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ABSTRACT

The three fixed effects estimators of a treatment difference are compared under
conditions of random enrolment in a multicentre clinical trial. These compar-
isons are done assuming five different enrolment schemes. The estimators are
compared via simulation using their expected mean squared errors. Unlike pre-
vious discussions of these three estimators we take explicit account of the effect
of centres that fail to enrol patients to one or both treatment arms.

Within each centre we assume enrolment follows a Poisson process and con-
sider the two situations where the mean rate of this process is the same in every
centre and where the mean rates are sampled from a gamma distribution. The
effect of patient drop-out is studied as well as the effect of increasing the number
of centres.

Simulations show that for many sound scenarios the simpler estimator corre-
sponding to the simplest model works better, even for the cases when data are
generated by more complex models.
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1. Introduction

Clinical trials are run in more than one centre for a number of reasons: in order that the

required number of patients can be recruited within the time limit of the trial, to obtain

results from to a wider population of patients or to permit a more valid extrapolation of

results. At the planning stage of the trial the required number of patients and centres

are calculated. Each centre is then told the target number of patients to enrol, so that

in total they will provide the required number. To maximize precision of estimation the

optimal strategy is to have an equal number of patients in each centre and to allocate an

equal number of patients to each treatment within a centre. While this is optimal from

a statistical viewpoint, it assumes that the enrolment rate is the same for all centres.

In reality, this assumption is never true and enrolment rates vary over the centres. To

illustrate this, consider the histogram given in Figure 1 of the sizes of the 425 centres that

participated in a recent trial completed by a large pharmaceutical company.
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As is often the case in real trials, some centres in this trial enrolled more patients than

others. A reason for this might be that some centres found it easier to enrol than others

and consequently, perhaps, these centres were allowed to enrol more than their target.

Such observed variation in the number of patients enrolled per centre is often consistent

with a relatively simple probability distribution, the negative binomial. This distribution

appears when (i) patients are enrolled independently to a centre at random and at a fixed

rate, according to a Poisson distribution and (ii) the rates vary over the centres in way

consistent with a gamma distribution.

In this report, to simplify the presentation, we will only consider trials with two treat-

ments, although a number of results can be easily generalized.

In a multicentre trial each centre produces its own treatment effects and these must be

combined in some way to produce a representative estimate of the “overall” treatment

difference. Dragalin et al. (2001) defined the combined response to treatment (CRT) as

an appropriate representative quantity and compared three alternative estimators of it.

These estimators were defined in the “test-ground” situation where the fitted models are

of the fixed-effects type and it is assumed that the inferences derived for the selected set

of centres can be generalized to the whole population of centres. Fedorov et al. (2002)

developed this work in the random-effects setting and proposed a model that contained

random treatment effects and gave corresponding definitions of the CRT. This paper is

concerned with comparing the three test-ground estimators in the context of random

recruitment of patients to centres.

2. Models and estimators

Here we follow the notation used by Dragalin et al. (2001) and assume that N centres

have been initiated, that there are two treatment arms in each centre (j = 1, 2) and

that nij patients have been randomized to the jth treatment in the ith centre. Initially,
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we assume that the nij are fixed, and hence that all randomness is attributable to the

observational errors. Unlike previous work on this topic we will allow ni1 or ni2 or both

to be zero, to allow for cases where one or both of the treatment arms have failed to enrol

any patients. However, we will always assume that n.j =
∑N

i=1 nij > 0 for j = 1, 2, i.e.,

that overall at least one patient has been randomized to each of the treatments. For a

reader striving for more mathematical rigour, we note that the probability that n.j = 0

is assumed to be very small.

Let variable Yijk represent the response observed on the kth patient on the jth treatment

in the ith centre, (i = 1, 2, . . . , N, j = 1, 2 and k = 1, 2, . . . , nij), let µij represent the

true mean response for treatment j at centre i, and let δi = µi2 − µi1 represent the true

treatment difference at centre i.

In the linear case the CRT is defined as

CRT = δ ′ =
N∑

i=1

ωiδi ,

where the ωi are weights determined prior to the trial, and ωi ≥ 0 with
∑N

i=1 ωi = 1.

Here we will concentrate on the simple version of the CRT:

CRT = δ =
1

N

N∑
i=1

δi.

We consider models of increasing complexity for the responses observed in the trial:





Model I : Yijk = µ + (−1)jτ + εijk ,

Model II : Yijk = µi + (−1)jτ + εijk ,

Model III : Yijk = µi + (−1)jτi + εijk .

(1)

While our chosen parameterization is not standard, it is convenient for the two-arm

case.
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The true treatment difference in centre i is δi = 2τi. The measurement error for the

kth patient on treatment j in centre i is εijk. These errors are assumed to be independent

random variables with zero mean and the same variance σ2 > 0.

In what follows, the standard notation for summing over a subscript is applied (that

is, replacing the subscript with a dot), for example: Yij. =
∑nij

k=1 Yijk and n.j =
∑N

i=1 nij .

The mean is denoted by the addition of a bar, e.g., Ȳij. = 1
nij

∑nij

k=1 Yijk . If there are

no observations on treatment arm j in centre i, then the corresponding Yij. and Ȳij. are

assumed to equal zero.

The least squares estimators of the CRT, obtained from these three models, respectively,

are, for J = I, II and III:

∆̂J =
N∑

i=1

(
WJ,2iȲi2. −WJ,1iȲi1.

