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ABSTRACT

We consider the problem of analysing multi-centre clinical trials when the number of patients

at each centre and on each treatment arm is random and follows the Poisson distribution.

Theoretical approximations are made for the first two moments of the MSE’s for three

different estimators of treatment effect difference that are commonly used in multi-centre

clinical trials. To construct these approximations, approximations are needed for the har-

monic mean and negative moments of the Poisson distribution. This is achieved through

the use of recurrence relations. The accuracy of the approximations for the moments of the

MSE’s were then validated through comparing the theoretical values to those obtained from

a simulation study under two different enrollment environments.

Key Words: multi-centre clinical trials; Mean Squared Error; Poisson distribution; negative

moments; harmonic mean.

1. INTRODUCTION

In this paper we consider the problem of designing and analysing the results of multi-

centre clinical trials when the number of patients for both treatment arms, at the ith centre

follows the Poisson distribution with parameter λi, i = 1 . . . N . This is referred to as ran-

domised enrollment and one of its consequences is that the MSEs of the treatment estimators

are random variables. The first two moments of the MSE’s for the treatment estimators

are of interest, and deriving theoretical approximations for these important characteristics

under two different enrollment schemes constitute the main aim of the paper. A simulation

study shows that the derived approximations are accurate and of practical usefulness.

The main application of our results will be important at the planning stage of a multi-
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centre clinical trial. Traditional sample-size and power calculations ignore any randomness in

enrollment. One effect of random enrollment is to inflate the variance of the estimated CRT

as compared to the deterministic enrollment case. Consequently, sample size and power will

be underestimated if random enrollment is ignored. By using the theoretical approximations

given in this paper, more realistic decisions can be made when multi-centre trials are planned.

The notation, models and estimators that shall be used in this paper are in accordance

with those used in Dragalin et al. (1).

Assume that we have N centres, with two treatments (j = 1, 2), and nij patients on the

jth treatment in the ith centre. For the time being assume that nij are fixed, meaning that

(in this section alone) all randomness is attributable to the observational errors, and possibly

to the randomness in the model parameters. Careful consideration is given to the case where

nij = 0 (which has not been the case in past papers), due to the fact that in this paper we

treat the nij values as random variables (see Section 2). However, we always assume that

n.j =
∑N
i=1 nij > 0 for j = 1, 2. Thus, there is at least one patient present on both of the

treatments.

Let Yijk represent the response variable for the kth patient on the jth treatment in the

ith centre, (i = 1, . . . , N, j = 1, 2 and k = 1, . . . , nij). Let µij represent the true mean

response for treatment j at centre i, and δi = µi2 − µi1 represent the true treatment effect

at centre i. Numerous methods exist for combining the values of δi to give a single value to

describe the overall treatment effect (Combined Response to Treatment or CRT, as defined

by Dragalin et al. (1)). We consider in the standard way

δ =
1

N

N∑

i=1

δi,

which is the mean treatment effect difference.

All results of the paper can be easily generalised to a general linear CRT of the form δ ′ =
∑N
i=1 %iδi, where %i are weights determined prior to the trial, and %i ≥ 0 with

∑N
i=1 %i = 1.

Fixed effects models for the treatment response, in increasing order of complexity, are as

follows:




Model I : Yijk = µ+ (−1)jτ + εijk ,

Model II : Yijk = µi + (−1)jτ + εijk ,

Model III : Yijk = µi + (−1)jτi + εijk .

(1)

In the above models the treatment effect in centre i is represented as τi, or τ if the effect

is constant across the centres. The centre effect at centre i is µi, or µ if the effect is constant
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across the centres. The measurement error for the kth patient on treatment j in centre i is

εijk. These errors are assumed to be independent random variables with zero mean and the

same variance σ2 > 0.

All three models are ANOVA models. In Model I treatment is the only fixed effect, Model

II has centre and treatment as fixed effects, and finally, Model III is the full fixed effect model

with fixed effects terms for centre, treatment and the treatment-by-centre interactions.

The true treatment effect δi = µi2 − µi1 will be estimated by

∆̂i =




Ȳi2. − Ȳi1. if ni1 > 0 and ni2 > 0 ,

0 if either ni1 = 0 or ni2 = 0 .

The standard notation for summing over a subscript is applied (that is, replacing the

subscript with a dot), for example Yij. =
∑nij
k=1 Yijk and n.j =

∑N
i=1 nij . The mean of a sum

is denoted by the addition of a bar, e.g. Ȳij. = 1
nij

∑nij
k=1 Yijk .

The respective three least squared estimators of δ, for each of the models specified above

are as follows

∆̂I =
Y.2.
n.2
− Y.1.
n.1

, (2)

∆̂II =
N∑

i=1

Wi∆̂i , (3)

∆̂III =
1

N

N∑

i=1

∆̂i , (4)

where the weight of the ∆II (Type II) estimator, Wi, is defined as

Wi =
ni2ni1/(ni2 + ni1)

∑N
k=1 nk2nk1/(nk2 + nk1)

. (5)

If nij > 0 for fixed i and j = 1, 2, we have

V ar(∆̂i) =
σ2

ni2
+
σ2

ni1
,

and so an alternative expression for Wi would be

Wi =
1/V ar(∆̂i)∑N
k=1 1/V ar(∆̂k)

.

In the case where both treatment arms are vacant (that is, ni1 = ni2 = 0), we set
ni1ni2
ni1+ni2

= 0, resulting in Wi = 0. Additionally, it is clearly evident (see (5)) that Wi = 0 for

the case where only one of the treatment arms is vacant.
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When we have so-called balanced randomisation (that is, ni1 = ni2 = ni), the weights

become Wi = ni/
∑N
k=1 nk, this results in the Type I and Type II estimators being the same.

In the so-called balanced enrollment case (additionally, all ni are equal for all i = 1, . . . , N and

j = 1, 2), the weights become Wi = 1/N ; consequently, all three estimators are equivalent.

The MSE for the three fixed effect estimators (see (2) – (4)) are as follows:

MSE(∆I)=σ2
(

1

n.2
+

1

n.1

)
+

[
N∑

i=1

((
ni2
n.2
−ni1
n.1

)
µi+

(
ni2
n.2

+
ni1
n.1
− 2

N

)
τi

)]2

; (6)

MSE(∆II) = σ2
N∑

i=1

W 2
i

(
1

ni2
+

1

ni1

)
+ 4

[
N∑

i=1

(
Wi − 1

N

)
τi

]2

; (7)

and, if nij > 0 for all i, j then

MSE(∆III) =
σ2

N2

N∑

i=1

(
1

ni2
+

1

ni1

)
.

If one (or both) of the treatment arms are vacant (recall, that we assume n.1 > 0 and n.2 > 0),

then the MSE’s for the first two estimators remain unchanged (we assume that W 2
i /nij = 0

if nij = 0). However, this is not the case with the Type III estimator, as ∆III is no longer

unbiased; since ∆̂i is no longer an unbiased estimator of δi at centre i. We must now account

for this newly introduced bias.

Let I represent the set of centres for which we have ni1 > 0 and ni2 > 0. We now have

MSE(∆III) = E(∆III − δ)2 = E

(
1

N

N∑

i=1

(
∆̂i − δi

))2

=
1

N2

∑

i1

∑

i2

E(∆̂i1 − δi1)(∆̂i2 − δi2)

=
1

N2



N∑

i=1

E(∆̂i − δi)2 +
∑

i1 6=i2
E(∆̂i1 − δi1)(∆̂i2 − δi2)




=
1

N2


∑

iεI

V ar
(
∆̂i

)
+
∑

i1 6∈I

∑

i2 6∈I
δi1δi2




=
1

N2



∑

iεI

V ar
(
∆̂i

)
+


∑

i6∈I
δi




2

 .

