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Abstract

We start by studying first-order autoregressive negative binomial (NBD)
processes. We then compare maximum likelihood and moment based estimators
of the parameters of the NBD INAR(1) model and show that the degree of
dependence has significant effect on the quality of the estimators. Finally,
we construct NBD processes with long-range dependence by using the NBD
INAR(1) processes as basic building blocks.
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1 INTRODUCTION AND BACKGROUND

In this section we provide a short review of relevant results. We present the neg-

ative binomial distribution and discuss the conditions required to obtain stationary

non-negative integer-valued processes and finally consider techniques of parameter

estimation . The Poisson and NBD autogressive processes appear as the main ex-

amples.

1.1 Integer valued stochastic processes

Non-Gaussian stochastic first-order autoregressive processes or Ornstein-Uhlenbeck

type processes in discrete and continuous time have considerable potential as building-

blocks for stochastic models of observational time series from a wide range of fields

such as financial econometrics or turbulence (see Barndorff-Nielsen [1, 2]; Barndorff-

Nielsen et al. [3–6] and references therein). These processes can be defined in a way
1LeonenkoN@cardiff.ac.uk, SavaniV@cardiff.ac.uk, ZhigljavskyAA@cardiff.ac.uk
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similar to the classical (Gaussian) Ornstein-Uhlenbeck process, but with the noise

or the Wiener process replaced by a more general Lévy process.

The existence of stationary non-Gaussian Ornstein-Uhlenbeck type processes

depends critically on whether the stationary distribution of the process is self-

decomposable and many of the important distributions encountered in practice sat-

isfy this condition, examples include the Gaussian, gamma, normal inverse Gaussian

and hyperbolic distributions (see [1, 4, 7]). However it is well known that there are

no self-decomposable discrete distributions (see [8]).

Nevertheless, by defining an alternative form of self-decomposability for non-

negative integer-valued random variables, it is possible to construct first-order au-

toregressive integer-valued processes or INAR(1) processes with discrete marginal

distributions such as the Poisson, NBD or compound Poisson distributions (see for

example [9–14]).

1.2 The negative binomial distribution (NBD)

The NBD distribution is a two parameter distribution usually defined by the mean

m and shape parameter γ, with probabilities px given by

px =
Γ(γ + x)
x!Γ(γ)

(
1 +

m

γ

)−γ (
m

m + γ

)x x = 0, 1, 2, . . .

γ > 0, m > 0
.

As an alternative to the parameter m, the parameter β = γ/m is sometimes used.

Thus, we shall use either the pair of parameters (γ, m) or (γ, β). In the former case,

we shall refer to the distribution as NBD(γ,m) and in the latter case as NBD(γ,β).

The probability generating function (PGF) of the NBD distribution is

GX(s) =
∞∑

x=0

pxsx =
(

γ/m + 1− s

γ/m

)−γ

=
(

β + 1− s

β

)−γ

.

1.3 Discrete analogues of self-decomposability

The existence of a stationary AR(1) process requires self-decomposability of the

marginal distribution, however no non-degenerate discrete distributions satisfies this

criteria. In this subsection we use [8, 15] to consider the self-decomposability of non-

negative discrete distributions.

Definition 1.1 (α-thinning) Let X be a non-negative integer-valued random vari-

able and let α ∈ [0, 1], then the α-thinning of X using the Steutel and Van Harn

operator is defined by

α ◦X
dist.= Z1 + . . . + ZX , (1.1)
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where Zi (i = 1, . . . , X) are mutually independent Bernoulli random variables with

P (Zi = 1) = α and P (Zi = 0) = 1 − α. Additionally, the random variables Zi are

independent of X. The PGF Gα◦X(s) of the random variable (1.1) is

Gα◦X(s) = GX(1− α + αs).

In fact the thinning operation need not be restricted to random variables with a

Bernoulli distribution; non-negative integer-valued processes with generalized thin-

ning have been discussed in [16].

Definition 1.2 (Discrete infinite-divisibility) Let X be a non-negative integer-

valued random variable, then X is said to be infinitely-divisible if, for every non-

negative integer n, the random variable X can be represented as a sum of n in-

dependent and identically distributed (i.i.d.) non-negative random variables Xn,i

(i = 1, . . . , n); that is,

X
dist.= Xn,1 + . . . + Xn,n, n = 1, 2, . . . .

(Note that the distributions of X and Xn,i (i = 1, . . . , n) do not necessarily have

to be of the same family.) Moreover, a random variable X is said to be discrete

infinitely-divisible if the random variables Xn,i only take non-negative integer val-

ues. A necessary condition for such a random variable X to be well defined is

P (X = 0) > 0 (to exclude the trivial case we assume P (X = 0) < 1).

Definition 1.3 (Discrete self-decomposability) A non-negative integer-valued

random variable X is said to be discrete self-decomposable if for every α ∈ (0, 1) the

random variable X can be written as

X
dist.= α ◦X + Xα (1.2)

where the random variables α ◦X and Xα are independent. In terms of the proba-

bility generating functions equation (1.2) can be rewritten as

GX(s) = GX(1− α + αs)GXα(s),

where GXα(s) is the PGF of Xα.

For a fixed α ∈ (0, 1), the thinning operation α ◦ X is integer-valued and (1.2)

therefore implies that the component Xα must also be integer-valued. We note

that the distribution of Xα uniquely determines the distribution of X. Moreover, a

discrete infinitely-divisible distribution is discrete self-decomposable.
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Unless otherwise stated we shall only consider non-negative integer-valued first-

order autoregressive processes in discrete time given by {Xt; t ∈ Z}. We shall always

refer to such a process using the shorthand notation of Xt. Additionally, we shall

often write equality of random variables by which we mean equality in distribution.