)
(2)

where

WI,ji =
nij

n.j

, (3)

WII,1i = WII,2i = WII,i =
ni2ni1/(ni2 + ni1)∑N

k=1 nk2nk1/(nk2 + nk1)
, (4)

and

WIII,ji =
1

N
. (5)

Note that in the presence of centres that have either ni1 = 0 or ni2 = 0 (a common

situation in our experience), all three estimators are in general biased estimators of δ. If

both ni1 > 0 and ni2 > 0 for all centres, and Model III is assumed to be the true model,

then both ∆I and ∆II are biased (and of course ∆III is unbiased).

When ni1 = ni2 = ni, which we call balanced randomization, the weights for the first

and second estimators coincide and ∆I = ∆II . If the ni are the same for all centres, i.e.,
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there is an equal number of patients per treatment per centre, a situation which we refer

to as balanced enrolment, then ∆I = ∆II = ∆III .

Estimators ∆I , ∆II and ∆III are equivalents of the estimators determined by the SASr

GLM procedure for the so-called “Type I”, “Type II” and “Type III” models respectively

(see, e.g., Senn, 1997 and Schwemer, 2000).

In order to compare these estimators we will use the Mean Squared Error (MSE).

The MSEs for the three estimators are as follows:

MSE(∆I)=σ2

(
1

n.2

+
1

n.1

)
+

[
N∑

i=1

(
(WI2i −WI1i) µi+

(
WI2i + WI1i− 2

N

)
τi

)]2

, (6)

MSE(∆II) = σ2

N∑
i=1

W 2
IIi

(
1

ni2

+
1

ni1

)
+ 4

[
N∑

i=1

(
WIIi − 1

N

)
τi

]2

, (7)

and, if nij > 0 for all i, j then

MSE(∆III) =
σ2

N2

N∑
i=1

(
1

ni2

+
1

ni1

)
.

Note that in the case of normally distributed data, the second terms in equations (6) and

(7) after dividing by σ2, coincide with the noncentrality parameters of the χ2-distributed

sum of squared residuals (cf. Chinchilli and Bortey, 1991).

If nij = 0 for any i and j then the formulae for the MSEs of the first two estimators

remain unchanged (we assume that W 2
IIi/nij = 0 if nij = 0). However, this is not the case

with the Type III estimator, as ∆III is no longer unbiased. Consequently, the expression

for MSE(∆III) needs to be modified as follows, where δ̂i = Ȳi2. − Ȳi1.
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Let ψ = {i : ni1 > 0 and ni2 > 0} represent the set of centres where there are patients

on both treatment arms. Then:

MSE(∆III) = E[∆III − δ]2 = E

[
1

N

N∑
i=1

(
δ̂i − δi

)]2

=
1

N2


σ2

∑

iεψ

(
1

ni2

+
1

ni1

)
+ 4

(∑

i 6∈ψ

τi

)2

 . (8)

Comparisons of the MSEs in equations (6) to (8) are difficult due to the large numbers

of parameters involved. Simplification is possible by assuming particular scenarios for the

values of {µi} and {τi}. Let µ̄ = N−1
∑N

i=1 µi and τ̄ = N−1
∑N

i=1 τi. A popular choice is

|µi − µ̄| ≤ ζ and |τi − τ̄ | ≤ ξ. We follow Dragalin et al. (2002) and assume that τi and

µi are independently sampled from populations with means E(τi) = 1 and E(µi) = µ,

and variances σ2
τ and σ2

µ, respectively. As shown in Dragalin et al. (2002) the expected

MSEs of the first two estimators (over the distributions of µi and τi) are then:

MSE(∆I)=σ2

(
1

n.2

+
1

n.1

)
+σ2

µ

N∑
i=1

(WI2i −WI1i)
2+σ2

τ

N∑
i=1

(
WI2i + WI1i− 2

N

)2

(9)

and

MSE(∆II) = σ2

N∑
i=1

W 2
IIi

(
1

ni2

+
1

ni1

)
+ 4σ2

τ

N∑
i=1

(
WIIi − 1

N

)2

. (10)

These formulae hold irrespective of whether the values of nij are all positive. As stated

previously, we only need to assume that n.1 > 0 and n.2 > 0.

We emphasize that {µi} and {τi} are considered as samples from populations only in

order to produce simple and useful scenarios for these 2N effects. This should not be taken

to imply that we are fitting random effect models to the treatment and centre effects.

Equation (8) implies that the expected MSE of the third estimator is

MSE(∆III) =
1

N2

[
σ2

∑
iεI

(
1

ni2

+
1

ni1

)
+ 4L

(
σ2

τ + 1
)
]

, (11)
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where L represents the number of centres that have one or more treatment arms with no

patients. For the case where all nij > 0 formula (11) simplifies to

MSE(∆III) =
σ2

N2

N∑
i=1

(
1

ni2

+
1

ni1

)
,

which coincides with that of Dragalin et al. (2002).

3. Enrolment schemes

Here we will compare the average MSEs (MSEs) of the estimators under conditions of

random enrolment of patients to the centres. We first introduce some notation.

Poisson(λ) will denote a Poisson random variable with mean rate λ, Binomial(n, π)

will denote a binomial random variable with n trials and success probability π and

Gamma(α, β) will denote a gamma random variable with parameters α and β. (See

Johnson, Kotz and Balakrishnan, 1994, and Johnson, Kotz and Kemp, 1993, for example

for details.)

We will consider four scenarios that assume different types of random enrolment to

the centres and a fifth that is included for the sake of comparison and corresponds to

non-random enrolment. Within each centre the enrolment process for Scenarios I to IV

follows the Poisson distribution. In Scenario III, patient drop-out is assumed to be at

random and is independent of centre and treatment.