By definition we have δi = µi2 − µi1 for the Type III model, thus (see Model III in (1))

we obtain µi1 = µi − τi and µi2 = µi + τi implying

∑

i6∈I
δi




2

=


∑

i6∈I
((µi + τi)− (µi − τi))




2

= 4


∑

i6∈I
τi




2

.
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This gives

MSE(∆III) =
1

N2


σ2

∑

iεI

(
1

ni2
+

1

ni1

)
+ 4


∑

i6∈I
τi




2

 , (8)

I = {i : ni1 > 0 and ni2 > 0}.
Comparisons of the MSE’s (6) – (8) prove to be difficult in view of the large numbers of

parameters involved in the calculations. Consequently, to reduce the number of parameters

and for simplification purposes we now assume (in accordance with Dragalin et al. (1)) that

the treatment-by-centre-interactions τi and centre effects µi are both independent identically

distributed random variables with means E τi = 1 and E µi = µ, and variances σ2
τ and σ2

µ,

respectively. In this case σ2
τ and σ2

µ are the variances of the treatment-by-centre interac-

tions and the centre effects, respectively. This is the random effects model, which is of the

same form as Model III in (1), except the fixed effects are now all independently identically

distributed random variables (i.i..d.r.v.’s). For this model, MSE’s (6) – (8) are conditional

(with respect to the values that the µi’s and τi’s take). As shown in Dragalin et al. (1) the

unconditional MSE’s (denoted as MSE) of the first two estimators are

MSE(∆I)=σ2
(

1

n.2
+

1

n.1

)
+σ2

µ

N∑

i=1

(
ni2
n.2
−ni1
n.1

)2

+σ2
τ

N∑

i=1

(
ni2
n.2

+
ni1
n.1
− 2

N

)2

, (9)

MSE(∆II) = σ2
N∑

i=1

W 2
i

(
1

ni2
+

1

ni1

)
+ 4σ2

τ

N∑

i=1

(
Wi − 1

N

)2

. (10)

These formulas hold irrespectively of whether the values of nij are all positive. As stated

previously, we only need to assume that n.1 > 0 and n.2 > 0.

Equation (8) implies that the unconditional MSE of the third estimator is

MSE(∆III) =
1

N2

(
σ2
∑

iεI

(
1

ni2
+

1

ni1

)
+ 4L

(
σ2
τ + (E τ)2

))

=
1

N2

(
σ2
∑

iεI

(
1

ni2
+

1

ni1

)
+ 4L

(
σ2
τ + 1

))
, (11)

where L represents the number of centres that have one or more vacant treatment arms.

For the case where we have all nij > 0, formula (11) simplifies to

MSE(∆III) =
σ2

N2

N∑

i=1

(
1

ni2
+

1

ni1

)
,

which coincides with that of Dragalin et al. (1).
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It can easily be seen from studying (9) – (11) (and explained in Section 6) that in order

to derive theoretical estimates for the first two moments of the MSE, one must first derive

approximations for the first four negative moments of the Poisson distribution. Additionally,

to estimate the first two moments of MSE(∆II), approximations will be required for the

first four moments of the weights Wi, i = 1 . . . N .

For the earlier sections of this paper we shall use the simplified notation introduced

below, and will not be considering the approximations that we derive in the context of a

multi-centre clinical trial problem until Section 5 and onwards. Note that throughout this

paper the index k will represent a positive integer (k = 1, 2, 3 . . .) and not the kth patient.

Let Poisson(λ) denote the Poisson distribution with parameter λ > 0, and let ξ be a

random variable, ξ ∼ Poisson(λ). Additionally, let ξ+ be the so-called positive Poisson r.v.

with parameter λ; that is,

Pr(ξ+ = k) =
1

1− e−λ
λk

k!
e−λ, for k = 1, 2 . . . .

The negative moments of the Poisson distribution with parameter λ are defined as the

negative moments of ξ+ :

µ−α = E

(
1

ξ α
+

)
=

e−λ

1− e−λ
∞∑

k=1

λk

kα k!
, α = 1, 2, 3 . . . . (12)

In Section 3 approximations are made for the first four negative moments of the Poisson

distribution. The relative error of the approximations is used as the criterion by which we

determine the accuracy of the approximations, where

RelativeError =
Exact V alue − Approximate V alue

Exact V alue
.

A recurrence method is used to derive the first negative moment in Section 3.1, and

the same methodology is applied in Section 3.2 to obtain approximations to the higher

order negative moments (α = 2, 3, 4). Note that for small λ the moments can be easily

computed using the definition (12). In particular, the relative error of the following simple

approximation

µ̂−α =
e−λ

1− e−λ
∞∑

k=1

λk

kα k!
' e−λ

1− e−λ
3λ+10∑

k=1

λk

kα k!

is smaller than 10−10 in absolute value for all λ > 0 and α ≥ 1.

Approximations for the first four moments of the harmonic mean (H) are stated in

Section 4, with H being defined as

H =
2ξζ

ξ + ζ
and ξ, ζ ∼ Poisson(λ) .
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By comparing this with the definition of the weight of the estimator, Wi (see (5)), it becomes

evident that the numerator of Wi, which we shall refer to as ωi (see (43)) is equal to H
2

. This

relationship is used in Section 5 to derive approximations for the first four moments of Wi.

In Section 6 the theoretical approximations for the negative moments of the Poisson

distribution derived in Section 3 are expressed in a way such that they can be used in a

multi-centre problem. These approximations along with the estimates for the weights, and

the first four moments of the Poisson distribution are used to derive approximations for the

first two moments of all three MSE’s, under Scenarios I and II.

In Section 7 we determine the accuracy of our approximations for Cases I and II (defined

below) by comparing the results to those obtained via a simulation study involving 500, 000

runs.

2. ENROLLMENT SCHEMES

In much literature on multi-centre trials, the simulation studies that are performed to

analyse the behaviour of the estimators have pre-defined values for the allocation of the

patients across the centres, see for example Gallo (2) and Jones et al. (3). However, in this

paper the allocation of patients to both of the treatments over the centres will be generated

through the application of two different enrollment schemes, defined as follows:

• Scenario I: ni1 and ni2 are independent; ni1 ∼ Poisson(λi)

and ni2 ∼ Poisson(λi).

• Scenario II: ni1 = ni2 = ni; ni ∼ Poisson(λi).

The enrollment processes for Scenarios I and II follow the Poisson distribution. Recall,

a random variable X has Poisson distribution with parameter λ if

P (X = k|λ) = f(k|λ) =
e−λλk

k!
, k = 0, 1, 2 . . . .

The mean and variance of this distribution are E(X) = λ and V ar(X) = λ.

Scenario I is an example of when the recruitment to treatments at a centre are completely

independent of one another. In Scenario II the number of patients enrolled on both treatment

arms are identical (that is, ni1 = ni2 = ni). This phenomenon would occur in practice when

the centres have been instructed to strictly maintain the equivalent number of patients on

each treatment arm.

To obtain an understanding of the behaviour of the estimators in different environments,

two contrasting enrollment cases are generated, namely,
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• Case I: the number of centres is small, but a large number of patients have been

enrolled at each centre. In our example we take N = 10, ni1 ∼ Poisson (100) and

ni2 ∼ Poisson (100).

• Case II: the number of centres is large, but only a small number of patients have been

enrolled at each centre. In our example we take N = 100, ni1 ∼ Poisson (10) and

ni2 ∼ Poisson (10).

Both of the cases have on average a total number of 2 000 patients, with an average of

1 000 on each treatment arm in total.

3. APPROXIMATING NEGATIVE MOMENTS

The approximation of the negative moments of the Poisson distribution has independent

interest and has attracted considerable attention in the literature, especially in the field of

sampling. The first negative moment µ−1 is of particular importance. The main applications

of µ−1 are related to the fact that if ηj are i.i.d.r.v. with variance σ2 and the sample has

random size n ∼ Poisson(λ), then the variance of the mean (η1 + . . .+ ηn)/n is σ2µ−1. This

is a standard problem, for example, in life testing, see e.g. Bartholomew (4), David and

Johnson (5), Epstein and Sobel (6) – (7), Grab and Savage (8), Mendenhall (9) and Stephan

(10). Tiku’s approximations of negative moments µ−α constructed in Tiku (11) (see (22)

and (29)) have been cited in a number of reference books, for instance Haight (12), Johnson

et al. (13). We shall use these approximations as a benchmark for comparison in subsequent

calculations.

The method used to derive approximations for µ−1 is based on applying a simple recur-

rence formula. This methodology is also applied to derive approximations for the higher

order moments (these are the moments for which α > 2 in (12)), see Section 3.2.

Denote

Al,m(λ) =
∞∑

x=1

e−λλx

xl(x+m− 1)!
. (13)

Thus,

µ−α =
1

1− e−λAα,1(λ) . (14)

For each l, m > 0, we obviously have

1

xl
=

1

xl−1(x+m)
+

m

xl(x+m)
. (15)
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Through applying (15) to (13) we obtain the basic recurrence

Al,m(λ) =
∞∑

x=1

e−λλx

xl−1(x+m)!
+
∞∑

x=1

me−λλx

xl(x+m)!

= Al−1,m+1(λ) +mAl,m+1(λ) , (16)

and from (13) we have

A0,m(λ) =
1

λm−1

(
1−

m−1∑

x=0

e−λλx

x!

)
. (17)

Note that for any fixed m,

A0,m(λ) =
1

λm−1
+ o

(
1

λm

)
, as λ→∞ .

