a) Coefficient of variation of k̂

ML
(dotted lines) and values of m and k (solid

lines) within the (b, w′) parameter space, and (b) efficiency of the optimum PM estimator
with respect to MLE (dotted lines) with contour levels of optimum c (solid lines).

4.2 Covariance between statistics

In this section we consider the covariance between the statistics φ̄t1,t3 = 1
N

∑N
l=1 φ(zl(t1, t3))

and ψ̄t2,t4 = 1
N

∑N
l=1 ψ(zl(t2, t4)), which are computed using data in the time inter-

vals [t1, t3) and [t2, t4) respectively, for the following pairs of functions (φ(z), ψ(z))T ∈
{(z, z)T , (z, z2)T , (z, I[z=0])

T , (z, cz)T}. Here I[z=0] denotes the indicator function of the

event z = 0 and c > 0 with c 6= 1. Note that the covariances between these statistic

pairs will allow us to compute the joint asymptotic distribution for the MOM, ZTM and

PM estimators computed in two different time periods, when estimating the parameters

of the NBD. For the gamma distributed random variable Λ with density (3) we have:

EΛα =
aαΓ(k + α)

Γ(k)
(α = 1, 2, 3) , Var Λ = a2k, L(c) = (1 + ac)−k,

L′(c) = −ak(1 + ac)−k−1, Cov(Λ, Λ2) = 2a3k(k + 1).

Case 1a. φ(z) = z, ψ(z) = z:

Cov
[
φ̄, ψ̄

]
= (t4 − t2)(t3 − t1)a

2k + ak(t3 − t2).

Case 1b. φ(z) = z, ψ(z) = z2:

Cov
[
φ̄, ψ̄

]
= 2(t4 − t2)

2(t3 − t1)a
3k(k + 1) + (t4 − t2)(t3 − t1)a

2k

+ 2(t4 − t2)(t3 − t2)a
2k(k + 1) + (t3 − t2)ak.

13



Case 2. φ(z) = z, ψ(z) = I[z=0]:

Cov
[
φ̄, ψ̄

]
= −ak[(t3 − t2) + a(t3 − t1)(t4 − t2)]

(1 + a(t4 − t2))k+1
.

Case 3. φ(z) = z, ψ(z) = cz:

Cov
[
φ̄, ψ̄

]
= −ak(1− c)[(t3 − t2) + a(t3 − t1)(t4 − t2)]

(1 + a(t4 − t2)(1− c))k+1
.

4.3 Covariances between estimators

This section considers the covariances between MOM, ZTM and PM estimators of the

gamma-Poisson parameter pair (m, k) computed using data in the time interval [t1, t3)

and [t2, t4). Consider estimating parameters using data in the time interval [u, v); the

estimator for m is identical for all three methods and is given by

m̂ =
1

N(v − u)

N∑

l=1

zl(u, v) v > u ≥ 0.

The MOM, PM and ZTM methods use the respective statistics

f̄
MOM

=
1

N

N∑

l=1

(
zl(u, v)
z2

l (u, v)

)
, f̄

PM(c)
=

1

N

N∑

l=1

(
zl(u, v)
czl(u,v)

)
,

and f̄
ZTM

=
1

N

N∑

l=1

(
zl(u, v)

I[zl(u,v)=0]

)
. (13)

The covariances of the statistics f̄
MOM

, f̄
PM(c)

and f̄
ZTM

when computed over different

time intervals were discussed in the previous section. In the computation of covariances

between parameter estimates we therefore only require the matrix of partial derivatives

V defined by equation (10). We have

V −1
MOM

=

[
1
t

0
1+2at(k+1)

a2t2
− 1

a2t2

]
, V −1

PM(c)
=

[
1
t

0
c−1

r log(r)−r+1
− rk+1

r log(r)−r+1

]
,

V −1
ZTM

=

[
1
t

0

− 1
(1+at) log(1+at)−at

− (1+at)k+1

(1+at) log(1+at)−at

]
,

where r = 1 + at(1−c) and t = v − u.