• Scenario I: ni1 and ni2 are independent; ni1 ∼ Poisson(λi)

and ni2 ∼ Poisson(λi).

• Scenario II: ni1 = ni2 = ni; ni ∼ Poisson(λi).

• Scenario III: ni ∼ Poisson(λi); ni1 ∼ Binomial(ni, (1− p)),

ni2 ∼ Binomial(ni, (1− p)); for p a pre-specified constant, 0 ≤ p ≤ 1.

• Scenario IV: ni1 and ni2 are independent; ni1 ∼ Poisson(λi)

and ni2 ∼ Poisson(λi); with λi ∼ Gamma(α, β).
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• Scenario V: ni1 and ni2 are fixed under assumptions of balanced randomization.

Scenario III allows for patient drop-outs after enrolment, with the constant p repre-

senting the proportion of patients withdrawing from the trial. Here ni1 and ni2 each have

a Poisson distribution with parameter λi(1 − p) (Johnson, Kotz and Kemp, 1993). In

Scenario IV, the true recruitment rates vary over the centres.

To obtain an understanding of the behaviour of the estimators in different environments,

three contrasting enrolment situations were generated, namely:

• Case I: the number of centres is small, but a large number of patients have been

enrolled at each centre. In our example we take N = 10, ni1 ∼ Poisson (λi) and

ni2 ∼ Poisson (λi), where λi = 100.

• Case II: the number of centres is large, but only a small number of patients have

been enrolled at each centre. In our example we take N = 100, ni1 ∼ Poisson (λi)

and ni2 ∼ Poisson (λi), where λi = 10.

• Case III: the number of centres is extremely large, with a very low enrolment rate.

In our example we take N = 250, ni1 ∼ Poisson (λi) and ni2 ∼ Poisson (λi)

where λi = 4.

It is assumed that enrolment is stopped after a preselected time. More specifically in

our case it means that each of the cases has on average 2,000 patients, with an average

of 1,000 on each treatment arm.

In Section 4 we define the model validity range as introduced by Dragalin et al. (2002).

This can be used to determine which of the three fixed-effects estimators is preferred

depending on the variability of the treatment effects over the centres and the number of

patients in each centre.

Sections 5 to 8 report results obtained using simulation. In Section 5 we compare the

three estimators in terms of their expected MSEs for Scenarios I and II. In Section 6 the
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effect of increasing the number of centres is studied under both Scenarios I and II. This

is achieved by setting λi = 1000/N , for all i. In Section 7, we study the effects of patient

drop-out (Scenario III) and consider the influence on the estimators of an increasing

proportion, p, of patients withdrawing from the trial. In Section 8 we consider Scenario

IV, where the enrolment rates are sampled from a gamma distribution, and study the

behaviour of the estimators under conditions of increasing variability in the enrolment

rates.

For comparison purposes, we include deterministic enrolment (Scenario V) in some of

the simulation studies. The purpose of this is to compare the results of random enrolment

with those for a pre-fixed balanced randomization of patients to centres.

We end by giving an overall review of the results and some conclusions in Section 9.

4. Model validity range

Although the purpose of the simulations is to compare the properties of the three types

of estimator under different enrolment scenarios, we need to put this into the context

of the assumptions made about the centre and treatment effects µi and τi. This can be

done using the model validity range, introduced by Fedorov et al. (1998) and used in the

multicentre context by Dragalin et al. (2002). In this section we will consider the nij as

fixed (i.e., not random) in order to illustrate the usefulness of the model validity range.

In Section 5.2 we will use the model validity range in the context of random enrolment.

The model validity range for Model II with respect to Model III, is the set ΓII of all

values for the standardized deviations of centre specific treatment effects from their mean,

(τi − τ̄)/σ, such that

MSE(∆II) ≤ MSE(∆III).
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If (for the sake of simplicity) it is assumed that all nij > 0:

ΓII =

{
τi − τ̄

σ
:

[ N∑
i=1

(
WIIi − 1

N

)
(τi − τ̄)

σ

]2

≤ 1

4

[ N∑
i=1

( 1

N2
−W 2

IIi

)( 1

ni2

+
1

ni1

)]}
.

Therefore, the model validity range is the set of all possible values of the standardized

centre specific treatment effects for which one can use a more parsimonious model to get

a better estimate of the CRT. This set is completely defined by the achieved enrolment

{nij}. It is clear that under a situation that is close to balance, both for enrolment and

randomization, i.e., WIIi = 1/N , the model validity range can be very large, especially

for low enrolment. Dependence here is more complex, because if WIIi ' 1/N then W 2
IIi '

1/N2 and we have zeros on both sides.

Similarly, we can determine the model validity range for Model I with respect to

Model III:

ΓI =

{
(µi − µ̄

σ
,
τi − τ̄

σ

)
:
[ N∑

i=1

{(ni2

n·2
− ni1

n·1

)(µi − µ̄)

σ
+

(ni2

n·2
+

ni1

n·1
− 2

N

)(τi − τ̄)

σ

}]2

≤
N∑

i=1

1

N2

( 1

ni2

+
1

ni1

)
−

( 1

n·2
+

1

n·1

)}
. (12)

Under balanced randomization, i.e., when ni1 = ni2 = ni, estimators ∆I and ∆II

coincide. Hence

ΓI = ΓII =

{[ N∑
i=1

(ni

n′
− 1

N

)(τi − τ̄)

σ

]2

≤ 1

2

[ 1

N2

N∑
i=1

1

ni

− 1

n′

]}
,

where here we use n′ = n·1 = n·2. Notice that for ni proportional to 1
N

, both parts of the

inequality are zero, meaning that, in this special case, the model validity range is empty:

the use of a more parsimonious model doesn’t improve the properties of the estimator.