Through performing several iterations of the basic recurrence (16), we obtain

Al,m(λ) =
N∑

r=0

(m+ r − 1)!

(m− 1)!
Al−1,m+r+1(λ) +

(m+N)!

(m− 1)!
Al−1,m+N+2(λ) . (18)

Let Bl,m(λ) be the large sample approximations for Al,m(λ) that satisfy the recurrence

in (18), that is,

Bl,m(λ) =
N∑

r=0

(m+ r − 1)!

(m− 1)!
Bl−1,m+r+1(λ) +

(m+N)!

(m− 1)!
Bl−1,m+N+2(λ) , (19)

with similar initial conditions to (17) but excluding the exponential terms:

B0,m(λ) =
1

λm−1
. (20)

In our approximations we shall ignore the last term in (19), which gives

Bl,m(λ) '
N∑

r=0

(m+ r − 1)!

(m− 1)!
Bl−1,m+r+1(λ) . (21)

3.1 FIRST NEGATIVE MOMENT

In this section, approximations for the first negative moment are derived. As stated

earlier, Tiku’s well-known approximations (see Equation (11), in Tiku (11)) will be used as

a benchmark for comparison. They are defined as follows:

T
(1)
j = E

(
1

ξ+

)
'

(
1 +

∑j
r=3 βr

)

(λ− 1)(1− e−λ) , (22)
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where βr = a(r)/λ(λ + 1)(λ + 2) . . . (λ + r − 1), r = 3, 4, 5, . . . . The first four non-zero

coefficients a(r) are: a(3) = 1, a(4) = 7, a(5) = 43, a(6) = 271.

The suggested approximations (particular cases of the approximation (25)) are more

accurate than Tiku’s approximations (if λ is not too small), as illustrated in Figure I.

In view of (14), to approximate µ−1, approximations are needed for both A1,1(λ) and its

approximation B1,1(λ). To find A1,1(λ) using (18) with m = l = 1 and (17), we obtain

A1,1(λ) =
k∑

r=0

r!A0,r+2(λ)+(k + 1)!A0,k+3(λ)

=
k∑

r=0

r!

λr+1

(
1−

r∑

x=0

e−λλx

x!

)
+(k + 1)!A0,k+3(λ) . (23)

Similarly, using (19) and (20) we have

B1,1(λ) =
1

λ
+

1

λ2
+

2

λ3
+ . . . =

k∑

r=0

r!

λr+1
+ (k + 1)!B0,k+3(λ) . (24)

To construct kth order approximations for µ−1, we keep the first k terms in (23) and (24),

and ignore A0,k+3(λ) and B0,k+3(λ), respectively. In this way we obtain

µ̄
(k)
−1 =

1

1− e−λ
k−1∑

r=0

r!

λr+1

(
1−

r∑

x=0

e−λλx

x!

)
' 1

1− e−λA1,1(λ) = µ−1

and

µ̂
(k)
−1 =

k−1∑

r=0

r!

λr+1
' B1,1(λ) . (25)

Note that µ̄
(k)
−1 < µ̂

(k)
−1 and µ̄

(k)
−1 < µ−1, for all λ and k. It is not always true that µ̂

(k)
−1 < µ−1.

For small values of k and large λ, we have

e−λ

1− e−λ
k∑

x=0

λx

x!
≈ 0 , (26)

and the respective approximation µ̂
(k)
−1 is smaller than µ−1. However, as soon as k becomes

larger, (26) no longer holds; consequently we can have µ̂
(k)
−1 > µ−1. Hence, for small k, we

always have

µ̄
(k)
−1 < µ̂

(k)
−1 < µ−1 , (27)

meaning that µ̄
(k)
−1 and µ̂

(k)
−1 are always smaller than µ−1, with µ̂

(k)
−1 being more precise.
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Analytical results show that when k = d0.5λe, the inequalities (27) hold for all λ ≥ 4

(here, for any a, dae denotes the smallest integer that is greater than or equal to a). On

the other hand, µ̂
(k)
−1 with k = dλe is always larger than µ−1, but is still very precise. This

implies that any µ̂
(k)
−1, with dλ

2
e ≤ k ≤ dλe, provides an extremely accurate approximation.

We studied the accuracy of two simple approximations µ̂
(3)
−1 and µ̂

(4)
−1 as compared against

Tiku’s approximations T
(1)
k defined in (22). The approximation µ̂

(4)
−1 is expressed as

µ̂
(4)
−1 =

1

λ
+

1

λ2
+

2

λ3
+

6

λ4
. (28)

In Figure I we restrict ourselves to the T
(1)
6 version of this approximation.
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Figure I: Comparisons of -log10(Relative Error) of the approximations for the first negative

moment verus λ. High values for − log(Relative Error) indicate accurate approximations.

For values of λ > 8 we find that the approximations µ̂
(3)
−1, and especially µ̂

(4)
−1, are very

accurate, comparing favorably to the more complex approximations of Tiku. Additionally,

and not included in the figure, for λ ≥ 8 the simpler approximations µ̂
(k)
−1 are marginally

better than the respective approximations µ̄
(k)
−1.

3.2 APPROXIMATING HIGHER ORDER MOMENTS USING RECURRENCE FORMULAS

The approximations for the higher order moments will be compared against Tiku’s ap-

proximations T (α), which are defined as (see Equation (14) in Tiku (11) )

T (α) =
1

(λ− 1)(λ− 2) . . . (λ− α)
for α ≥ 2. (29)
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Similar to the case of the first negative moment, to approximate the higher order negative

moments with integer α, we must estimate either Aα,1(λ), or Bα,1(λ). Consideration will only

be given to the approximations related to Bα,1(λ), as these approximations are simpler due to

the omission of exponential terms. Additionally, for large λ and small k these approximations

are again better than the more complex approximations based on the use of Al,m(λ). In the

approximations that follow we will need the so-called signless Stirling numbers of the first

kind.

j

s(n,j) 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0

3 2 3 1 0 0 0 0 0 0

n 4 6 11 6 1 0 0 0 0 0

5 24 50 35 10 1 0 0 0 0

6 120 274 225 85 15 1 0 0 0

7 720 1 764 1 624 735 175 21 1 0 0

8 5 040 13 068 13 132 6 769 1 960 322 28 1 0

9 40 320 109 584 118 124 67 284 22 449 4 536 546 36 1

Table I: Values for signless Stirling numbers of the first kind for n, j ≤ 9.

Signless Stirling numbers of the first kind

Denote the signless Stirling number of the first kind as s(n, j); see Polya et al. (14) and

Stanley (15). These numbers satisfy the recurrence

s(n, j) = (n− 1)s(n− 1, j) + s(n− 1, j − 1), n, j ≥ 1 ,

with the initial conditions s(n, j) = 0 if n ≤ 0 or j ≤ 0, except s(0, 0) = 1. Values for these

numbers where n, j ≤ 9 can be seen in Table I.

We shall need the following properties of these Stirling numbers, s(n, j). Let Hn = 1 +
1
2

+ . . .+ 1
n

denote the harmonic number. It can be shown (see Comtet (16)), that s(n, j) = 0

for n < j and for all n ≥ j − 1

s(n+ 1, 1) = n! ; (30)

s(n+ 1, 2) = n!
(

1 +
1

2
+ . . .+

1

n

)
= n!Hn ; (31)

12



Approximating the second negative moment

Using (21) with l = 2 and m = 1, we obtain

µ−2 '
N∑

r=0

r!B1,r+2(λ) . (32)

We construct approximations of the form

µ−2 ' µ
(k)
−2 =

k−1∑

r=0

ar
λr+1

,

which we obtain from (32) with N large enough, by the repeated application of the ap-

proximations in (21), and keeping all the terms that contribute to the coefficients ar’s for

r ≤ k − 1. The exact value of N in (21) and (32) is not of interest, we only require that N

is large enough.

Thus, we write the “
∑N
r=0” in (21) and (32) as “

∑
r≥0” obtaining

µ−2 '
∑

r≥0

r!B1,r+2(λ) =
∑

r≥0

r!
∑

s≥0

1

λs+r+2

(s+r+1)!

(r + 1)!
=
∑

r≥0

1

r + 1

∑

s≥0

1

λs+r+2
(s+r+1)! .

Let t = r + s+ 1. Using (31) we obtain

µ−2 '
∑

r≥0

∑

t≥r+1

t!

(r + 1)λt+1
=
∑

t≥1

t!