1.4 The INAR(1) process

In this subsection we review the results of Al-Osh and Alzaid [11] and McKenzie

[9, 10] who independently introduced the INAR(1) process in an effort to develop

a non-negative integer-valued autoregressive process analogous to the continuous

AR(1) model. Al-Osh and Alzaid [11] concentrated on estimating the parameters of

an INAR(1) process with a Poisson marginal distribution. They considered the use

of conditional ML estimators and standard moment based estimators. McKenzie in

[9] considered two types of NBD autoregressive processes derived as analogues to

the Gamma autoregressive processes. The two processes can be differentiated by the

fact that one INAR(1) process has deterministic thinning and the other INAR(1)

process has stochastic thinning. We define the two processes below.

1.4.1 The INAR(1) process with deterministic thinning

Definition 1.4 (The INAR(1) process) Let Xt be a non-negative integer-valued

autoregressive process of the first-order and let α ∈ (0, 1) be a deterministic thinning

parameter. Then the INAR(1) process is defined by

Xt = α ◦Xt−1 + εt, (1.3)

where εt (t ∈ N), termed the noise process, is a sequence of uncorrelated random

variables. Given that both Xt and εt are independent and have finite means and

variances, a stationary process of the above form is well-defined if and only if Xt is

discrete self-decomposable.

Note that the noise process is not the same as the innovation process as defined in

[17] for a standard AR(1) process. Let et be the innovation process for the AR(1)

model, then et = Xt−αXt−1 6= εt = Xt−α ◦Xt−1. Note also that if α = 0 then Xt

is a realization of i.i.d. random variables.

For 0<α < 1, a stationary process of the form (1.3) only exists if the marginal

distribution of the process is discrete self-decomposable whose generating function

can be written in the form

GX(s) = GX(1− α + αs) Gε(s). (1.4)
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Due to the discrete self-decomposability of the process (implying stationarity) the

autocorrelation function only depends on the time interval between events, it is

in fact identical to the autocorrelation function of an AR(1) process. Let Xt be

an INAR(1) process with finite first and second moments then the autocorrelation

function at lag u is given by

ρ(Xt, Xt+u) = ρ(u) = α|u|, u ∈ Z.

Example 1.1 Let the process Xt have a Poisson (Po(λ)) marginal distribution,

then Xt is discrete self-decomposable since the generating function can be written in

the form of (1.4) and hence a Poisson INAR(1) process is well defined. Indeed the

PGF may be written as

exp (λ(s− 1)) = exp (λα(s− 1)) exp (λ(1− α)(s− 1)) .

In terms of the distributions, this is

Po(λ) = Po(λα) ∗ Po(λ(1− α)).

where ∗ represents the convolution of two distributions.

Example 1.2 Let the process Xt have a NBD(γ,β) marginal distribution, then Xt is

discrete self-decomposable since the generating function can be written in the form

of (1.4) and hence a NBD INAR(1) process is well defined. Indeed, the PGF may

be written as
(

β + 1− s

β

)−γ

=
(

β + α(1− s)
β

)−γ (
β + 1− s

β + α(1− s)

)−γ

. (1.5)

In terms of the distributions,

NBD(γ,β) = NBD(γ,β/α) ∗Noise Distribution.

McKenzie in [9] first introduced the NBD INAR(1) process but did not identify

the distribution of the εt. A method for generating a noise process was however

presented, since it was shown that the distribution of εt can be represented in the

form of the compound Poisson process

εt =
N∑

i=1

(αUi) ◦ Yi, α ∈ (0, 1). (1.6)

Here N is Poisson with mean −γ ln α, the Ui are uniformly distributed on (0, 1)

and the Yi are NBD(1,β) random variables. The random variables N , Ui and Yi,

(i = 1 . . . N) are mutually independent.
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Maximum likelihood (ML) estimation for parameters of the NBD INAR(1) model

requires knowledge of the marginal distribution of the noise process. In Section 3 we

prove that the marginal distribution of the noise process is the so-called negative-

binomial geometric distribution.

1.4.2 The NBD INAR(1) process with stochastic thinning

As an alternative to the NBD INAR(1) process, McKenzie in [9] proposed a pro-

cess whereby the εt also have a NBD distribution. Assume that there exists a

non-negative integer-valued autoregressive process Xt with i.i.d. stochastic thinning

parameters At with cumulative distribution function (c.d.f.) FA concentrated on the

interval (0, 1), then the INAR(1) process with stochastic thinning is defined by

Xt = At ◦Xt−1 + εt, (1.7)

where for fixed t the At, Xt−1, and εt are independent random variables. If Xt is

to form a stationary solution to (1.7) then the PGF of the stationary distribution

must satisfy

GX(s) =
∫ 1

0
GX(1− y + ys) dFA(y) Gε(s). (1.8)

If At follows a Beta(a, γ − a) distribution, then the process At ◦ Xt−1 follows a

NBD(a,β) distribution. (The Beta distribution Beta(p, q) distribution used here has

density function f(x) = xp−1(1 − x)q−1/B(p, q), p > 0, q > 0, 0 < x < 1.)

Additionally, choosing the distribution of the εt to follow a NBD(γ−a,β) distribution

ensures that the process Xt remains stationary. In this case (1.8) becomes
(

β + 1− s

β

)−γ

=
(

β + 1− s

β

)−a (
β + 1− s

β

)−(γ−a)

.