However, remember that in this special case all three estimators coincide.
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As in the previous section, it is convenient to assume that the µi and τi are indepen-

dently sampled from populations with means µ̄ and τ̄ , respectively, and variances σ2
µ and

σ2
τ , respectively. Making these assumptions, we take expectations with respect to the

distributions of the µi and τi. We emphasize that this is done to give simple and useful

scenarios values of µi and τi and not because we are fitting random effect models to the

treatment and centre effects.

Straightforward calculations yield the expected model validity ranges (over the distri-

butions of µi and τi):

ΓI =

{
(σ2

µ

σ2
,
σ2

τ

σ2

)
:

σ2
µ

σ2

N∑
i=1

(ni2

n·2
− ni1

n·1

)2

+
σ2

τ

σ2

N∑
i=1

(ni2

n·2
+

ni1

n·1
− 2

N

)2

≤
N∑

i=1

1

N2

[( 1

ni2

+
1

ni1

)
−

( 1

n·2
+

1

n·1

)] }

and

ΓII =

{
σ2

τ

σ2
:

σ2
τ

σ2

N∑
i=1

(
WIIi − 1

N

)2

≤ 1

4

[ N∑
i=1

( 1

N2
−W 2

IIi

)( 1

ni2

+
1

ni1

)]}
. (13)

The purpose of the validity range is to identify situations where Model I or Model II

would give smaller MSEs than Model III even in the situation where treatment effects

vary over the centres. Given fixed σ2, the validity range depends on the σ2
τ and the nij.

To illustrate the use of the validity range we consider the special case ni1 = ni2 = ni, so

that ΓI = ΓII .

In order to provide a situation where the values of nij are unequal, we will consider a

special simple case where ni = λ, for i = 1, 2, . . . , N
2

and ni = (λ− d) for i = N
2

+ 1, N
2

+

2, . . . , N. We will refer to the parameter d as the disbalance. Note that the parameter λ

as used in this illustrative example is a fixed scalar and not a random variable.
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Corresponding to the three enrolment situations introduced in the previous section we

consider the following: Case I, N = 10 and λ = 100; Case II, N = 100 and λ = 10 and

Case III, N = 250 and λ = 4. In all cases σ2 = 1.

Replacing the inequality in (13) with an equality, and given values of λ and d, we can

determine the value of στ for which the MSEs of the three models are equal. If this is done

for Case I, for example, for the full range of d, then the values of στ define a boundary

line between two regions as illustrated in the left-hand plot of Figure 4. The region below

the line corresponds to combinations of (d, στ ) for which Model II (and Model I for this

special case) is preferred. The middle and right-hand plots in Figure 4 correspond to

Cases II and III, respectively. It is clear from the plots that (i) in the presence of severe

disbalance Model II may be preferred even in the presence of large treatment variability

and (ii) larger treatment variability can be tolerated and Model II preferred if the number

of centres is large and the number of patients per centre is small.

5. Simulation study for Scenarios I and II

A simulation study was conducted with fixed values for the standard deviations as used

by Dragalin et al. (2002): σ = 1, στ = 0.25 and σµ = 0.25. Each simulation consisted of

500,000 runs.

All the results obtained from the simulation study are normalised. That is, the MSE

values are multiplied by the expected total number of patients (in our case E(n.1) +

E(n.2) = 2
∑N

i=1 λi = 2, 000).

The results are mainly presented in the form of histograms, which give in each case, the

frequency distribution of MSE for a particular estimator under the two different scenarios

and three enrolment cases.

Looking at Figures 3 to 5 it is evident that the distributions of MSE for Case I are

unimodal with some slight asymmetry. This was also true for Cases II and III (not shown).
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Case I (N=10, lambda=100)
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Case II (N=100, lambda=10)
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Case III (N=250, lambda=4)
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Figure 2. Validity ranges for varying amounts of disbalance
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Figure 3. (a) Histogram of MSE(∆I) for Case I, Scenario I; (b) His-

togram of MSE(∆I) for Case I, Scenario II.
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Figure 4. (a) Histogram of MSE(∆II) for Case I, Scenario I ; (b) His-

togram of MSE(∆II) for Case I, Scenario II.
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Figure 5. (a) Histogram of MSE(∆III) for Case I, Scenario I; (b) His-

togram of MSE(∆III) for Case I, Scenario II.

It is also true that, in the majority of the histograms, the distributions for Scenario II

were noticeably wider than Scenario I, implying that the MSEs for Scenario II were

more variable. This may be due to the potential in Scenario II for more between-centre

variation in the number of patients enrolled to a centre as compared to Scenario I. The

independent sampling to each treatment arm in Scenario I gives an opportunity for a

small(large) enrolment on one arm to be augmented by a large(small) enrolment on the

other arm. In the ith centre under Scenario II the variance of the total number of patients
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is Var(2λi) = 4λi, whereas under Scenario I it is 2 Var(λi) = 2λi, giving a ratio of the

respective standard deviations of
√

1/2 = 0.71

CASE I CASE II CASE III
Statistic

Mean S.D. Mean S.D. Mean S.D.

