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Abstract

In this paper we investigate a class of moment based estimators, called power

method estimators, which can be almost as efficient as maximum likelihood estima-

tors and achieve a lower asymptotic variance than the standard zero term method

and method of moments estimators. We investigate different methods of implementing

the power method in practice and examine the robustness and efficiency of the power

method estimators.

Key Words: Negative binomial distribution; estimating parameters; maximum likelihood method;

efficiency of estimators; method of moments.

1



1. The Negative Binomial Distribution

1.1. Introduction

The negative binomial distribution (NBD) has appeal in the modelling of many practical

applications. A large amount of literature exists, for example, on using the NBD to model:

animal populations (see e.g. Anscombe (1949), Kendall (1948a)); accident proneness (see

e.g. Greenwood and Yule (1920), Arbous and Kerrich (1951)) and consumer buying behaviour

(see e.g. Ehrenberg (1988)). The appeal of the NBD lies in the fact that it is a simple

two parameter distribution that arises in various different ways (see e.g. Anscombe (1950),

Johnson, Kotz, and Kemp (1992), Chapter 5) often allowing the parameters to have a natural

interpretation (see Section 1.2). Furthermore, the NBD can be implemented as a distribution

within stationary processes (see e.g. Anscombe (1950), Kendall (1948b)) thereby increasing

the modelling potential of the distribution. The NBD model has been extended to the process

setting in Lundberg (1964) and Grandell (1997) with applications to accident proneness,

sickness and insurance in mind. NBD processes have also been considered in Barndorff-

Nielsen and Yeo (1969) and Bondesson (1992), Chapter 2.

This paper concentrates on fitting the NBD model to consumer purchase occasions, which

is usually a primary variable for analysis in market research. The results of this paper, how-

ever, are general and can be applied to any source of data. The mixed Poisson process with

Gamma structure distribution, which we call the Gamma-Poisson process, is a stationary

process that assumes that events in any time interval of any length are NBD. Ehrenberg

(1988) has shown that the Gamma-Poisson process provides a simple model for describing

consumer purchase occasions within a market and can be used to obtain market forecasting

measures. Detecting changes in stationarity and obtaining accurate forecasting measures

require efficient estimation of parameters and this is the primary aim of this paper.
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1.2. Parameterizations

The NBD is a two parameter distribution which can be defined by its mean m (m > 0) and

shape parameter k (k > 0). The probabilities of the NBD(m, k) are given by

px = P(X = x) =
Γ(k + x)

x!Γ(k)

(
1 +

m

k

)−k
(

m

m + k

)x

x = 0, 1, 2, . . . . (1)

The parameter pair (m, k) is statistically preferred to many other parameterizations as the

maximum likelihood estimators (m̂
ML

, k̂
ML

) and all natural moment based estimators (m̂, k̂)

are asymptotically uncorrelated, so that limN→∞ Cov(m̂, k̂) = 0, given an independent and

identically distributed (i.i.d.) NBD sample (see Anscombe (1950)).

The simplest derivation of the NBD is obtained by considering a sequence of i.i.d.

Bernoulli random variables, each with a probability of success p. The probability of re-

quiring x (x ∈ {0, 1, 2, . . .}) failures before observing k (k ∈ {0, 1, 2, . . .}) successes is then

given by (1), with p=k/(m + k). The NBD with parameterization (p, k) and k restricted to

the positive integers is sometimes called the Pòlya distribution.

Alternatively, the NBD may be derived by ‘heterogenous Poisson sampling’ (see e.g.

Anscombe (1950), Grandell (1997)) and it is this derivation that is commonly used in market

research. Suppose that the purchase of an item in a fixed time interval is Poisson distributed

with unknown mean λj for consumer j. Assume that these means λj, within the population

of individuals, follow the Gamma(a, k) distribution with probability density function given

by

p(y) =
1

akΓ(k)
yk−1 exp(−y/a), a > 0, k > 0, y > 0.