In terms of the distributions,

NBD(γ,β) = NBD(a,β) ∗NBD(γ−a,β).

1.5 Estimating parameters of the NBD INAR(1) process

To estimate parameters in the INAR(1) model, it is standard to use the conditional

maximum likelihood estimators (a version of the ML) and conditional least squares

estimators suggested in [11]. Savani and Zhigljavsky in [18] considered moment based

estimators for the NBD INAR(1) process based on the ergodicity of the process. In

this section, we compare the ML estimator with the moment based estimators. In

the problem of parameter estimation for the NBD, it is customary to estimate the

parameters (γ, m) and therefore to use the NBD(γ,m) representation.
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1.5.1 Estimating the thinning parameter

As the autocorrelation functions of the AR(1) and INAR(1) processes coincide, we

may consider standard estimation methods used in AR(1) models for the estima-

tion of the thinning parameter. The simplest method is based on the Yule-Walker

estimators which use the structure of the autocorrelation function at different lags.

The estimator of the thinning parameter is given by the solution of the equation

ρ̂(u) = α̂|u|, u ∈ Z. Here ρ̂(u) represents the sample autocorrelation function at

lag u. Note that a simple estimator for the thinning parameter is α̂ = ρ̂(1).

1.5.2 Maximum likelihood estimation

The likelihood function is straightforward to write using the fact that the INAR(1)

process is a Markov process. Let x = (x1, x2, . . . , xN ) be an observed sample from

an INAR(1) process and let Θ be the set of parameters for the INAR(1) process

then the likelihood function is

L(x; Θ) = P(X1 = x1)
N∏

t=2

P(Xt = xt|Xt−1 = xt−1)

= P(X1 = x1)
N∏

t=2

P (Xt = α ◦ xt−1 + εt)

= P(X1 = x1)
N∏

t=2

min(xt,xt−1)∑

r=0

(
xt−1

r

)
αr(1− α)xt−1−rP(εt = xt − r). (1.9)

Using this expression for the likelihood function, the ML estimator can be computed

numerically.

1.5.3 Moment based estimators

Moment based estimators for the INAR(1) process are computed using the fact that

the INAR(1) process is an ergodic process which makes it possible to equate moments

of a single observed realization to the moments of the stationary distribution.

In the estimation of γ and m for the NBD INAR(1) model, we shall consider

the two most widely used methods in practice (see e.g. [19]), specifically the method

of moments (MOM) and the zero term method (ZTM), both of which are mo-

ment based. Let {xt; t = 1, . . . , N} be a realization of size N from an INAR(1)

process then the MOM and ZTM estimators are obtained by equating the sam-

ple moments (x, x2) and (x, p̂0) to their theoretical expectations respectively. Here

x = 1
N

∑N
t=1 xt, x2 = 1

N

∑N
t=1 x2

t and p̂0 = n0/N where n0 denotes the number
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of zeros in a sample. The expected values of the sample moments for a NBD(γ,m)

process are

E[x] = m, E[x2] =
m(γm + γ + m)

γ
and E[p̂0] =

(
γ

m + γ

)γ

. (1.10)

The estimator of the parameter m for both MOM and ZTM is m̂ = x. The MOM

estimator of the parameter γ is γ̂(MOM) = x2/(x2 − x2 − x), and the ZTM estimator

γ̂(ZTM) of γ is the solution of the equation p̂0 = (1 + x/z)−z in z. Note that there

is no closed form solution for γ̂(ZTM).

1.6 Structure of the paper

In section 2 we present a new type of NBD process as a generalization of the pro-

cesses defined by McKenzie [9]. In section 3 we present the marginal distribution

of the noise process for the NBD INAR(1) process with deterministic thinning. In

section 4 we consider the problem of estimating the shape and scale parameters in

a NBD INAR(1) process. Finally in section 5 we construct long-range dependent

processes by the aggregation of independent INAR(1) processes using the approach

of Barndorff-Nielsen et al. [1, 2, 4], which has been applied in the case of AR(1)

models.

2 THE INAR PROCESS WITH MIXED THINNING

In this section we introduce a more general INAR process as a mixture of the two

processes described in Section 1.4. We first define a general INAR process with

mixed thinning.

Definition 2.1 Let Xt be a stationary non-negative integer-valued autoregressive

process of the first-order with noise process εt. Additionally, let the random variables

Xt and εt be independent and let εt form a sequence of uncorrelated random variables.

Assume that both processes have finite means and variances. Let α ∈ (0, 1) be

a deterministic thinning parameter and At be i.i.d. stochastic thinning parameters

with c.d.f. FA concentrated on the interval (0, 1). Then the INAR(1) process with

mixed thinning is defined by

Xt = αAt ◦Xt−1 + εt. (2.1)

The generating function of Xt, defined by (2.1), is

GX(s) =
∫ 1

0
GX(1− yα + yαs) dFA(y) Gε(s). (2.2)
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The structure of the noise process in the case of NBD INAR process with mixed

thinning will be studied in Section 3.3. Below we study the correlation function of

the general INAR process with mixed thinning.