Scen. I 4.45357 0.18063 4.49001 0.11229 4.50246 0.10571
MSE (∆I)

Scen. II 4.45424 0.25559 4.49033 0.15905 4.50252 0.14949

Scen. I 4.25096 0.14510 4.50541 0.12282 4.96985 0.15227
MSE (∆II)

Scen. II 4.45424 0.25559 4.49033 0.15905 4.50252 0.14949

Scen. I 4.04044 0.09216 4.52061 0.16279 6.31610 0.37304
MSE (∆III)

Scen. II 4.04036 0.13039 4.51687 0.20983 5.80069 0.32927

Table 1. Summary statistics for MSE (∆I) – MSE (∆III) for Scenarios

I and II, in all three cases.

Some summary statistics are given in Table 1. Looking first at results for Cases I and

II there is a clear difference between the results for estimators ∆I and ∆II versus ∆III .

For the first two estimators the variation is larger for Case I under both scenarios. A

theoretical explanation for this is given in Appendix A.

Looking at Case III, we see that the results for MSE (∆III) are much more variable

than the corresponding results for the other two estimators. This is most likely due to

the presence of centres with no patients on one or both treatment arms causing increased

variability. The mean of MSE is considerably larger for ∆III compared with those of the

other two estimators. This fact confirms one of the points made by Dragalin et al. (2002)

based on the model validity range: that the simpler estimator gets relatively better with

relatively more imbalance.
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A property of all three estimators under both scenarios is that their MSE value in-

creases from Case I to Case III, as the patients are distributed over an increasing number

of centres. However, the rate at which MSE increases differs greatly over the three esti-

mators. Prominent changes occur with the Type II and Type III estimators (particularly

the latter), with less noticeable increases associated with the Type I estimator. It seems

that the Type I estimator is more robust to the dispersal of patients over an increasing

number of centres.

The changes associated with MSE for the Type III estimator are greater as the treat-

ment effects are unweighted. This estimator is poor when centre enrolment rates are low

due to the relatively large variances of the estimated within-centre treatment differences.

The order of precedence for the estimators depends on the type of enrolment. The

rankings below apply to both the expectation and variance of the MSE under Scenario

I:

• Case I: Type III estimator is the best estimator, followed by the Type II, and

finally the Type I estimator.

• Cases II and III: Type I estimator is the best, followed by Type II, with the

Type III estimator being (notably) the worst.

Again these results confirm that the validity range of Model I is expanding together

with the increase of variability in enrolment. The latter causes a significant imbalance in

the number of patients per centre per arm.

5.1. MSE versus στ , with στ = σµ. To gain some understanding of the influence that

centre and treatment-by-centre interaction effects have on the estimators we will consider

the behaviour of MSE under increasing values of στ and for Scenario I. Everywhere in

this section we assume that στ=σµ.



17

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8στ

4

5

6

7

8

9
Mean
95% Quantile
Balanced Deterministic

M
SE

MSE(∆I)

MSE(∆III)

MSE(∆II)

Figure 6. Plot of mean MSE versus σ2
τ for Case I, Scenario I.
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Figure 7. Plot of mean MSE versus σ2
τ for Case II, Scenario I.
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Figure 8. Plot of mean MSE versus σ2
τ for Case III, Scenario I.

Although στ will vary, the within-centre variance will not and σ will be fixed and

set equal to 1. The constant MSE values of the deterministic balanced randomization

scenario (Scenario V) will also be included in the plots (here ni1 = ni2 = λi).
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Each of Figures 6 to 8 show a plot of the mean MSE over the simulations. They

demonstrate the marked effect that increasing στ has on MSE(∆I) and MSE(∆II).

The increased variation in the system has caused these to compare unfavourably with

MSE(∆III). Moreover, it is also evident that as patients are distributed over a broader

base of centres (that is, as we move from Case I to Case III), larger values of στ are

required to make MSE(∆I) and MSE(∆II) greater than MSE(∆III). The reason for

this is that the MSE of the Type III estimator is far greater when patients are spread out

over more centres, as seen in Table 1. Thus (see Figures 6 to 8) the model validity range

for Model I has expanded from a minuscule value of 0.05 for Case I, to 0.25 for Case II

to 0.55 for Case III.

Through studying Figure 8 we discover that, when the value of N is large, the mean

value of MSE(∆III) is no longer a constant for increasing στ . This can be explained by

the term in (11), that accounts for centres with no patients on one or both treatment

arms, becoming more prominent. To demonstrate this we calculate and compare the

probabilities that one or both of the treatment arms have no patients in each of the three

cases. For Case III

Prob (one or both arms empty|λ = 4) = 2× e−4 − (
e−4

)2
= 0.036296,

compared with 9.1 10−5 for Case II (λ = 10), and 7.4 10−44 for Case I (λ = 100). Thus,

it is clearly evident that the probability that one or both arms empty is far greater for

Case III.

Similar behaviour is evident in the results for Scenario II (figures not shown).

5.2. The effect of enrolment rate disbalance on MSE. Here we again use the con-

cept of disbalance introduced in the previous section and consider an extreme situation

where half of the centres have an enrolment rate of λi = λ, and the other half have an

enrolment rate of λi = λ− d, where d is the disbalance and λ is a constant.
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Figure 9. Plot of mean MSE versus disbalance for all estimators for Case

I, Scenario I.
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Figure 10. Plot of mean MSE versus disbalance for all estimators for

Case II, Scenario I.