Then it is straightforward to show that the number of purchases made by a random individual

has a NBD distribution with probability given by (1) and a = m/k. It is this derivation of

the NBD that is the basis of the Gamma-Poisson process.

A very common parametrization of the NBD in market research is denoted by (b, w). Here

b = 1−p0 represents the probability for a random individual to make at least one purchase

(b is often termed the penetration of the brand) and w = m/b (w > 1) denotes the mean

‘purchase frequency’ per buyer.
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In this paper we include a slightly different parametrization, namely (b, w′) with w′ = 1/w.

Its appeal lies in the fact that the corresponding parameter space is within the unit square

(b, w′) ∈ [0, 1]2, which makes it easier to make a visual comparison of different estimators for

all parameter values of the NBD. Fig. 1 shows the contour levels of m, p and k within the

(b, w′)-parameter space. Note that the relationship p = 1/(1 + a) is independent of b and w′

so that the contour levels for a have the same shape as the contour levels of p.

The NBD is only defined for the parameter pairs (b, w′) ∈ (0, 1)×(0, 1) such that w′ <

−b/ log(1 − b) (shaded region in Fig. 1). The relationship w′ = −b/ log(1 − b) represents

the limiting case of the distribution as k → ∞, when the NBD converges to the Poisson

distribution with mean m. The NBD is not defined on the axis w′ = 0 (where m = ∞) and

is degenerate on the axis b = 0 (as p0 = 1).

Figure 1: m, p and k versus (b, w′).

2. Maximum Likelihood Estimation

Fisher (1941) and Haldane (1941) independently investigated parameter estimation for the

NBD parameter pair (m, k) using maximum likelihood (ML). The ML estimator for m is

simply given by the sample mean x̄, however there is no closed form solution for k̂
ML

(the
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ML estimator of k) and the estimator k̂
ML

is defined as the solution, in z, to the equation

log
(
1 +

x̄

z

)
=

∞∑
i=1

ni

N

i−1∑
j=0

1

z + j
. (2)

Here N denotes the sample size and ni denotes the observed frequency of i = 0, 1, 2, . . .

within the sample.

The variances of the ML estimators are the minimum possible asymptotic variances

attainable in the class of all asymptotically normal estimators and therefore provide a lower

bound for the moment based estimators. Fisher (1941) and Haldane (1941) independently

derived expressions for the asymptotic variance of k̂
ML

, which is given by

v
ML

= lim
N→∞

N V ar
(
k̂

ML

)
=

2k(k + 1)(a + 1)2

a2
(
1 + 2

∑∞
j=2

(
a

a+1

)j−1 j!Γ(k+2)
(j+1)Γ(k+j+1)

) . (3)

Here a = 1+m/k is the scale parameter of the gamma and NBD distributions as described in

Section 1.2. Fig. 2 shows the contour levels of v
ML

and the asymptotic coefficient of variation
√

v
ML

/k. The relative precision of k̂
ML

decreases rapidly as one approaches the boundary

w′ = −b/ log(1− b) or the axis b = 0.

(a) (b)

Figure 2: Contour levels of (a) v
ML

and (b)
√

v
ML

/k.
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Computing the ML estimator for k may be difficult; additionally, ML estimators are

not robust with respect to violations of say the i.i.d. assumption. As an alternative, it

is conventional to use moment based estimators for estimating k. These estimators were

suggested and thoroughly studied in Anscombe (1950).

3. Generalized Moment Based Estimators

In this section we describe a class of moment based estimation methods that can be used to

estimate the parameter pair (m, k) from an i.i.d. NBD sample. Within this class of moment

based estimators we show that it is theoretically possible to obtain estimators that achieve

efficiency very close to that of ML estimators. In Section 4 we show how the parameter pair

(m, k) can be efficiently estimated in practice.