Proposition 2.1 Let Xt be an INAR(1) process with mixed thinning (see (2.1)),

with thinning parameters α and At, where At has distribution function FA with

mean E[A]. Assume that the process has finite first and second moments, then the

autocorrelation at lag u is

ρ(Xt, Xt+u) = ρ(u) = (αE[A])|u| , u ∈ Z. (2.3)

PROOF. Let A1 and A2 be two random variables with c.d.f. concentrated on (0, 1),

then it is straightforward to show that for any non-negative integer X, the thinning

operation satisfies A1 ◦A2 ◦X = A1A2 ◦X. The process Xt in (2.1) may be written

in terms of Xt−u as

Xt =

(
u−1∏

i=0

αAt−i

)
◦Xt−u +

u−1∑

j=1

(
j−1∏

i=0

αAt−i

)
◦ εt−j + εt.

The autocovariance at lag u is

R(u) = Cov[Xt, Xt−u]

= Cov



(

u−1∏

i=0

αAt−i

)
◦Xt−u+

u−1∑

j=1

(
j−1∏

i=0

αAt−i

)
◦ εt−j + εt, Xt−u




= Cov

[(
u−1∏

i=0

αAt−i

)
◦Xt−u, Xt−u

]
+ Cov




u−1∑

j=1

(
j−1∏

i=0

αAt−i

)
◦ εt−j + εt, Xt−u




= E

[
u−1∏

i=0

αAt−i

]
V ar [Xt−u] + 0 = (αE[A])u V ar [Xt−u] , u ∈ Z+.

Here we have used the fact that for any t > s the pairs (εt, Xs) are uncorrelated.

Additionally, from the stationarity of the process, we have V ar[Xt−u] = V ar[Xt]

and the expression (2.3) for the autocorrelation function of the process then follows.

¥

Note that by taking α = 1 we obtain the autocorrelation function of (1.7), the INAR

process with stochastic thinning; this correlation function is E[A]|u|, u ∈ Z.
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3 NOISE PROCESSES IN THE NBD INAR MODELS

In this section we study the distribution of the noise process in the NBD INAR

models. We need these distributions, for example, if we decide to use the likelihood

function either to estimate parameters or to test hypotheses.

3.1 The negative-binomial geometric distribution

The negative-binomial geometric distribution (NBGD) with parameters (m, p, θ)

has PGF

G(s) = θm
[
1− (1− θ)p(1− qs)−1

]−m
, (3.1)

see [20, pp. 459–460]. Here 0 < p 6 1, q = 1 − p, 0 < θ 6 1 and m > 0.

To generate random variables from the NBGD(m, p, θ) distribution we may use the

fact that NBGD(m, p, θ) can be represented as NBD(ξ,p/(1−p)), where ξ is a random

variable with distribution NBD(m,θ/(1−θ)) (see [20, p. 460]).

The NBGD is a compound Poisson distribution (see (1.6)). Indeed, the PGF (3.1)

can be written in the form G(s) = eλ (Gφ(s)−1), where

λ = −m ln θ and Gφ(s) =
1

ln θ
ln

[
1− (1− θ)p (1− qs)−1

]
.

Here Gφ(s) is the generating function of the so-called logarithmic-geometric dis-

tribution (with parameters q and 1 − θ), see [20]. This confirms the result stated

in [9].

3.2 Noise process in the NBD INAR(1) model with deterministic
thinning

The NBD INAR(1) model with deterministic thinning has been discussed in several

papers. However, the distribution of the noise εt has not been identified althugh

methods for simulating such random variables do exist (see equation (1.6)).

Proposition 3.1 Let Xt be an INAR(1) process with thinning parameter α and let

Xt ∼ NBD(γ,β), then εt has the distribution NBGD (γ, β/(β + α), α) with p.m.f.

P{εt = x} =
∞∑

k=0

(
k+x−1

x

)(
β

β+α

)k (
α

β+α

)x (
γ+k−1

k

)
αγ(1− α)k, (3.2)

where x = 0, 1, 2 . . . , α ∈ (0, 1), γ > 0 and β > 0.
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PROOF. Note that the generating function of the errors can be written as

Gε(s) =
[

β + (1−s)
β + α(1−s)

]−γ

= αγ

[
β + (1−s)

β/α + (1−s)

]−γ

= αγ


1− β(1−α)

(β + α)
(
1− α

β+αs
)



−γ

= αγ

[
1−(1− α)

(
β

β + α

)(
1− α

β + α
s

)−1
]−γ

.

This is exactly the form of the generating function of the NBGD(m, p, θ) distribution

with m = γ, p = β/(β + α) and θ = α, see (3.1). ¥

3.3 Noise process in the NBD INAR(1) model with stochastic
thinning

Proposition 3.2 Let the process Xt have a NBD(γ,β) marginal distribution, then

Xt may be represented as a process with mixed thinning so that

Xt = αAt ◦Xt−1 + εt,

with At ∼ Beta(a, γ − a) and εt ∼ NBD(γ−a,β/α) ∗NBGD(γ, β/(β + α), α).

PROOF. Let Xt be the INAR(1) process with mixed thinning. Then the PGF of Xt

must satisfy equation (2.2). We have Xt ∼ NBD(γ,β) and GX(s) = ((β + 1− s)/β)−γ .