To study such a situation and gain an understanding of how this phenomenon effects

the estimators, simulations were performed for each of the three cases for a range of values

of the disbalance parameter d. In each of Figures 9, 10 and 11 the mean of MSE over

the simulations is plotted. The figures show the effects of increasing the value of d from 0

to 90% of the mean enrolment rate assumed for each Case. It can be seen that, with the

exception of MSE(∆II) and MSE(∆I−II) in Case I, the MSE values all three estimators

are relatively unaffected by a minor amount of disbalance. However, further increases in

d lead to more significant increases in the MSEs. This is particularly the case for values
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Figure 11. Plot of mean MSE versus disbalance for all estimators for

Case III, Scenario I.

of d approximately greater than λ/2, in each of the three cases. We note that estimator

∆III is relatively unaffected by disbalance in Case I, but is most affected by disbalance

in Cases II and III. It can also be seen that the simulated values depart further from the

deterministic value as d increases in each of the three Cases.
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Figure 12. Plot of mean στ against disbalance such that MSE(∆I) and

MSE(∆II) are equal to MSE(∆III) for Case I, Scenario I.

To determine the influence of σ2
τ on the effects of disbalance, values of στ vs d were

plotted for each of the three cases in Figures 12, 13 and 14, respectively. The dotted

line in each plot is the boundary line for the case of deterministic(fixed) values of nij and

exactly corresponds to the model validity ranges plotted earlier in Figure 4 for the case
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Figure 13. Plot of στ against disbalance such that MSE(∆I) and

MSE(∆II) are equal to MSE(∆III) for Case II, Scenario I.
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Figure 14. Plot of στ against disbalance such that MSE(∆I) and

MSE(∆II) are equal to MSE(∆III) for Case III, Scenario I.

of fixed patient numbers. Compared to the validity ranges for deterministic enrolment,

as displayed in Figure 4, the corresponding ranges correspond to larger values of στ . In

other words, Model II is preferred to Model III for even larger amounts of variability

in the treatment effects (especially for Cases II and III) when enrolment is random. In

addition, we see that the values of στ required to make each of MSE(∆I) and MSE(∆II)

equal to MSE(∆III), increase with disbalance, particularly in Cases I and II. However,

from Figure 14 we can see that the value of σ2
τ increases at a far slower rate for large
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disbalance in Case III. Moreover, the value of σ2
τ that makes MSE(∆II) ' MSE(∆III)

begins to decrease for d > 2.

5.3. Imbalance measure. A further understanding of the behaviour of the MSE of the

estimators can be gained through its decomposition into individual parts attributable to

different sources of variation. A source of variation that is of particular interest is the part

relating to the treatment-by-centre effects. Several papers in the field of multicentre trials

have concentrated on this aspect (see for example Källén, 1997 and Snapinn, 1998). We

shall refer to this term as the imbalance measure. This measure will only be considered

for the Type I and Type II † estimators. The Type III estimator is not considered as it

is unbiased when ni1 and ni2 > 0 and has negligible bias otherwise.

The imbalance measure for the two estimators are as follows, (see equations (9) and

(10):

Imb(∆I) = σ2
τ

N∑
i=1

(
WI2i + WI1i − 2

N

)2

and

Imb(∆II) = 4σ2
τ

N∑
i=1

(
WIIi − 1

N

)2

.

If the design of the trial was fully balanced the imbalance measure would be zero and

the MSE minimized. The deviation from balance can be measured, for example, by the

amount of disbalance present in the design. To see the relationship between the degree of

disbalance and the resulting amount of imbalance, the values of the imbalance measure for

increasing amounts of disbalance are plotted in Figures 15 and 16. Clearly the imbalance

measure is strongly related to d and the type of enrolment assumed. Imbalance contributes

greatly to the MSE when there is a large amount of disbalance. This can be seen by

comparing the current plots to Figure 9. The contribution becomes less when we have

fewer patients spread over a larger number of centres, as in Cases II and III (compare

†It is equal to the Bias2 for the Type II estimator.
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with Figures 10 and 11). Secondly, the contribution of the imbalance term is greater for

the Type II estimator, particularly for larger d. The difference in magnitude between the

imbalance measures for the Type II and Type I estimators increases as we go from Case

I to Case III.
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Figure 15. (a) Mean imbalance measure against disbalance for Case I,

Scenario I; (b) Mean imbalance measure against disbalance for Case II,

Scenario I.

The imbalance measure increases from Case I to Case III for increasing d, due to the

fact that the treatment-by-centre effect is more prominent when there is disbalance and

only a few centres. The non-constant enrolment rates across the centres significantly

inflate the term relating to treatment-by-centre interaction when only a few centres are

involved in the trial. However, the increase is not as prominent in Cases II to III, as the

larger number of centres cause a dampening of this effect.

This increase in the imbalance measure compensates for the decrease in the other

components of MSE (e.g., the second component of σ2
τ

∑N
i=1

(
WI2i−WI1i

)2

of MSE(∆I)

is zero when ni1 = ni2, for all i). In Appendix A we prove that the imbalance measure

always increases when we go from Scenario I to Scenario II. The second term of MSE (∆I)
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in (9) disappears under Scenario II. However, for the values of the parameters that we have

used in the simulations, it is evident that increased values of the imbalance term under

Scenario II introduce increased variability in the system. This provides an explanation

for the output in Table 1.

The imbalance measure for the Type II estimator is greater than that of the Type I

estimator, particularly in Cases II and III, due to the increasing instability of the weights

WIIi. As d increases, the weights become less stable, and this is particularly prevalent in

cases where the enrolment rate is already low.
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Figure 16. (a) Mean imbalance measure against disbalance for Case III,

Scenario I; (b) Mean imbalance measure against different number of centres

N , for Scenario I.