λt+1

t−1∑

r=0

1

r + 1
=
∑

t≥1

t!Ht

λt+1
=
∑

t≥0

s(t+ 1, 2)

λt+1
. (33)

The kth order approximation µ̂
(k)
−2 is obtained when we keep the first k terms in the

right-hand side of (33), that is,

µ−2 ' µ̂
(k)
−2 =

k−1∑

t=0

s(t+ 1, 2)

λt+1
=

1

λ2
+

3

λ3
+ . . .+

s(k, 2)

λk
. (34)

Analytical calculations reveal that µ̂
d0.5λe+1
−2 and µ̂

dλe+1
−2 compare very favorable against

Tiku’s approximation T (2). We find that µ̂
dλe+1
−2 is larger than µ−2, whereas µ̂

d0.5λe+1
−2 is smaller

than µ−2; this suggests that any µ̂
(k)
−2 with dλ

2
e+1 ≤ k ≤ dλe+1 would provide an extremely

accurate approximation.

We discover in Figure II that the simple approximations µ̂
(6)
−2 and in particular

µ̂
(8)
−2 =

1

λ2
+

3

λ3
+ . . .+

13 068

λ8
, (35)

are very accurate approximations of the second negative moment.
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Figure II: Comparisons of -log10(Relative Error) of the approximations for the second nega-

tive moment versus λ.
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Figure III: Comparisons of -log10(Relative Error) of the approximations for the third negative

moment versus λ.

Approximating the third and fourth negative moment

14



Similarly, it can be shown that the kth order approximations of µ̂
(k)
−3 can be expressed as

µ̂
(k)
−3 =

k−1∑

u=0

s(u+ 1, 3)

λu+1
=

k∑

u=3

s(u, 3)

λu
. (36)

Analytically we discover that all of our approximations compare favorably against Tiku’s

approximation T (3), and any µ̂
(k)
−3 with d0.5λe+ 2 ≤ k ≤ dλe+ 2 provides an extremely

accurate approximation of µ−3.

In Figure III we find that the simple approximation µ
(9)
−3 and

µ̂
(12)
−3 =

1

λ3
+ . . .+

118 124

λ9
+

1 172 700

λ10
+

12 753 576

λ11
+

120 543 840

λ12
. (37)

provide accurate approximations for the third negative moment, particularly for larger values

of λ.

The approximation for the fourth negative moment is found to be

µ̂
(k)
−4 =

k−1∑

u=0

s(u+ 1, 4)

λu+1
=

k∑

u=4

s(u, 4)

λu
. (38)

As examples, through applying the general formula (38) we obtain the following two

approximations for µ−4: µ̂
(12)
−4 and

µ̂
(16)
−4 =

16∑

u=4

s(u, 4)

λu
=

1

λ4
+ . . .+

5 056 995 703 824

λ16
. (39)

We find from Figure IV that both of these approximations for the fourth negative moment

(particularly the latter) are very accurate for λ > 20.

Analogously, the kth order approximation for the lth order negative moment is expressed

as follows:

µ−l ' µ̂
(k)
−l =

k−1∑

u=0

s(u+ 1, l)

λu+1
=

k∑

u=l

s(u, l)

λu
. (40)

By studying Figure I it is evident that the newly derived approximations for the first

negative moment compare favourably against the existing Tiku approximations. The ap-

proximations prove to be very accurate for values of λ > 8, with µ̂
(4)
−1 having a relative error

less than 0.01.

For the higher order moments it was found (not proven) that as with the first negative

moment, the simpler approximations of the form µ̂
(k)
−α were marginally more accurate than

µ̄
(k)
−α approximations (for α = 2, 3 and 4). Consequently, all the approximations presented in

this paper are of the simpler variety.
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Figure IV: Comparisons of -log10(Relative Error) of the approximations for the fourth neg-

ative moment versus λ.

By analysing Figures II, III and IV we discover that the approximations become more

accurate as the order of the negative moments increases. It is also evident that the ap-

proximations for the higher order negative moments are less accurate for smaller values of λ

than the approximations for the first negative moment. The approximations for the higher

order moments are accurate (that is, they have a relative error < 0.01) for λ > 20. However,

it is clearly evident that the approximations compare very favorably with Tiku’s existing

approximations for higher order negative moments (defined in (29)).

Hence, through looking at the Figures we find that the best approximations studied would

be as follows:

• First Negative Moment: µ̂
(4)
−1, defined in (28).

• Second Negative Moment: µ̂
(8)
−2, defined in (35).

• Third Negative Moment: µ̂
(12)
−3 , defined in (37).

• Fourth Negative Moment: µ̂
(16)
−4 , defined in (39).

These approximations are subsequently used in Section 6 to aid in the estimation of the

first two moments of MSE (∆I), MSE (∆II) and MSE (∆III).
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4. APPROXIMATING THE MOMENTS OF THE HARMONIC MEAN

Let ξ and ζ be i.i.d.r.v., ξ, ζ ∼ Poisson(λ). Set

H =
2ξζ

ξ + ζ
=

2

1/ξ + 1/ζ
, (41)

to be the harmonic mean of ξ and ζ. Jones (17) demonstrates through the use of asymptotic

expansions (as λ→∞) that

E

(
2ξζ

ξ + ζ

)
= λ− 1

2
+O

(
1

λ40

)
;

E

(
2ξζ

ξ + ζ

)2

= λ2 − λ

2
+

3

4
− 1

4λ
− 1

8λ2
+O

(
1

λ3

)
;

E

(
2ξζ

ξ + ζ

)3

= λ3 +
7λ

4
− 21

8
+

15

8λ
+

7

16λ2
+O

(
1

λ3

)
;

E

(
2ξζ

ξ + ζ

)4

= λ4 + λ3 +
13λ2

4
− 57λ

8
+

225

16
− 121

8λ
+

13

8λ2
+O

(
1

λ3

)
.

Thus, we can use the following approximations for the first four moments of the harmonic

mean H = 2ξζ/(ξ + ζ):





E (H) ' h1 = λ− 1
2

;

E (H2) ' h2 = λ2 − λ
2

+ 3
4

;

E (H3) ' h3 = λ3 + 7
4
λ− 21

8
;

E (H4) ' h4 = λ4 + λ3 + 13
4
λ2 − 57

8
λ+ 225

16
.

(42)

λ h1 h2 h3 h4

10 2.5031 10−7 -2.7617 10−4 1.8860 10−4 1.3331 10−4

15 2.7586 10−10 -7.9107 10−5 3.7366 10−5 -1.8299 10−5

25 5.8163 10−16 -1.6647 10−5 4.8328 10−6 -1.4754 10−6

50 3.5267 10−30 -2.0402 10−6 3.0121 10−7 -4.7286 10−8

100 1.8177 10−58 -2.5251 10−7 1.8791 10−8 -1.4954 10−9

200 6.7957 10−115 -3.1406 10−8 1.1173 10−9 -4.7001 10−11

Table II: Relative errors for the approximations (see (42)) of the first four moments of H

against different values of λ.

By studying Table II we find that the approximations for the first four moments of the

harmonic mean are extremely accurate for λ > 10. This is especially the case for the first

17



moment of h1, with the relative error being very small when λ = 10, and becoming minuscule

for λ > 25.
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5. APPROXIMATING THE MOMENTS OF Wi

Approximations are made for the first four moments of Wi by considering the numerator

and denominator of (Wi)
k (k = 1, 2, 3, and 4) as separate functions.

Scenario I: Independent ni1 and ni2

Denote

ωi =
ni2ni1
ni2 + ni1

, for independent ni2, ni1 ∼ Poisson(λi) , (43)

and
ω =

N∑

j=1

ωj . (44)

From the definition for Wi (see (5)), we have Wi = ωi/ω . Using the fact that ωi = H/2,

the approximations in (42) gives the following approximations:

E ωi ' λi
2
− 1

4
; (45)

E ω2
i '

λ2
i

4
− λi

8
+

3

16
; (46)

E ω3
i '

λ3
i

8
+

7λi
32
− 21

64
; (47)

E ω4
i '

λ4
i

16
+
λ3
i

16
+

13λ2
i

64
− 57λi

128
+

225

256
; (48)

E ω '
N∑

i=1

(
λi
2
− 1

4

)
. (49)

As E(ω) is typically large, we can use the following approximation:

E
(

1

ω

)k
' 1

E(ωk)
k = 1, 2, 3, 4 . (50)

Also, since N is large, through using the asymptotic independence of ωi and ω =
∑N
j=1 ωj,

we can state that

E
(
ωi
ω

)k
' E ωki E

1

ωk
, k = 1, 2, 3, 4 , (51)

and in addition, using (50) and (51), we get

E
(
ωi
ω

)k
' E ωki

E ωk
. (52)
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To derive the second moment of ω we must use (45) and (46) to obtain