In order to satisfy equation (2.2), we require

GX(s) =
∫ 1

0
GX(1− yα + yαs)dFA(y)Gε(s) .

If FA(y) is the c.d.f. of the random variables At ∼ Beta(a, γ − a) and Gε(s) is the

PGF of the random variables εt ∼ NBD(γ−a,β/α) ∗ NBGD(γ, β/(β + α), α), then

simple calculus gives
∫ 1

0
GX(1− yα + yαs)dFA(y) =

(
β + α(1− s)

β

)−a

and Gε(s) =
(

β + α(1− s)
β

)a−γ (
β + 1− s

β + α(1− s)

)−γ

,

which implies
∫ 1
0 GX(1− yα + yαs)dFA(y)Gε(s) =

(
β+1−s

β

)−γ
as required. ¥

4 ESTIMATION IN THE NBD INAR(1) MODEL

In this section we investigate estimators for the NBD parameters of the NBD

INAR(1) model with deterministic thinning. We compare standard moment based

estimation methods with the ML estimation method; the moment based estima-

tors considered are the MOM and ZTM estimators. We also derive the asymptotic

distributions of the moment based estimators.
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4.1 Comparing the estimators

The ML and moment based estimators were defined in Section 1.5. The identification

of the distribution of the errors, see (3.2), makes it possible to compute the ML

estimators. The likelihood function for a sample x = (x1, x2, . . . , xN ) from the

NBD INAR(1) process is given by equation (1.9) where εt are i.i.d. and follow the

NBGD(γ, β/(β + α), α) distribution. The likelihood function for a sample from the

NBD INAR(1) process is certainly not trivial; finding explicit solutions for the ML

estimators is therefore difficult. It is possible, however, to maximize the likelihood

function using global optimization algorithms. Maximum likelihood estimators can

therefore be obtained by using numerical techniques.

The table below shows the results of a simulation study comprising R = 1000

runs of estimating parameters from NBD INAR(1) samples of size N = 10000 and

thinning parameter α = 0.5. The table shows the empirical coefficient of variation

κ̂γ =
√

N
√

1
R

∑R
i=1(γ̂i − γ)2/γ for the γ̂(ML), γ̂(MOM) and γ̂(ZTM) estimators of γ

and the empirical coefficient of variation κ̂m =
√

N
√

1
R

∑R
i=1(m̂i −m)2/m for m̂ML

(ML) and m̂ = x̄ (moment based) estimators of m.

In [18] we have investigated, in the case of an i.i.d. NBD sample, the efficiency

of the MOM and ZTM estimators relative to the ML estimators, as a function of

the parameter values. Note that for an i.i.d. NBD sample, the MOM, ZTM and ML

estimators for m are identical. Unexpectedly, in the case of INAR(1) model, the ML

estimator obtained by numerically maximizing the expression (1.9) and the sample

mean provide different estimators for m. The ML estimator has a consistently lower

empirical coefficient of variation in comparison to the moment based estimators.

γ m κγ̂(ML)
κγ̂(MOM)

κγ̂(ZTM)
κm̂ML

κm̂

0.5 0.5 4.30 9.04 6.37 3.29 3.49
1 3.14 5.63 4.32 2.79 2.97
5 2.27 3.51 3.16 2.58 2.61

1 0.5 11.38 15.57 12.74 2.61 2.84
1 3.86 8.28 5.18 2.37 2.51
5 2.16 3.57 3.26 1.93 1.96

3 0.5 26.84 32.59 34.07 2.67 2.90
1 18.45 21.86 20.85 1.83 1.97
5 2.80 5.15 4.83 1.20 1.20

Table 4.1: Empirical coefficient of variation for estimators for m and k in a simulation
study comprising R = 1000 runs of estimating parameters from NBD INAR(1)
samples of size N = 10000 and thinning parameter α = 0.5
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4.2 Asymptotic normality of sample moments

In this section, we present the asymptotic variances and covariances of the sample

statistics used in MOM and ZTM estimators. The proofs follow by standard calcu-

lations of the first and second moments of the sample, see, for example, [18]. Note

that the asymptotic normality of the sample statistics follows from the standard

univariate central limit theorem for Markov chains, see e.g. [21], and the fact that

two-variate normality of a random vector is equivalent to univariate normality for

any linear combination of the two variables. Below, let X be a random variable with

the same distribution as Xt (t = 0, 1, . . .).

Proposition 4.1 Let {xt; t = 1, 2, . . . , N} be a sample realization from an INAR(1)

process with thinning parameter α then x and x2 have a joint asymptotic normal

distribution given by

√
N

(
x−E[X]

x2−E[X2]

)
∼ N

[
0,Σ

(x,x2)

]
.

Here Σ
(x,x2)

is the covariance matrix of x, x2 with entries

V ar[x] =
(

1 + α

1− α

)
V ar[X],

V ar[x2] =
(

1 + α2

1− α2

)
V ar[X2] +

2α

1− α2
(1 + 2E[X])Cov[X, X2],

Cov[x, x2] =
1 + α + α2

1− α2
Cov[X, X2] +

α

1− α2
(1 + 2E[X])V ar[X] .

Proposition 4.2 Let {xt; t = 1, 2, . . . , N} be a sample realization from an INAR(1)

process with thinning parameter α, then x and p̂0 have a joint asymptotic normal

distribution given by

√
N

(
x−E[X]
p̂0−p0

)
∼ N [

0,Σ(x,p̂0)

]
.