6. Effect of increasing N on MSE

As specified earlier (see Section 1), one of the purpose of multicentre trials is to ensure

faster patient enrolment. Lin (2000) argues that there is a limited statistical penalty to
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pay if we use as many centres as logistically required. He believes that exposing the drug

to more centres and physicians is worth the additional cost.

In this section the effect of increasing N on the MSE of the estimators will be studied,

again using simulation. This is achieved by fixing the rate of enrolment at each centre to

be λi = 1 000
N

. In other words, we keep the mean number of patients per treatment arm

fixed, and equal to 1,000. The values of the parameters σ, στ , and σµ remain the same as

stated in Section 5, that is σ = 1, στ = 0.25, and σµ = 0.25. The simulation results are

plotted in Figure 17.
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Figure 17. Plot of mean MSE for the estimators against different values

of N , in Scenario I.

It is evident that the effect of increasing N leads to an increase in the MSE of the

Type II and Type III estimators. However the MSE of the Type I estimator remains

fairly constant when the number of centres exceeds approximately 10. Looking back to

Figure 16 (b) we see that the imbalance term for the Type II estimator behaves in a same

manner, initially increasing rapidly with N , but then stabilising for N > 10.

The behaviour of the Type I estimator as N increases is due to the stability of the

estimator, with the variation attributable to centre and treatment-by-centre effects be-

coming settled for values of N greater than 10. However, this is not so with MSE(∆II)

and MSE(∆III). The former increases due to the weights becoming unstable as a result
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of fewer patients attending each centre, and the latter due to greater variation in the

estimators of treatment effect δi. Similar behaviour is evident in Scenario II (figure not

shown).

7. Drop-out distribution (Scenario III)

It is common in multicentre clinical trials for some patients to drop out of the trial for

various reasons, which may or may not be related to treatment. We shall refer to the

resulting distribution of patient numbers as the drop-out distribution as defined earlier in

Section 3.

In the following, and again using simulation, the MSE of the three estimators will be

studied in the presence of different values of p for Cases I – III, to determine the effect

that an increasing proportion of patients withdrawing from a trial has on MSE(∆I),

MSE(∆II) and MSE(∆III).

Figures 18 to 20 show plots of MSE for increasing values of p, for the three types of

estimator under Scenario III. As before, these figures were obtained using simulation.
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Figure 18. Plot of mean MSE for the estimators against different values

of p in Case I, Scenario III.
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Figure 19. Plot of mean MSE for the estimators against different values

of p in Case II, Scenario III.
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Figure 20. Plot of mean MSE for the estimators against different values

of p in Case III, Scenario III.

Looking at Figure 18, we see that an increasing drop-out rate in Case I inflates the

MSEs of the estimators. However, the effect appears to be similar for each of the estima-

tors. This is a consequence of the centres having “stability in numbers” prior to patients

dropping out; Case I has an average of 100 patients per treatment arm.

Looking at Figure 19 we see fairly similar results for Case II, except that the increasing

drop-out rate is far more detrimental to the Type III estimator. This detrimental effect

is also seen in Figure 20 for Case III, to an even greater extent.
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8. Gamma distributed rates of enrolment (Scenario IV)

The enrolment processes studied so far have assumed that (in the absence of disbalance)

the enrolment rate λ is the same for all centres. However, as noted in the Introduction,

it is most likely that the enrolment rate varies over the centres, and, therefore it is more

realistic to treat λ as a random variable. A reasonable distribution for λ is the gamma

distribution. This type of enrolment was described in Section 3 and was referred to as

Scenario IV.

In this scenario, the gamma distribution is regarded as being the mixing distribution for

the Poisson. The unconditional distribution of this mixed Poisson process is well-known

and is commonly referred to as the negative binomial distribution.

An interesting situation is to fix the mean of the gamma distribution and compare the

values of the MSE for the three estimators (in each of the Cases), against different values

of the variance of λ. This will give information on the robustness of the estimators in the

presence of increasingly variable enrolment rates. This is done in Figures Figures 21 to

23.
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Figure 21. Plot of mean MSE for the estimators against different values

of the variance for λi in Case I, Scenario IV.
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Figure 22. Plot of mean MSE for the estimators against different values

of the variance for λi in Case II, Scenario IV.
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Figure 23. Plot of mean MSE for the estimators against different values

of the variance for λi in Case III, Scenario IV.

Looking at these we see that increasing the variance of λ does not change the relative

behaviour of the estimators (that is, the order of precedence remains the same), it simply

causes the MSE to become inflated. For Case I it is MSE(∆III) that is the smallest.

However, the reverse pattern is seen for Cases II and III, with the Type III estimator

having the largest MSE over the whole range for the variance; it also increases at the

fastest rate. It can also be seen in Figures 22 and 23 that MSE(∆II) increases at a faster

rate than MSE(∆I) under Cases II and III.
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9. Conclusions

The results in Section 5 indicated that the distribution of the MSE was wider for

Scenario II (equal numbers of patients on each arm) compared to Scenario I (independent

sampling to each treatment arm). There was a clear distinction between the results for

estimators ∆I and ∆II compared to ∆III . In terms of minimizing the MSE: (1) for Case

I (N = 10, λ = 100) ∆III was the best estimator, followed by ∆II and then ∆I ; there was

not a lot of difference in mean and standard deviation values for ∆I and ∆II , (2) for Case

II (N = 100, λ = 10) ∆I was the best, followed closely by ∆II , with ∆III , the worst.