ω2 =
N∑

i=1

N∑

j=1

ωiωj

E ω2 =
N∑

i,j

E(ωiωj) =
N∑

i=1

E ω2
i +

N∑

i=1

N∑

j 6=i
E ωiE ωj

=
N∑

i=1

E ω2
i +

N∑

i=1

N∑

j=1

E ωiE ωj −
N∑

i=1

(E ωi)
2

'
N∑

i=1

(
λ2
i

4
− λi

8
+

3

16

)
+

[
N∑

i=1

(
λi
2
− 1

4

)]2

−
N∑

i=1

(
λi
2
− 1

4

)2

' 1

4

[
N∑

i=1

(
λi − 1

2

)]2

+
1

8

N∑

i=1

(λi + 1) . (53)

Applying similar methodology (see the Appendix for detailed calculations), we find that

the approximations for the third and fourth moments of ω are

E ω3 ' 1

8

[
N∑

i=1

(
λi − 1

2

)]3

+
3

2

N∑

i=1

(
λi
8

+
1

8

)
N∑

j=1

(
λj − 1

2

)
+

1

32

N∑

i=1

(λi − 7) ; (54)

E ω4 ' 1

16

[
N∑

i=1

(
λi− 1

2

)]4

+
1

4

N∑

i=1

(
3λ2

i

2
+λi− 5

2

)
N∑

j=1

(
λj− 1

2

)
− 3

16

[
N∑

i=1

(
λi− 1

2

)2
]2

+
3

16

[
N∑

i=1

(
λ2
i −

λi
2

+
3

4

)]2

− 1

8

N∑

i=1

(
3λ3

i −
49λi
16
− 15

4

)
. (55)

Scenario II: Dependent recruitment, ni1 = ni2

In Scenario II, due to the number of patients on both treatment arms being identical, the

suffix j (j = 1, 2) used to denote the treatment arm is omitted. Thus, we have ni2 = ni1 = ni

and n. =
∑N
i=1 ni.

For the remainder of the paper all estimators associated with Scenario II will be rep-

resented with the addition of an asterisk, ∗. The weights Wi (i = 1 . . . N) must now be

re-defined. Denote

ω∗i =
ni
2

for ni ∼ Poisson(λi) , (56)

and
ω∗ =

N∑

j=1

ω∗j =
n.
2
. (57)

Hence,
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E ω∗i =
λi
2

; (58)

E ω∗ 2
i =

λi + λ2
i

4
; (59)

E ω∗ 3
i =

λi + 3λ2
i + λ3

i

8
; (60)

E ω∗ 4
i =

λi + 7λ2
i + 6λ3

i + λ4
i

16
; (61)

E ω∗ =
1

2

N∑

i=1

λi . (62)

Using the fact that, ω∗ ∼ Poisson
(

1
2

∑N
i=1 λi

)
, and denoting Λ =

∑N
i=1 λi, we find the

second, third and fourth moments of ω∗:

E ω∗ 2 =
1

4

[
Λ + Λ2

]
; (63)

E ω∗ 3 =
1

8

[
Λ + 3Λ2 + Λ3

]
; (64)

E ω∗ 4 =
1

16

[
Λ + 7Λ2 + 6Λ3 + Λ4

]
. (65)

6. APPROXIMATING THE FIRST TWO MOMENTS OF MSE (∆I) – MSE (∆III)

For the approximations in this section, we will need the approximations for the first four

moments of Wi derived in Section 5, the approximations for the first four negative moments

of the Poisson distribution (see Section 3), and finally the first four moments of the Poisson

distribution, which are by definition





E ni1 = E ni2 = λi ;

E n2
i1 = E n2

i2 = λi + λ2
i ;

E n3
i2 = E n3

i2 = λi + 3λ2
i + λ3

i ;

E n4
i1 = E n4

i2 = λi + 7λ2
i + 6λ3

i + λ4
i .

(66)

To alter the notation such that it is applicable in the context of a multi-centre trial

problem, we shall denote the approximations for the negative moments as follows:

Υi,α ' E
1

ni1 α
= E

1

ni2 α
, α = 1, 2 ; (67)

Υα ' E
1

n.1 α
= E

1

n.2 α
, (α = 1, 2, 3, 4) , (68)

where Υi,1 and Υi,2 are the same as (28) and (35), respectively, with λ replaced by λi (these

approximations can be seen in Equations (69), and (70)), and Υ1, . . . ,Υ4 are defined in (28),
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(35), (37) and (39) respectively; in this case we replace λ with
∑N
i=1 λi (see Equations (71 –

74)).

As above, denote Λ =
∑N
i=1 λi. The approximations for the first four negative moments

that are used in Section 6 are as follows:

Υi, 1 =
1

λi
+

1

λ2
i

+
2

λ3
i

+
6

λ4
i

; (69)

Υi, 2 =
1

λ2
i

+
3

λ3
i

+
11

λ4
i

+
50

λ5
i

+
274

λ6
i

+
1 764

λ7
i

+
13 068

λ8
i

; (70)

Υ1 =
1

Λ
+

1

Λ2
+

2

Λ3
+

6

Λ4
; (71)

Υ2 =
1

Λ2
+

3

Λ3
+

11

Λ4
+

50

Λ5
+

274

Λ6
+

1 764

Λ7
+

13 068

Λ8
; (72)

Υ3 =
12∑

u=3

s(u, 3)

λu
=

1

Λ3
+ . . .+

120 543 840

Λ12
; (73)

Υ4 =
16∑

u=4

s(u, 4)

λu
=

1

Λ4
+ . . .+

5 056 995 703 824

Λ16
. (74)

In addition, similar to Section 5, since N is large, through using the asymptotic indepen-

dence of ni1 and n.1 we can state (for k = 1, 2, 3, . . .) that

E
(
ni1
n.1

)k
' E nki1E

1

nk.1
and E

(
ni2
n.2

)k
' E nki2 E

1

nk.2
. (75)

6.1 MSE(∆I)

Scenario I: Independent ni1 and ni2

By definition (see (9)),

MSE(∆I) = σ2
(

1

n.2
+

1

n.1

)
+σ2

µ

N∑

i=1

(
ni2
n.2
−ni1
n.1

)2

+σ2
τ

N∑

i=1

(
ni2
n.2

+
ni1
n.1
− 2

N

)2

= σ2ν + σ2
µ

N∑

i=1

ρi + σ2
τ

N∑

i=1

φi ,

where

ν =
(

1

n.2
+

1

n.1

)
; ρi =

(
ni2
n.2
− ni1
n.1

)2

; φi =
(
ni2
n.2

+
ni1
n.1
− 2

N

)2

.

Using (66), (68) and (75), we obtain

E ν = E
(

1

n.2
+

1

n.1

)
' 2Υ1 ;
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E ρi = E

(
n2
i2

n2
.2

− 2ni1ni2
n.1n.2

+
n2
i1

n2
.1

)
' 2

(
λi + λ2

i

)
Υ2 − 2λ2

i (Υ1)2 ;

E φi = E

(
n2
i2

n2
.2

+
n2
i1

n2
.1

+
4

N2
+

2ni2ni1
n.2n.1

− 4ni2
Nn.2

− 4ni1
Nn.1

)

' 2
(
λi+λ

2
i

)
Υ2+

4

N2
+2λ2

iΥ
2
1 −

8λiΥ1

N
.

Thus,

EMSE(∆I) = σ2E ν + σ2
µ

N∑

i=1

E ρi + σ2
τ

N∑

i=1

E φi

' 2σ2Υ1 + σ2
µ

N∑

i=1

(
2
(
λi + λ2

i

)
Υ2 − 2λ2

i (Υ1)2
)

+σ2
τ

N∑

i=1

(
2
(
λi+λ

2
i

)
Υ2+

4

N2
+2λ2

iΥ
2
1 −

8λiΥ1

N

)
, (76)

which can be evaluated by using the approximations in (71) and (72).