Note that if the NBD model is assumed to be true, then in practice it suffices to estimate

just one of the parameter pairs (m, k), (a, k), (p, k) or (b, w) since they all have a one-to-

one relationship. Since all moment based estimators (m̂, k̂), with m̂ = x̄, are asymptotically

uncorrelated given an i.i.d. sample, estimation in literature has mainly focused on estimating

the shape parameter k.

In our forthcoming paper we shall consider the problem of estimating parameters from

a stationary NBD autoregressive (namely, INAR (1)) process. For such samples, it is very

difficult to compute the ML estimator for k. Moment based estimators for (m̂, k̂) are much

simpler than the ML estimators, although the estimators are no longer asymptotically un-

correlated. This provides additional motivation for considering moment based estimators.

3.1. Methods of Estimation

The estimation of the parameters (m, k) requires the choice of two sample moments. A

natural choice for the first moment is the sample mean x̄ which is both an efficient and an

unbiased estimator for m. An additional moment is then required to estimate the shape

parameter k. Let us denote this moment by f̄ = 1
N

∑N
i=1 f(xi), where N denotes the sample
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size. The estimator for k is obtained by equating the sample moment f̄ to its expected value,

Ef(X), and solving the corresponding equation f̄ = Ef(X), with m replaced by m̂ = x̄, for

k. Anscombe (1950) has proved that if f(x) is any integrable convex or concave function on

the non-negative integers then this equation for k will have at most one solution.

In the present paper we consider three functions

fj =
1

N

N∑
i=1

fj(xi)

for the estimation of k, with f1(x) = x2, f2(x) = I[x=0] (where f2(x) = 1 if x = 0 and

f2(x) = 0 if x 6= 0) and f3(x) = cx with c > 0 (c 6= 1). The sample moments are

f1 = x2 =
1

N

N∑
i=1

x2
i , f2 = p̂0 =

n0

N
, and f3 = ĉX =

1

N

N∑
i=1

cxi , (4)

with Efj(X) given by

Ef1(X)=ak(a+1+ka), Ef2(X)=(a+1)−k and Ef3(X)=(1+a−ac)−k . (5)

Note that f3 is the empirical form of the factorial (or probability) generating function E[cX ].

Solving fj = Efj(X) for j = 1, 2, 3 we obtain the method of moments (MOM), zero term

method (ZTM) and power method (PM) estimators of k respectively with estimators denoted

by k̂
MOM

, k̂
ZTM

and k̂
PM(c)

. No analytical solution exists for the PM and ZTM estimators

and the estimator of k must be obtained numerically. Defining s2 = x2 − x̄2, the MOM

estimator is

k̂
MOM

=
x̄2

s2 − x̄
. (6)

The PM estimator k̂
PM(c)

with c = 0 is equivalent to the ZTM estimator and as c → 1 the

PM estimator becomes the MOM estimator. When comparing the asymptotic distribution

and the asymptotic efficiency of different estimators of k it is therefore sufficient to consider

only the PM method with c ∈ [0, 1], where the PM at c = 0 and c = 1 is defined to be the

ZTM and MOM methods of estimation respectively.
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3.2. Asymptotic Properties of Estimators

The asymptotic distribution of the estimators can be derived by using a multivariate version

of the so-called δ-method (see e.g. Serfling (1980), Chapter 3). It is well known that the

joint distribution of x̄ and the sample moments fj = 1
N

∑N
i=1 f(xi), for j = 1, 2, 3, follows a

bivariate normal distribution as N → ∞. Therefore, the estimators of (m, k), (a, k), (p, k)

and (b, w) also follow a bivariate normal distribution as N →∞ (see Appendix). Note that

when k is relatively large compared to m, the finite-sample distributions of the estimators

are skewed and convergence to the asymptotic normal distribution is slow.