When the value of στ was increased under Scenario I the mean MSE values for both

∆I and ∆II increased, as might be expected, with ∆I having the higher rate of increase.

Interestingly, for Case III (N = 250, λ = 4), there was a notable dependency between

the mean MSE values and στ for estimators of Types I and II, which was caused by the

more frequent occurrence of centres with no patients on one or both treatment arms.

In Section 4, and for deterministic enrolment, we saw that the model validity range

increased in the presence of growing disbalance as we moved from Case I to Case III. In

other words the use of Models I or II, even in the presence of treatment effects that vary

over the centres, becomes more attractive as the number of centres increases (subject to

a fixed total number of patients) and in the presence of increased variability in centre

enrolment rates. In Section 5.2 we saw that when enrolment is random, and in the

presence of disbalance, the model validity ranges were increased. That is, the boundary

between the regions in the (στ , d) plane where Model III is preferred to Models I and II

occurred at higher values of στ . Under random enrolment, minor disbalance in the centre

enrolment rates was seen to have little effect on the mean MSE values of ∆I and ∆II .

In the presence of a large disbalance in Case I, the mean MSEs of ∆I and ∆II increased

considerably (from about 5 to about 45) compared to the situation with no disbalance

and was consistently higher than the corresponding values for ∆III . For the other two
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cases the mean MSE of ∆III was consistently higher than the corresponding values for

∆I and consistently higher than the corresponding values for ∆II .

Imbalance was taken as a measure of treatment-by-centre interaction and considered

in Section 5.3. The size of the imbalance was shown to be strongly and positively related

to the size of the disbalance. The imbalance contributed greatly to the size of the mean

MSE when the disbalance was large. This effect was most apparent for Case I (N=10).

The effect of increasing the number of centres (N) on mean MSE was investigated in

Section 6. It was seen that for ∆I the mean MSE did not increase with N once N was

greater than about 10. However the mean MSE of ∆III increased rapidly when N was

increased. The mean MSE of ∆II also increased with N , but at a slower rate. These

conclusions applied to both Scenarios I and II.

The effect of patient drop-out was considered in Section 7. For Case I (N = 10,

λ = 100), the size of mean MSE for all three estimators increased with an increasing

amount of drop-out. However, the mean MSE values for ∆III were always below those

of the other two estimators. The values for ∆I and ∆II were very similar, except when

the drop-out probability exceeded about 0.10 when mean MSE for ∆I became (slightly)

larger. For Case II (N = 100, λ = 10) the results were similar to those for Case I for

∆I and ∆II . However, for Case III the values of mean MSE for ∆III were always larger

than those of the other two estimators and especially so when the drop-out probability

exceeded about 0.15.

Varying enrolment rates were considered in Section 8, where the rates were sampled

from a gamma distribution. Of interest was the effect on mean MSE of increasing the

variance of the chosen gamma distribution. Increasing the variance increased the values

of mean MSE but in a way that kept the rank ordering of the three estimators similar

to the ordering they had when the Poisson sampling rates were kept constant over the
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centres. That is, the mean MSE values for ∆III were the largest and those for ∆I were

the smallest, with those of ∆II being intermediate.

As a quick, and oversimplified, summary of the results we may say that ∆III has

attractive properties when the number of centres is small and the number of patients per

centre is large. The simplest estimator ∆I works well when treatment imbalance is high,

or enrolment rates vary considerably or when there are many centres.

An important practical conclusion from this study is that ∆I , the estimator of the CRT

derived from the simplest model, performs better in some situations than the correspond-

ing estimators derived from the other two more complex models.

Appendix A. Comparison of MSE (∆I) under Scenario I and Scenario II.

From the simulation results described in Section 5 it was evident that variance of

MSE (∆I) was greater under Scenario II (when ni1 = ni2 = ni) than Scenario I, see

Table 1. Here we give an explanation for that result.

Consider MSE (∆I) and denote the imbalance term Imb(∆I) by J , where

J = σ2
τ

N∑
i=1

(
ni2

n.2

+
ni1

n.1

− 2

N

)2

.

For Scenario I we have

J = J1 = σ2
τ

[
N∑

i=1

(
ni2

n.2

− 1

N

)2

+
N∑

i=1

(
ni1

n.1

− 1

N

)2

+ 2
N∑

i=1

(
ni2

n.2

− 1

N

)(
ni1

n.1

− 1

N

)]
.

For the case where ni1 = ni2 (Scenario II), it can be shown that

J = J2 = σ2
τ

N∑
i=1

(
2ni1

n.1

− 2

N

)2

= 4σ2
τ

N∑
i=1

(
ni1

n.1

− 1

N

)2

.
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Calculating the expectation of J1 and J2 with respect to the distribution of nij gives:

E(J1) = 2σ2
τ

(
N∑

i=1

E

(
ni1

n.1

− 1

N

)2

+
N∑

i=1

[
E

(
ni1

n.1

− 1

N

)]2
)

,

E(J2) = 4σ2
τ

N∑
i=1

E

(
ni1

n.1

− 1

N

)2

.

Thus,

E(J2)− E(J1) = 2σ2
τ

N∑
i=1

[
E

(
ni1

n.1

− 1

N

)2

−
(

E

(
ni1

n.1

− 1

N

))2
]

> 0.

Similar results hold for the imbalance measure of the second estimator Imb(∆II) =

4σ2
τ

∑N
i=1

(
WIIi − 1

N

)2
.
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