Here Σ(x,p̂0) is the covariance matrix of x, p̂0 with entries

V ar[x] =
(

1 + α

1− α

)
V ar[X],

V ar[p̂0] = p0(1− p0) + 2 lim
N→∞





N−1∑
r=1

(
1− r

N

)

p0

r−1∏

j=0

Gε

(
1− αj

)− p2
0






 ,

Cov[x, p̂0] = −p0E[X]+

lim
N→∞

N−1∑
r=1





(
1− r

N

)

(1− αr)G′X (1− αr)

r−1∏

j=0

Gε

(
1− αj

)− (1 + αr) p0E[X]








and GX(s) and Gε(s) represent the generating functions of X and ε respectively.
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4.3 Asymptotic normality of estimators

To obtain the asymptotic distribution of the estimators, we may use the results

of [22] establishing the asymptotic normality of functions of asymptotically normal

vectors. Specifically, any vector f(Xn) = (f1(Xn), . . . , fm(Xn)), which is a function

of a vector of statistics Xn = (X(n)
1 , . . . , X

(n)
k ) ∼ N (µ, b2

nΣ) with bn → 0 as n →∞
and covariance matrix Σ, is also asymptotically normally distributed, i.e.

f(Xn) ∼ N (f(µ), b2
nDΣD′). (4.1)

Here D = [∂fi/∂Xj ]i=1,...m,j=1,...,k is the matrix of partial derivatives evaluated at µ.

We now present the asymptotic distributions for the MOM and ZTM.

Proposition 4.3 Let {Xt; t = 1, . . . , N} be a NBD(γ,m) INAR(1) process with

thinning parameter α, then the MOM estimators (γ̂, m̂) have a joint asymptotical

normal distribution with mean (γ, m) and covariance matrix

[
V ar [γ̂] Cov [γ̂, m̂]

Cov [γ̂, m̂] V ar [m̂]

]
=

1
N




(
1+α2

1−α2

)
2γ(γ+1)(m+γ)2

m2
2α(m+γ)

1−α

2α(m+γ)
1−α

(
1+α
1−α

)
m(m+γ)

γ


 .

(4.2)

Unlike the method of moments estimators there is no simple asymptotic expression

for the covariance matrix for (γ̂, p̂0) using the zero term method. Analytic expres-

sions may however be obtained by using equation (4.1) and the following proposition.

Proposition 4.4 Let {Xt; t = 1, . . . , N} be a NBD(γ,m) INAR(1) process with

thinning parameter α, then the ZTM estimators have a joint asymptotical normal

distribution with mean (γ, m) and covariance matrix given by b2
NDΣD′, where b2

N =

1/N and Σ is the covariance matrix of (x̄, p̂0) (see Proposition 4.2) and

D =




γ

m+(γ+m) log
“

γ
γ+m

” (γ+m)γ+1γ−γ

m+(γ+m) log
“

γ
γ+m

”

1 0


 . (4.3)

Example 4.1 Figures 4.1 and 4.2 show the theoretical (asymptotic normalised) con-

fidence ellipses produced by the MOM and ZTM estimators for (γ̂, m̂) at a fixed sig-

nificance level for different values of the thinning parameter α. Here γ̂ and m̂ are

represented on the horizontal axis and vertical axis respectively. Starting from the

ellipse in the center outwards, the ellipses correspond to estimators when α = 0, 0.4

and 0.8.
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Figure 4.2: Zero Term Method

5 LONG-MEMORY INTEGER VALUED PROCESSES

A process is often said to be long-range dependent or have long-memory if the

process has non-summable correlations or if the spectral density has a pole at the

origin. There are various statistical definitions of long-memory and they are not all

equivalent. A thorough review on long-range dependence has been made in [23, 24].

Barndorff-Nielsen et al. in [2–5] and Leonenko in [25] constructed a stationary

long-memory normal-inverse Gaussian (NIG) process in continuous time by the su-

perposition (or aggregation) of short-memory Ornstein-Uhlenbeck type processes

with NIG marginal distributions. For suitable parameters of the individual short-

memory NIG processes, each with the same autocovariance function, the aggregated

process was shown to have long-memory with autocovariance function of the form

R(u) ' L(u)u−2(1−H), H ∈ (1/2, 1) , u ∈ R as u →∞,

where H is the long-memory (or Hurst) parameter and L(u) is a slowly varying

function.

5.1 Long-memory integer valued processes

In this section we construct a long-memory non-negative integer-valued process using

the approach in [1] by the aggregation (Xt =
∑∞

k=1 X
(k)
t ) of a sequence of stationary

and independent INAR(1) processes X
(k)
t (k = 0, 1, 2, . . .) of the form

X
(k)
t = αk ◦X

(k)
t−1 + ε

(k)
t , k = 1, 2, ... t ∈ Z. (5.1)

Moreover we present conditions required in order to construct long-memory processes

with Poisson and NBD marginal distributions and show some simulation results of

the autocovariance function and spectral density.

15



Proposition 5.1 Let X
(k)
t (k = 1, 2, . . .) be independent INAR(1) processes with

mean µXk
< ∞, variance σ2

Xk
< ∞ and thinning parameter αk. Let Xt =

∑∞
k=1 X

(k)
t

be the aggregation of the INAR(1) processes such that E[Xt] =
∑∞

k=1 µXk
< ∞. If

σ2
Xk

and αk are of the form

σ2
Xk

=
c1

k1+2(1−H)
, αk = exp{−c2 / k} (5.2)

with some positive constants c1, c2 and 1/2 < H < 1, then the limiting aggregated

processes Xt is a well defined process in the L2 sense with long-memory (or Hurst)

parameter H. The autocovariance function and the spectral density of the process

are given by equations (5.4) and (5.5) below.

PROOF. Note that the aggregated process has a finite mean (by assumption) and

finite variance, which for any H ∈ (1/2, 1) is

V ar[Xt] =
∞∑

k=1

σ2
Xk

=
∞∑

k=1

c1

k1+2(1−H)
< ∞. (5.3)

This implies that Xt is a well defined process in the L2 sense. We next prove

the long-memory of the process by showing that the aggregated process has an

autocovariance function of the form R(u) ' A1(u)u−τ with τ ∈ (0, 1) as u → ∞
and spectral density of the form f(ω) ' A2(ω)|ω|−κ with κ ∈ (0, 1) as ω → 0, where

both A1 and A2 are slowly varying functions at infinity and at zero respectively.