The asymptotic variances of the sample moments are given by Var(x̄) = Ex̄2 − (Ex̄)2

and Var(fj) = Efj
2 − (Efj)

2 , for j = 1, 2, 3. Each of the estimators (m̂, k̂
MOM

), (m̂, k̂
ZTM

)

and (m̂, k̂
PM

), with m̂ = x̄, asymptotically follow a bivariate normal distribution with mean

vector (m, k), limN→∞ NVar(m̂) = ka(a + 1) and limN→∞ NCov(m̂, k̂) = 0. For the PM we

have

lim
N→∞

NVar(k̂
PM(c)

) = v
PM

(c) =
(1+a−ac2)

−k
r2k+2−r2−ka(a+1)(1−c)2

[r log(r)− r + 1]2
(7)

where r = 1+a−ac. The normalized variance of k̂ for the MOM and ZTM estimators are

obtained by taking limc→1 v
PM

(c) and limc→0 v
PM

(c) respectively, to give

v
MOM

= lim
N→∞

NVar
(
k̂

MOM

)
=

2k(k+1)(a+1)2

a2

v
ZTM

= lim
N→∞

NVar
(
k̂

ZTM

)
=

(a+1)k+2−(a+1)2−ka(a+1)

[(a+1) log(a+1)−a]2
. (8)

The MOM and ZTM estimators are asymptotically efficient in the following sense

v
MOM

/v
ML

→ 1 as k →∞, v
ZTM

/v
ML

→ 1 as k → 0. (9)

In Savani and Zhigljavsky (2005), however, we prove that for any fixed m > 0 and k (0 <

k < ∞) the PM can be more efficient than the MOM or ZTM. In fact, there always exists c̃,

with 0 < c̃ < 1, such that v
PM

(c̃) < min{v
ZTM

, v
MOM

}. We let c∗ denote the value of c that

minimizes v
PM

(c).

Fig. 3 (a) shows the asymptotic normalized variances of the estimators for k when m = 1

and k = 1 using the ML, MOM, ZTM and PM with c ∈ [0, 1]. Note that v
PM

(c) is a
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(a) (b) (c)

Figure 3: (a) v
PM

(c) versus c for m = 1 and k = 1 (ML, MOM, ZTM and PM).

(b) Contour levels of c∗. (c) Efficiency of PM at c∗: v
ML

/v
PM

(c∗).

continuous function in c and only has one minimum for c ∈ [0, 1]. This is true in general for

all parameter values (b, w′).

It is difficult to express c∗ analytically since the solution (with respect to c) of the equa-

tion ∂v
PM

(c)/∂c = 0 is intractable. The problem can, however, be solved numerically and

Fig. 3 (b) shows the contour levels of c∗ within the NBD parameter space. The value of c∗

is actually a continuous function of the parameters (b, w′).

Fig. 3 (c) shows the asymptotic normalized efficiency of the PM at c∗ with respect to ML.

The PM at c∗ is almost as efficient as ML although an efficiency of 1 is only achieved in the

limit as c → 1, k →∞ and as c → 0, k → 0, see (9). A comparison with Fig. 2 (b) notably

reveals that areas of high efficiency with respect to ML relate to areas of a high coefficient

of variation (
√

v
ML

/k) for k and vice versa.

4. Implementing the Power Method

In this section we consider the problems of economically implementing the PM in practice to

obtain robust and efficient estimators for the NBD parameters. The first problem we inves-

tigate is that of obtaining simple approximations for the optimum value c∗ that minimizes

the asymptotic normalized variance v
PM

(c) with respect to c, 0 ≤ c ≤ 1.
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In practice the computation or approximation of c∗ by minimizing v
PM

(c; m, k) requires

knowledge of the NBD parameters (m, k) and these parameters are unknown in practice. The

value of c∗ must therefore be estimated from data at hand by using preliminary, possibly

inefficient, estimators (m̃, k̃) and minimizing v
PM

(c; m̃, k̃) with respect to c. The estimated

value for c∗ may then be used to obtain ‘pseudo’ efficient estimators for the NBD parameters

(m, k).