The second moment can be approximated as follows

E
[
MSE(∆I)

]2
= E

[
σ2 ν + σ2

µ

N∑

i=1

ρi + σ2
τ

N∑

i=1

φi

]2

= σ4E ν2+σ4
µ

N∑

i,j

E ρiρj+σ
4
τ

N∑

i,j

E φiφj+2σ2σ2
µ

N∑

i=1

E νρi+2σ2σ2
τ

N∑

i=1

E νφi

+2σ2
µσ

2
τ

N∑

i,j

E ρiφi

' σ4E ν2+σ4
µ



N∑

i=1

E ρ2
i +

N∑

i6=j
E ρiρj


+σ4

τ



N∑

i=1

E φ2
i +

N∑

i6=j
E φiφj


+2σ2σ2

µ

N∑

i=1

E νρi

+2σ2σ2
τ

N∑

i=1

E νφi+2σ2
µσ

2
τ



N∑

i=1

E ρiφi +
N∑

i6=j
E ρiE φj




= σ4E ν2 + σ4
µ



N∑

i=1

E ρ2
i +

(
N∑

i=1

E ρi

)2

−
N∑

i=1

(E ρi)
2




+σ4
τ



N∑

i=1

E φ2
i +

(
N∑

i=1

E φi

)2

−
N∑

i=1

(E φi)
2


+ 2σ2σ2

µ

N∑

i=1

E νρi

+2σ2σ2
τ

N∑

i=1

E νφi + 2σ2
µσ

2
τ



N∑

i=1

E ρiφi+
N∑

i=1

E ρi
N∑

j=1

E φj −
N∑

i=1

E ρiE φi


 (77)

Using (66), (68) and (75) it can be shown that

E ν2 = E

(
1

n2
.2

+2
1

n.1

1

n.2
+

1

n2
.1

)
' 2

(
Υ2 + (Υ1)2

)
;
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Eρ2
i = E

(
n4
i2

n4
.2

− 4n3
i2ni1

n3
.2n.1

+
6n2

i2n
2
i1

n2
.2n

2
.1

− 4ni2n
3
i1

n.2n3
.1

+
n4
i1

n4
.1

)

' 2(λi + 7λ2
i + 6λ3

i + λ4
i )Υ4 − 8(λi + 3λ2

i + λ3
i )λiΥ3Υ1 + 6(λi + λ2

i )
2Υ2

2 ;

E φ2
i = E

(
n4
i2

n4
.2

+
n4
i1

n4
.1

+
16

N4
+

4n3
i2ni1

n3
.2n.1

+
6n2

i2n
2
i1

n2
.2n

2
.1

+
4ni2n

3
i1

n.2n3
.1

− 8n3
i2

Nn3
.2

+
24n2

i2

N2n2
.2

− 32ni2
N3n.2

− 8n3
.1

Nn3
.1

+
24n2

i1

N2n2
.1

− 32ni1
N3n.1

− 24n2
i2ni1

Nn2
.2n.1

− 24ni2n
2
i1

Nn.2n2
.1

+
48ni2ni1
N2n.2n.1

)

' 2
(
λi+7λ2

i +6λ3
i +λ

4
i

)
Υ4+

16

N4
+

48 (λi + λ2
i ) Υ2

N2
− 48 (λi+λ

2
i )λiΥ2Υ1

N
− 64λiΥ1

N3

+6
(
λi+λ

2
i

)2
Υ2

2+
48λ2

iΥ
2
1

N2
+8

(
λi+3λ2

i +λ
3
i

)
λiΥ3Υ1 − 16 (λi+3λ2

i +λ
3
i ) Υ3

N
;

E νρi = E

(
n2
i2

n3
.2

− 2ni2ni2
n2
.2n.1

+
n2
i1

ni2n2
i1

+
n2
i2

n2
.2ni1

− 2ni2ni1
n.2n2

.1

+
n2
i1

n3
.1

)

' 2
(
λi + λ2

i

)
Υ3 − 4λ2

iΥ2Υ1 + 2
(
λi + λ2

i

)
Υ2Υ1 ;

E νφi = E

(
n2
i2

n3
.2

+
n2
i1

n.2n2
.1

+
4

N2n.2
+

2ni2ni1
n2
.2n.1

− 4ni2
Nn2

.2

− 4ni1
Nn.2n.1

+
n2
i2

n2
.2n.1

+
n2
i1

n3
.1

+
4

N2n.1
+

2ni2ni1
n.2n2

.1

− 4ni2
Nn.2n.1

− 4ni1
Nn2

.1

)

' 2
(
λi + λ2

i

)
(Υ3 + Υ2Υ1) +

8Υ1

N2
+ 4λ2

iΥ2Υ1 − 8λi (Υ1)2

N
− 8λiΥ2

N
;

E ρiφi = E

(
n4
i2

n4
.2

− 2n2
i2n

2
i1

n2
.2n

2
.1

− 4n3
i2

Nn2
.2

+
4n2

i2ni1
Nn2

.2n.1
+

4ni2n
2
i1

Nn.2n2
.1

+
n4
i1

n4
.1

− 4n3
i1

n3
.1

+
4n2

i2

N2n2
.2

− 8ni2ni1
N2n.2n.1

+
4n2

i1

N2n2
.1

)

' 2
(
λi + 7λ2

i + 6λ3
i + λ4

i

)
Υ4−2

(
λi + λ2

i

)2
Υ2

2−
8 (λi + 3λ2

i + λ3
i ) Υ3

N

+
8 (λi + λ2

i )λiΥ2Υ1

N
+

8 (λi + λ2
i ) Υ2

N2
− 8λ2

iΥ
2
1

N2
.

Thus, our approximation for E
[
MSE (∆I)

]2
is obtained through substituting the above

approximations into (77), and can be evaluated by using the approximations in (71) – (74).

The variance of MSE (∆I) is then obtained through substituting (76) and (77) into

V arMSE (∆I) = E
[
MSE (∆I)

]2 −
[
EMSE (∆I)

]2
.

Scenario II: Dependent recruitment, ni1 = ni2 = ni

In Scenario II, the term associated with centre effect is now equal to zero. Hence, we
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have

MSE(∆∗I) = σ2ν∗ + σ2
τ

N∑

i=1

φ∗i ,

with

ν∗ =
2

n.
, and φ∗i = 4

(
ni
n.
− 1

N

)2

.

Using (66), (68) and (75) we obtain

E ν∗ = E
2

n.
' 2Υ1 ; E φ∗i = 4E

(
n2
i

n2
.

− 2ni
Nn.

+
1

N2

)
' 4

(
λi + λ2

i

)
Υ2− 8λiΥ1

N
+

4

N2
.

Thus,

EMSE(∆∗I) = σ2E ν∗ + σ2
τ

N∑

i=1

E φ∗i

' 2σ2Υ1 + σ2
τ

N∑

i=1

(
4
(
λi+λ

2
i

)
Υ2 − 8λiΥ1

N
+

4

N2

)
, (78)

which can be evaluated using Equations (71) and (72).

The second moment can be derived in a similar manner to that of Scenario I, the sole

difference being that terms involving ρi are omitted. Thus, from (77) we obtain

E
[
MSE(∆∗I)

]2
= σ4E ν∗ 2 + σ4

τ



N∑

i=1

E φ∗ 2
i +

(
N∑

i=1

E φ∗i

)2

−
N∑

i=1

(E φ∗i )
2




+2σ2σ2
τ

N∑

i=1

E ν∗φ∗i . (79)

Using (66), (68) and (75), we obtain

E ν∗ 2 ' E
4

n2
.

= 4Υ2 ;

E φ∗ 2
i = 16E

(
n4
i

n4
.

− 4n3
i

Nn3
.

+
6n2

i

N2n2
.

− 4ni
N3n.

+
1

N4

)

' 16

[
(λi+7λ2

i +6λ3
i +λ

4
i )Υ4− 4(λi+3λ2

i +λ
3
i )Υ3

N
+

6 (λi+λ
2
i ) Υ2

N2
− 4λiΥ1

N3
+

1

N4

]
;

E ν∗φ∗i = 8E

(
n2
i

n3
.

− 2ni
Nn2

.

+
1

N2n.

)
' 8

[(
λi + λ2

i

)
Υ3 − 2λiΥ2

N
+

Υ1

N2

]
.

By substituting these approximations into (79) and using the approximations in (71) –

(74) we obtain our estimate of the second moment for MSE (∆∗I). The variance is then

obtained by substituting (78) and (79) into

V arMSE (∆∗I) = E
[
MSE (∆∗I)

]2 −
[
EMSE (∆∗I)

]2
.
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6.2 MSE(∆II)

Scenario I: Independent ni1 and ni2

From (10) we have

MSE(∆II) = σ2
N∑

i=1

W 2
i

(
1

ni2
+

1

ni1

)
+ 4σ2

τ

N∑

i=1

(
Wi − 1

N

)2

= σ2
N∑

i=1

ηi + 4σ2
τ

N∑

i=1

ϑi .

Using (43) and (44), we obtain

ηi = W 2
i

(
1

ni2
+

1

ni1

)
=

ni1ni2
ni1+ni2(∑N

i=1
ni1ni2
ni1+ni2

)2 =
ωi
ω2

;

ϑi =
(
Wi − 1

N

)2

=
ω2
i

ω2
− 2ωi
Nω

+
1

N2
.

Equation (52) gives

E ηi ' E ωi
E ω2

, E ϑi ' E ω2
i

E ω2
− 2E ωi
NE ω

+
1

N2
.