Autocovariance function

Let R(k)(u) =
∑∞

k=1 Cov(X(k)
t , X

(k)
t−u) represent the autocovariance function of the

individual INAR(1) processes, then under the conditions of (5.2) we obtain that the

covariance of the aggregated process at lag u = t− s is given by

R(u) =
∞∑

k=1

R(k)(u) =
∞∑

k=1

σ2
Xk

α
|u|
k =

∞∑

k=1

c1

k1+2(1−H)
exp {−|u|c2/k}

'
∫ ∞

1

c1

x1+2(1−H)
exp {−|u|c2/x} dx =

c1

(|u|c2)2(1−H)

∫ |u|c2

0
z2(1−H)−1e−zdz

' c1Γ(2(1−H))
(|u|c2)2(1−H)

=

(
c1Γ(2(1−H))

c
2(1−H)
2

)
1

|u|2(1−H)
as |u| → ∞ (5.4)

where u ∈ Z and H ∈ (0, 1). Note that a substitution of z = |u| c2 / x was made

to the integral in the third line of the proof. If H ∈ (1/2, 1) then equation (5.4)

satisfies the definition of long-memory above.
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Spectral density

Note that Barndorff-Nielsen in [1] constructed a long-memory process with the same

autocovariance function R(u) as (5.4) but in continuous time so that u ∈ R (for an

extension of these results see [5, 25]). The corresponding spectral density f̃(ω),

ω ∈ R, therefore exists (see e.g. [26, pp. 210–226]) and may be obtained directly

from the autocovariance function (5.4). The identity f(ω) =
∑∞

s=−∞ f̃(ω + 2πs)

where −π ≤ ω < π may then be used to find the spectral density of the discrete

time process with autocovariance structure of the form (5.4).

Let f̃(ω) denote the spectral density of a continuous time process {Xt; t ∈ R},
then the spectral density for a process with autocovariance function of the form (5.4)

under the conditions of proposition (5.1) is derived on re-writing R(u) as

R(u) =
∞∑

k=1

c1

k1+2(1−H)
exp {−|u|c2/k} =

∞∑

k=1

c1

k1+2(1−H)

1
π

∫ ∞

−∞

kc2

c2
2 + k2w2

eiωudω

= R(0)
∫ ∞

−∞

(
1

R(0)

∞∑

k=1

c1c2

π

1
k2(1−H)

1
c2
2 + ω2k2

)
eiωudω = R(0)

∫ ∞

−∞
f̃(ω)eiωudω.

Hence the spectral density of the aggregated process in continuous time with auto-

covariance function R(u), u ∈ R of the form (5.4) has spectral density

f̃(ω) =
1

σ2
X

∞∑

k=1

c1c2

π

1
k2(1−H)

1
c2
2 + ω2k2

, ω ∈ R.

The equivalent spectral density for the discrete time process f(ω) (−π ≤ ω < π) is

therefore

f(ω) =
∞∑

s=−∞
f̃(ω + 2πs) =

1
σ2

X

c1c2

π

∞∑
s=−∞

[ ∞∑

k=1

1
k2(1−H)

1
c2
2 + (w + 2πs)2k2

]
. (5.5)

Note that the spectral density has a pole at the origin (ω = 0) for H ∈ (1/2, 1).

The term in expression (5.5), for H ∈ (1/2, 1), corresponding to s = 0 and ω = 0 is

1
σ2

X

c1

c2π

∞∑

k=1

1
k2(1−H)

= ∞, c1, c2 > 0,

and the remaining terms in the summation are strictly positive; we therefore have

f(0) = ∞. The spectral density can be simplified by interchanging the summation

which gives

f(ω) =
1

σ2
X

∞∑

k=1

c1

k1+2(1−H)

1
2π

1− exp{−2c2/k}
1− 2 exp{−c2/k} cosω + exp{−2c2/k}

=
1

σ2
X

∞∑

k=1

c1

k1+2(1−H)

1
2π

cosh(c2/2k) sinh(c2/2k)
cosh2(c2/2k)− cos2(w/2)

, −π ≤ ω < π. ¥
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Long-memory process with a Poisson marginal distribution

We now construct a stationary long-memory process with a Poisson (Po(λ)) marginal

distribution with autocovariance function of the form (5.4) and spectral density of

the form (5.5) by the aggregation of independent Poisson INAR(1) processes.

Proposition 5.2 Let {X(k)
t ; k = 1, 2, . . .} be a sequence of stationary and indepen-

dent Po(λk) INAR(1) processes with thinning parameter αk = exp{−c2/k} (c2 > 0)

where

λk =
λ

ζ(1 + 2(1−H))
1

k1+2(1−H)
, H ∈ (1/2, 1)

and ζ(s) =
∑∞

k=1 1/ks is the Riemann-Zeta function. Then the aggregated process

Xt =
∑∞

k=1 X
(k)
t has long-memory with Hurst parameter H and a Po(λ) marginal

distribution with autocovariance function

R(u) =
λ

ζ(1 + 2(1−H))

∞∑

k=1

exp{−c2|u|/k}
k1+2(1−H)

, u ∈ Z

and spectral density

f(ω) =
c2

πζ(1 + 2(1−H))

∞∑
s=−∞

[ ∞∑

k=1

1
k2(1−H)

1
c2
2 + (w + 2πs)2k2

]
, −π ≤ ω < π.