4.1. Approximating Optimum c - Method 1

The simplest and most economical method of implementing the PM is to apply a natural ex-

tension of the idea implied by Anscombe (1950), where the most efficient estimator amongst

the MOM and ZTM estimators of k is chosen. In essence, the value of c∗ is approximated

by c ∈ {0, 1} such that v
PM

(c) = min {v
PM

(0), v
PM

(1)}.
Alternatively, one can choose between the more efficient among a set of estimators

(m̂, k̂
PM(c)

), obtained by using the PM at c for a given set of values of c ∈ [0, 1]. If we

denote this set of values of c by A, then the value of c∗ is approximated by cA such that

cA = argminc∈Av
PM

(c; m, k) and an efficient estimator for (m, k) is obtained by using the

PM at cA.

Fig. 4 shows the asymptotic efficiency of the PM at cA = argminc∈Av
PM

(c; m, k), relative

to the PM at c∗ for two different sets of A. Fig. 4 (a) confirms that in all regions of the

parameter space the MOM/ZTM estimator is less efficient than the PM estimator at c∗,

except in the limits as k → 0 and k → ∞ where the efficiency is the same. Fig. 4 (b)

illustrates the effect of extending the set A; it is clear that the asymptotic efficiency of the

PM using cA with A = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1} is more efficient than using just the MOM and ZTM

estimators.

4.2. Approximating Optimum c - Method 2

We note that the value of c∗ can be obtained by numerical minimization of v
PM

(c; b, w′).

Using knowledge of these numerical values over the whole parameter space, regression tech-
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(a) MOM/ZTM (A = {0, 1}) (b) A = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}

Figure 4: Asymptotic efficiency v
PM

(c∗)/vPM
(cA) with cA = argminc∈Av

PM
(c; m, k).

niques can be used to obtain an approximation for c∗. We use v
PM

(c) as a function of the

parameter pair (b, w′) as these parameters provide the simplest approximations.

Fig. 5 shows the asymptotic efficiency of two such regression methods relative to the PM

at c∗. The first method (a) is a simple approximation independent of w′ and the second

method (b) optimizes the regression for values of w′ < 0.65. The two methods are highly

efficient with respect to the PM at c∗.

4.3. Estimating Optimum c

Both methods of approximating c∗ described above require the NBD parameters (m, k) or

(b, w′). Since these parameters are unknown in practice, the approximated value for c∗ must

be estimated from the data. The estimator for this approximated value may be obtained by

plugging in preliminary, possibly inefficient, estimators of the NBD parameters for the values

of (m, k) or (b, w′). The simplest preliminary estimates for the NBD parameters are either

the MOM or ZTM estimates, although any estimator obtained using the PM at any given

c ∈ [0, 1] may be used. Let us denote the preliminary estimators for the NBD parameters

by (m̃, k̃
PM(c)

).
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(a) (b)

Figure 5: Efficiency of the PM (v
PM

(c∗)/vPM
(ca)) with (a) ca = 0.125 + 0.7125b,

(b) ca = (4.5253w′2−1.8543w′+0.523)b2 + (3.0743w′3−2.43w′2+0.7115w′+0.4255)b.

For Method 1, the estimator ĉA for cA is computed by minimizing v
PM

(c; m̃, k̃
PM(c)

) over

the set A. Note that the preliminary estimators (m̃, k̃
PM(c)

) used in the minimization of

v
PM

(c; m̃, k̃
PM(c)

) over the set A are fixed. It would be incorrect to calculate (m̂, k̂
PM(c)

) for

each c ∈ A and to choose the value cA that minimizes v
PM

(c; m̂, k̂
PM(c)

); this is because the

different values of (m̂, k̂
PM(c)

) make the variances incomparable.