Thus,

EMSE(∆II) = σ2
N∑

i=1

E ηi + 4σ2
τ

N∑

i=1

E ϑi

' σ2
N∑

i=1

E ωi
E ω2

+ 4σ2
τ

N∑

i=1

(
E ω2

i

E ω2
− 2E ωi
NE ω

+
1

N2

)
, (80)

which can be evaluated by substituting in the approximations from (45), (46), (49) and (53).

The second moment can be approximated as follows:

E
[
MSE(∆II)

]2
= E

[
σ2

N∑

i=1

ηi + 4σ2
τ

N∑

i=1

ϑi

]2

= σ4
N∑

i,j

E ηiηj+16σ4
τ

N∑

i,j

E ϑiϑj+8σ2σ2
τ

N∑

i,j

E ηiϑi

= σ4



N∑

i=1

E η2
i +

N∑

i6=j
E ηiηj


+16σ4

τ



N∑

i=1

E ϑ2
i +

N∑

i6=j
E ϑiϑj


+8σ2σ2

τ



N∑

i=1

E ηiϑi+
N∑

i6=j
E ηiϑj




' σ4



N∑

i=1

E η2
i +

(
N∑

i=1

E ηi

)2

−∑
i

(E ηi)
2


+16σ4

τ



N∑

i=1

E ϑ2
i +

(
N∑

i=1

E ϑi

)2

−∑
i

(E ϑi)
2




+8σ2σ2
τ



N∑

i=1

E ηiϑi+
N∑

i=1

E ηi
N∑

j=1

E ϑj−
∑

i

E ηiE ϑi


 . (81)
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Equation (52) gives

E η2
i = E

(
ωi
ω2

)2

' E ω2
i

E ω4
;

E ϑ2
i = E

(
ωi
ω
− 1

N

)4

' E ω4
i

E ω4
+

6E ω2
i

N2E ω2
+

1

N4
− 4E ω3

i

NE ω3
− 4E ωi
N3E ω

;

E ηiϑi = E

[
ωi
ω2

(
ω2
i

ω2
− 2ωi
Nω

+
1

N2

)]
' E ω3

i

E ω4
− 2E ω2

i

NE ω3
+

Eωi
N2E ω2

.

The above expectations can be approximated using (45), (46), (47), (48), (49), (53), (54)

and (55). We then obtain E
[
MSE (∆II)

]2
by substituting all the approximations into (81).

The variance is then obtained by substituting (80) and (81) into

V arMSE (∆II) = E
[
MSE (∆II)

]2 −
[
EMSE (∆II)

]2
.

Scenario II: Dependent recruitment, ni1 = ni2 = ni

Approximations for the first two moments of MSE (∆II) under Scenario II are generated

in an almost identical manner to that of Scenario I. The only difference being that the approx-

imations E ωki and E ωk (k = 1, 2, 3, 4) are replaced by their corresponding approximations

for Scenario II, namely, E ω∗ ki and E ω∗ k (defined in Section 5).

Thus,

MSE(∆∗II) = σ2
N∑

i=1

W ∗ 2
i

(
2

ni

)
+ 4σ2

τ

N∑

i=1

(
W ∗
i −

1

N

)

= σ2
N∑

i=1

η∗i + 4σ2
τ

N∑

i=1

ϑ∗i .

Using (56) and (57), we obtain

η∗i = W ∗ 2
i

(
2

ni

)
=

ni
2(∑N

i=1
ni
2

)2 =
ω∗i
ω∗ 2

;

ϑ∗i =
(
W ∗
i −

1

N

)2

=
ω∗ 2
i

ω∗ 2
− 2ω∗i
Nω∗

+
1

N2
.

By assuming (52) also applies for the dependent case, we have

E η∗i '
E ω∗i
E ω∗ 2

; E ϑ∗i '
E ω∗ 2

i

E ω∗ 2
− 2E ω∗i
NE ω∗

+
1

N2
.

Thus,

EMSE(∆∗II) = σ2
N∑

i=1

E η∗i + 4σ2
τ

N∑

i=1

E ϑi

' σ2
N∑

i=1

E ω∗i
E ω∗ 2

+ 4σ2
τ

N∑

i=1

(
E ω∗ 2

i

E ω∗ 2
− 2E ω∗i
NE ω∗

+
1

N2

)
. (82)
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This can be evaluated using the approximations from (58), (59), (62) and (63).

The second moment of MSE(∆∗II) can be derived in a similar manner to the method

used in (81)

E
[
MSE(∆∗II)

]2 ' σ4



N∑

i=1

E η∗ 2
i +

(
N∑

i=1

E η∗i

)2

−∑
i

(E η∗i )
2


+16σ4

τ

[
N∑

i=1

E ϑ∗ 2
i

+

(
N∑

i=1

E ϑ∗i

)2

−∑
i

(E ϑ∗i )
2


+8σ2σ2

τ



N∑

i=1

E η∗i ϑ
∗
i +

N∑

i=1

E η∗i
N∑

j=1

E ϑ∗j−
∑

i

E η∗iE ϑ
∗
i


 , (83)

where using (52) we have

E η∗ 2
i = E

(
ω∗i
ω∗ 2

)2

' E ω∗ 2
i

E ω∗ 4
;

E ϑ∗ 2
i = E

(
ω∗i
ω∗
− 1

N

)4

' E ω∗ 4
i

E ω∗ 4
+

6E ω∗ 2
i

N2E ω∗ 2
+

1

N4
− 4E ω∗ 3

i

NE ω∗ 3
− 4E ω∗i
N3E ω∗

;

E η∗i ϑ
∗
i = E

[
ω∗i
ω∗ 2

(
ω∗ 2
i

ω∗ 2
− 2ω∗i
Nω∗

+
1

N2

)]
' E ω∗ 3

i

E ω∗ 4
− 2E ω∗ 2

i

NE ω∗ 3
+

Eω∗i
N2E ω∗ 2

.

These expectations can be evaluated using the approximations from (58) – (65). We then

substitute these approximations into (83) to approximate E
[
MSE (∆∗II)

]2
.

An approximation of the variance is obtained through the substitution of the approxi-

mations (82) and (83) into

V arMSE (∆∗II) = E
[
MSE (∆∗II)

]2 −
[
EMSE (∆∗II)

]2
.

6.3 MSE(∆III)

Scenario I: Independent ni1 and ni2

Let MSE(∆III) = 1
N2

∑N
i=1 ζi, where

ζi =




σ2
(

1
ni1

+ 1
ni2

)
if ni1 > 0, ni2 > 0 ,

4 (σ2
τ + 1) if ni1 = 0 or ni2 = 0 .

The mean of the MSE(∆III) is

EMSE(∆III) =
1

N2

N∑

i=1

E(ζi) .

It can be shown that

E (ζi) = (1− p0i)
2σ2

(
E

1

ni1
+ E

1

ni2

)
+ 4

(
σ2
τ + 1

) (
2p0i − p2

0i

)
,
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with p0i = e−λi representing the probability of there being zero patients on either treatment

arm. As we are considering the case where λi ≥ 10, p0i is negligible and will consequently

be omitted from the subsequent approximations of the first two moments of MSE(∆III) for

both Scenarios I and II.

Thus,

EMSE(∆III) ' 2σ2

N2

N∑

i=1

Υi,1 , (84)

where Υi,1 is the approximation for the first negative moment of ni1 (and ni2), see (67).

Similarly, the second moment of ζi is found as follows:

E
(
ζ2
i

)
= σ4

(
E

1

n2
i1

+ E
1

n2
i2

+ 2E
1

ni1
E

1

ni2

)
' 2σ4

(
Υi,2 + Υ2

i,1

)
,

thus,

E
[
MSE(∆III)

]2 ' 2σ4

N4

(
Υi,2 + Υ2

i,1

)
. (85)

The variance of ζi is

V ar(ζi) = E(ζ2
i )− (E(ζi))

2

= σ4

(
E

1

n2
i1

+ E
1

n2
i2

+ 2E
1

ni1
E

1

ni2

)
−
(
σ2
(
E

1

ni1
+ E

1

ni2

))2

= V ar
1

ni1
+ V ar

1

ni2
,

through using the fact that V ar 1
ni1

= V ar 1
ni2
' Υi,2 − (Υi,1)2, we obtain

V ar(MSE(∆III)) ' 2σ4

N4

N∑

i=1

(
Υi,2 − (Υi,1)2

)
. (86)

Scenario II: Dependent recruitment, ni1 = ni2 = ni

Let MSE(∆III) = 1
N2

∑N
i=1 ζ

∗
i , where

ζ∗i =
2σ2

ni
.