The expression of the covariance matrix is only simple for estimators computed in the

case of non-overlapping time intervals [0, t) and [t, t+s), which can be obtained by setting

14



t1 = 0, t2 = t3 = t and t4 = t + s. For the MOM, we have in the case of non-overlapping

intervals

D




m̂t

k̂t

m̂s

k̂s


 =




a k (1+a t)
t

0 a2k 0

0 2k(k+1)(1+a t)2

a2t2
0 2 k (k + 1)

a2k 0 a k (1+a s)
s

0

0 2 k (k + 1) 0 2k(k+1)(1+a s)2

a2s2




(14)

and the covariance matrix for the PM and ZTM estimators is

D




m̂t

k̂t

m̂s

k̂s


 =




a k (1+a t)
t

0 a2k 0

0 v
PM

(c; t) 0 D2,4

a2k 0 a k (1+a s)
s

0

0 D4,2 0 v
PM

(c; s)




(15)

D2,4 = D4,2 =
rt

k+1rs
k+1 (rt + rs − 1)−k − rt rs − (1− c)2 a2t s k

(rt log (rt)− rt + 1) (rs log (rs)− rs + 1)
,

v
PM

(c; u) =
(1+au−auc2)

−k
r2k+2
u −r2

u−kau(1+au)(1−c)2

[ru log(ru)− ru + 1]2
,

where ru = 1 + au(1− c). For the ZTM the matrix D can be computed using (15) with

c = 0.

Fig. 2 and Fig. 3 show, for all valid NBD parameter values, correlations between

ρ(θ̂(t), θ̂(s)), where θ̂(t) and θ̂(s) are different estimators of the same parameter θ∗ com-

puted using data in non-overlapping and overlapping time intervals. The correlations

between estimators of the same parameter computed in different time intervals, for both

estimators of m and k, increases as w increases for the MOM, PM and ZTM estimators.

4.4 Simulation results and application to market research data

Fig. 4 shows bivariate plots of various estimators θ̂(t) and θ̂(s) computed in different time

intervals for 1000 replications of the gamma-Poisson process with sample size N=1000

with m = 1 and k = 1. A 95% confidence ellipse based on the covariance matrix (15) and

constructed under the assumption of asymptotic normality is also shown. Figures are

only shown for the case of non-overlapping intervals; this is the usual case encountered

in practice. These figures confirm the validity of the expression (15).

Computing covariances between estimators in two different time intervals requires

replications of estimators. In market research, data is usually collected in the form of

panel data where realizations of the number of purchases of a product are observed for

many households. Replications of estimators can be obtained by taking sub-samples of
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the overall population and computing estimators for each sub-sample. We use panel

data, kindly provided by the ACNielsen-BASES, which comprises 34500 households. We

randomly split the whole panel into sub-samples of 500 households.

Note that the replications cannot be obtained by incrementing the time intervals and

computing an estimator for each incremented time interval. The gamma-Poisson process

is not an ergodic process and therefore the correlations between estimators obtained

by considering different time intervals in a single realization are not equivalent to the

correlations between estimators in the ensemble of realizations.

Fig. 5 shows normalized estimators of the gamma-Poisson parameters m and k com-

puted in consecutive non-overlapping time intervals of length 26 weeks. Figures are shown

for estimators of m computed in two different time intervals and estimators of k, using

the MOM, PM and ZTM, computed in two different time intervals. In addition to the

estimators a 95% confidence ellipses constructed using the covariance matrix (14) and

(15) for estimators of m and k in non-overlapping time intervals are also shown. The

values m and k required to construct the ellipses are replaced by the mean values of the

estimators computed in both time intervals. The estimators for m and k are captured

well by the 95% theoretical confidence ellipses.

These figures can be considered as a strong argument in favour of the suitability of

the gamma-Poisson process for modelling the dynamical behaviour of purchasing in real

markets.
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