PROOF. As the Poisson distribution is discrete infinitely-divisible, a Poisson random

variable with mean λ can be represented as the infinite sum of Poisson random

variables with mean λk with
∑∞

k=1 λk = λ. Let us assume that the X
(k)
t follow a

Poisson Po(λk) distribution and that Xt follows a Poisson Po(λ) distribution.

For Xt to have long memory we require σ2
Xk

= c1
k1+2(1−H) (eq. (5.2)) and in the case

of a Poisson INAR(1) process with deterministic thinning we have µ2
Xk

= σ2
Xk

= λk.

For any t ∈ Z, using the fact GXt(s) =
∏∞

k=1 G
X

(k)
t

(s), we therefore require that

exp (λ(s− 1)) = exp

( ∞∑

k=1

λk(s− 1)

)
= exp

([ ∞∑

k=1

c1

k1+2(1−H)

]
(s− 1)

)
,

which implies that the constant c1 and the parameter λk must be of the form

c1 =
λ∑∞

k=1 k−[1+2(1−H)]
⇒ λk = λ

(
k−[1+2(1−H)]

∑∞
k=1 k−[1+2(1−H)]

)
. ¥

It is clear from the form of λk that the aggregated long-memory process is a sum

of weighted Poisson processes whose mean and variance tend to zero in the limit as

k →∞.
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Figure 5.1: Realization of a long memory Poisson INAR(1) series
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Figure 5.2: Autocorrelation function & periodogram

Figure 5.1 shows part of a realization of a simulated long-memory Poisson INAR(1)

process of length t = 20000 with Hurst parameter H = 0.8, λ = 5 and constant

c2 = 0.1. Note that c1 is specified by the parameters of the marginal distribution

of the long-memory process whereas c2 is a free parameter. The simulations show

both the short term (t = 1000) and long term (t = 10000) behaviour of the process.

Figure 5.2 shows the autocorrelation function and periodogram in logarithmic scale

of the simulated long-memory process, with the solid line showing the theoretical

value of the autocorrelation function and spectral density respectively.

Long-memory process with a NBD marginal distribution

We now construct a stationary long-memory process with a negative binomial marginal

distribution (NBD(γ,β)) with autocovariance function of the form (5.4) and spectral

density of the form (5.5) by the aggregation of independent NBD INAR(1) processes.

Proposition 5.3 Let {X(k)
t ; k = 1, 2, . . .} be a sequence of stationary and inde-

pendent NBD(γk,β) INAR(1) processes with thinning parameter αk = exp{−c2/k}
(c2 > 0). Additionally, let γk be of the form

γk =
γ

ζ(1 + 2(1−H))
1

k1+2(1−H)
, H ∈ (1/2, 1)

where ζ(s) =
∑∞

k=1 1/ks is the Riemann-Zeta function. Then the aggregated process

Xt =
∑∞

k=1 X
(k)
t has long-memory with Hurst parameter H and a NBD(γ,β) marginal
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distribution with covariance function

R(u) =
γ

ζ(1 + 2(1−H))

(
β + 1
β2

) ∞∑

k=1

exp{−c2|u|/k}
k1+2(1−H)

, u ∈ Z

and spectral density

f(ω) =
c2

πζ(1 + 2(1−H))

∞∑
s=−∞

[ ∞∑

k=1

1
k2(1−H)

1
c2
2 + (w + 2πs)2k2

]
, −π ≤ ω < π.

PROOF. As the NBD is discrete infinitely-divisible, a NBD(γ,β) random variable can

be represented as the infinite sum of NBD(γk,β) random variables with
∑∞

k=1 γk = γ.

Let us assume that the X
(k)
t follow a NBD(γk,β) distribution and that Xt follows a

NBD(γ,β) distribution.

For Xt to have long memory we require σ2
Xk

= c1
k1+2(1−H) (eq. (5.2)). We have

σ2

X
(k)
t

= γk

(
β + 1
β2

)
=

c1

k1+2(1−H)
⇒ γk =

(
β + 1
β2

)−1 c1

k1+2(1−H)
.

For any t ∈ Z, using the fact GXt(s) =
∏∞

k=1 G
X

(k)
t

(s), we also require

(
β + 1− s

β

)−γ

=
(

β + 1− s

β

)−P∞
k=1 γk

⇒ γ =
∞∑

k=1

γk =
∞∑

k=1

(
β + 1
β2

)−1 c1

k1+2(1−H)

⇒ γk = γ

(
k−[1+2(1−H)]

∑∞
k=1 k−[1+2(1−H)]

)
. ¥

The aggregated long-memory process, using the form of γk, is a sum of weighted

NBD processes whose mean and variance tend to zero in the limit as k →∞.

Figure 5.3 shows part of a realization of a simulated long-memory NBD INAR(1)

process of length t = 20000 with Hurst parameter H = 0.8, γ = 5, β = 1 and

constant c2 = 0.1. Note that the value of the constant c1 is specified by parameters

of the marginal distribution of the long-memory process whereas the constant c2 is a

free parameter. The simulations show both the short term (t = 1000) and long term

(t = 10000) behaviour of the process. Figure 5.4 shows the autocorrelation function

and periodogram in logarithmic scale of the simulated long-memory process, with the

solid line showing the theoretical value of the autocorrelation function and spectral

density respectively.
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Figure 5.3: Long Memory NBD INAR(1) Realization
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Figure 5.4: Autocorrelation Function & Periodogram
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