The mean of the MSE(∆∗III) is

E MSE(∆∗III) =
1

N2

N∑

i=1

E(ζ∗i ) ,
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we can use the approximation

E ζ∗i ' 2σ2Υi,1 , (87)

thus,

EMSE(∆∗III) '
2σ2

N2

N∑

i=1

Υi,1 .

The second moment of ζ∗i can be approximated as follows:

E ζ∗ 2
i = E

(
2σ2

ni

)2

' 4σ4Υi,2 , (88)

thus, we have

E
[
MSE(∆∗III)

]2 ' 4σ4

N4

N∑

i=1

Υi,2 .

Equations (87) and (88) give the variance of ζ∗i as

V ar(ζ∗i ) = E(ζ∗ 2
i )− (E(ζ∗i ))2 ' 4σ4

(
Υi,2 − (Υi,1)2

)
.

Hence,

V ar MSE(∆∗III) '
4σ4

N4

N∑

i=1

(
Υi,2 − (Υi,1)2

)
. (89)

It is found through comparing (86) and (89) that the variance of MSE(∆III) is exactly

twice as large for Scenario II than Scenario I, if we ignore p0, i (i = 1, 2); the probability of

there being zero patients on either of the treatment arms. This result coincides with the

results of the simulation study shown in Table III, that the standard deviation of MSE(∆III)

is approximately
√

2 times larger in Scenario II compared with Scenario I.

7. ACCURACY OF THE APPROXIMATIONS

The accuracy of the approximations for the first two moments of MSE(∆I) – MSE(∆III)

under Scenario I and II are assessed in this section. This is achieved through the comparison

of our theoretical results with those obtained from a simulation study performed in S-Plus

(see Fedorov et al. (18)) for the two enrollment cases outlined in Section 2. For ease of

interpretation the results (for both theoretical and simulated) that are summarised in Table

III are normalised, that is, the MSE values are multiplied by the mean total number of

patients (in our case E(n.1) + E(n.2) = 2
∑N
i=1 λi = 2 000).

We discover some interesting results by studying Table III. In general the theoretical

approximations appear to be reasonably accurate, with the value for the both EMSE and
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CASE I CASE II
Statistic

EMSE E
(
MSE

)2
EMSE E

(
MSE

)2

Simul. 4.4536 19.8672 4.4900 20.1727
Scen. I

Approx. 4.5559 20.8002 4.5105 20.3599
MSE(∆I)

Simul. 4.4542 19.8892 4.4903 20.1881
Scen. II

Approx. 4.5559 20.8450 4.5105 20.3749

Simul. 4.2510 18.0921 4.5054 20.3137
Scen. I

Approx. 4.2475 18.7157 4.5094 20.3518
MSE(∆II)

Simul. 4.4542 19.9052 4.4903 20.1881
Scen. II

Approx. 4.4456 19.8132 4.4905 20.1647

Simul. 4.0404 16.3337 4.5206 20.4624
Scen. I

Approx. 4.0408 16.3368 4.5040 20.3060
MSE(∆III)

Simul. 4.0404 16.3415 4.5169 20.4461
Scen. II

Approx. 4.0408 16.3453 4.5040 20.3261

Table III: Summary statistics comparing simulated and approximated values for the first two

moments of MSE(∆I) – MSE(∆III) for Scenarios I and II, in both Cases I and II.

E
(
MSE

)2
corresponding closely with the simulated values in the majority of cases. The

most marked difference in the table occurs between the approximation for the second mo-

ment of MSE(∆I) and MSE(∆II) in Case I. The reason for this, for both estimators, is

perhaps due to N being small. This causes the assumption of asymptotic independence of

ni1 and n.1 (also that of ni2 and n.2) made in (75), that we use in our approximations for

E
(
MSE(∆I)

)2
, to be inaccurate. Similarly, the assumption of asymptotic independence of

ωi and ω made in (52), that is used in our subsequent approximations for E
(
MSE(∆II)

)2
,

is also inaccurate. Consequently, the approximation for E
(
MSE

)2
becomes inflated for

both of these estimators in Case I.

By looking at the table it is clearly evident that the approximations for the first two

moments of MSE(∆III) are very accurate in both Cases.

Thus, we can conclude that the approximations prove to be adequate, as inaccuracies can

be explained by either a lack of patients, or alternatively a lack of centres in the trial. Thus,

it would appear appropriate only to use the approximations when the multi-centre trial has

adequate patient numbers being recruited to each centre, say λ ≥ 20, and also a sufficient

number of centres to assume asymptotic independence, for example N ≥ 100.
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APPENDIX

Approximations for mean of ω3 and ω4

As stated in Section 6 approximations for E ω3 and E ω4 can be obtained by applying

the same technique as that used in finding E ω2 (see Equation (53)). For E ω3 we use the

approximations of Equations (45), (46) and (47).

Thus

ω3 =
N∑

i

N∑

j

N∑

k

ωiωjωk .

E ω3 =
N∑

i, j, k

E(ωiωjωk) =
N∑

i6=j 6=k
E ωiωjωk + 3

N∑

j 6=i
E ω2

i ωj +
N∑

i=1

E ω3
i

'
N∑

i6=j 6=k
E ωiE ωjE ωk + 3

N∑

j 6=i
E ω2

iE ωj +
N∑

i=1

E ω3
i

=
N∑

i=1

N∑

j=1

N∑

k=1

E ωiE ωj E ωk − 3
N∑

j 6=i
(E ωi)

2 E ωj −
N∑

i=1

(E ωi)
3+3

N∑

j 6=i
E ω2

i E ωj +
N∑

i=1

E ω3
i

'
[
N∑

i=1

E ωi

]3

−3
N∑

i=1

N∑

j=1

[
(E ωi)

2 − E ω2
i

]
E ωj+3

N∑

i=1

[
(E ωi)

2 − E ω2
i

]
E ωi

−
N∑

i=1

(E ωi)
3 +

N∑

i=1

E ω3
i

'
[
N∑

i=1

(
λi
2
− 1

4

)]3

+ 3
N∑

i=1

(
λi
8

+
1

8

)
N∑

j=1

(
λj
2
− 1

4

)
+

N∑

i=1

(
λi
32
− 7

32

)

' 1

8

[
N∑

i=1

(
λi − 1

2

)]3

+
3

16

N∑

i=1

(λi + 1)
N∑

j=1

(
λj − 1

2

)
+

1

32

N∑

i=1

(λi − 7) .

To derive an approximation for E ω4 we use the approximations of (45), (46), (47) and

(48). Thus,

ω4 =
N∑

i

N∑

j

N∑

k

N∑

l

ωiωjωkωl .

E ω4 =
N∑

i,j,k,l

E(ωiωjωkωl) =
N∑

i6=j 6=k 6=l
E ωiωjωkωl + 4

N∑

j 6=i
E ω3

i ωj + 3
N∑

j 6=i
Eω2

i ω
2
j +

N∑

i=1

E ω4
i

'
N∑

i6=j 6=k 6=l
E ωiE ωjE ωkE ωl + 4

N∑

j 6=i
E ω3

iE ωj + 3
N∑

j 6=i
Eω2

i E ω
2
j +

N∑

i=1

E ω4
i

=
N∑

i,j,k,l

E ωiE ωjE ωkE ωl − 4
N∑

j 6=i
(E ωi)

3E ωj − 3
N∑

j 6=i
(Eωi)

2 (E ωj)
2 −

N∑

i=1

(E ωi)
4
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+4
N∑

j 6=i
E ω3

iE ωj + 3
N∑

j 6=i
Eω2

i E ω
2
j +

N∑

i=1

E ω4
i

=

[
N∑

i=1

E ωi

]4

− 4
N∑

i=1

[
(E ωi)

3 − E ω3
i

] N∑

j=1

E ωj + 4
N∑

i=1

[
(E ωi)

3 − E ω3
i

]
E ωi

−3

[
N∑

i=1

(E ωi)
2

]2

+3
N∑

i=1

(E ωi)
4+3

[
N∑

i=1

E ω2
i

]2

−3
N∑

i=1

(
E ω2

i

)2−
N∑

i=1

(E ωi)
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i=1

E ω4
i

'
[
N∑
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(
λi
2
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4
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+4
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(
3λ2

i
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λi
8
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16
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(
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4
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
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(
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4
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


2

+3
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(
λ2
i
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8
+

3
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−
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(
3λ3

i
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− 49λi
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)
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16

[
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(
λi− 1

2
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+
1

4
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i=1

(
3λ2

i

2
+λi− 5

2

)
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λj− 1

2
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16
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2
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16

[
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.
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