For Method 2, the preliminary estimates for (m̃, k̃
PM(c)

) can be transformed to (b̃, w̃′)

using the equations b̃ = 1− (1 + m̃/k̃)−k̃ and w̃′ = b̃/m̃, under the assumption that the data

are NBD. The values of (b̃, w̃′) can then be plugged directly into the regression equations to

obtain an estimator ĉa for ca.

4.4. Typical NBD Parameter Estimates in Market Research

Fig. 6 shows typical estimates of the NBD parameters, derived by using the MOM/ZTM,

when modelling consumer purchase occasions for 50 different categories and the top 50 brands

within each category. The contour levels in Fig. 6(b) clearly show that NBD parameters for

a significant number of categories and some large brands are inefficiently estimated by using

the MOM/ZTM, thereby justifying the use of the PM at suitable c.
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Figure 6: Typical NBD values for purchase occasions for 50 categories (+) and their top

50 brands (•) derived using the MOM/ZTM. The contour levels in (b) show the asymp-

totic efficiency of the MOM/ZTM method with respect to ML. Data courtesy of ACNielsen

BASES.

4.5. Robustness of Implementing the Power Method

In order to obtain robust and efficient NBD estimators by implementing the PM, it is im-

portant that approximating the value of c∗ leads to a negligible loss of efficiency in the

estimation of k. The value of c∗ may be approximated, for example, by the approximations

cA or ca discussed earlier.

Fig. 7 shows the variation in the approximated value of c∗ between three different approx-

imation methods. Fig. 7(a) shows regions of cA ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} where the value of

c∗ is approximated by cA = argminc∈Av
PM

(c; m, k). The solid lines represent the boundaries

for each cA that is depicted and the dotted lines show where cA = c∗. Fig. 7(b) and Fig. 7(c)

both show contour levels of ca for the two regression methods described in Section 4.2.

We have already shown that estimating k using the PM at each of the three approxi-

mations for c∗ described above can achieve an efficiency very close to one with respect to

using the PM at c∗ (see Fig. 4 (b), Fig. 5(a) and Fig. 5(b)). Even with the difference in the

values of approximated c∗, all three methods are highly efficient with respect to the PM at
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(a) (b) (c)

Figure 7: (a) cA with A = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}, (b) ca = 0.125 + 0.7125b and

(c) ca = (4.5253w′2−1.8543w′+0.523)b2 + (3.0743w′3−2.43w′2+0.7115w′+0.4255)b.

c∗ and this highlights the insensitive nature of estimating k efficiently to gradual changes in

the value of c.

Since both ZTM estimators for (m, k) and (b, w′) are asymptotically uncorrelated, the

ZTM estimators are the most convenient for estimating the approximations to c∗. Note

that the PM estimators for (b, w′) in general are correlated. To investigate the robustness of

using the ZTM estimators as preliminary estimators we consider the worst (lowest) efficiency

attainable in the estimation of k̂, when considering all preliminary estimators (b̃, w̃′) within

an asymptotic 95% confidence ellipse centered at the true values (b, w′).

Let us denote the worst value of c that gives this lowest efficiency by c× then c× =

argmaxĉ∈Ĉ{vPM
(ĉ; b, w′)}. If A={0, 1

5
, 2

5
, 3

5
, 4

5
, 1} and we estimate cA by ĉA then Ĉ is the set

of all ĉ=argminc∈A{vPM
(c; b̃, w̃′)} with P(b= b̃, w′= w̃′)≥0.05. If ca is estimated by ĉa then

Ĉ is the set of all values of ĉ such that P(b= b̃, w′= w̃′)≥0.05 and (a) ĉ=0.125 + 0.7125b̃ or

(b) ĉ=(4.5253w̃′2−1.8543w̃′+0.523)b̃2 + (3.0743w̃′3−2.43w̃′2+0.7115w̃′+0.4255)b̃.

Fig. 8 shows the minimum efficiency attainable, given by v
PM

(c∗, b, w′)/v
PM

(c×, b, w′),

when estimating cA or ca by using preliminary ZTM estimators for a NBD sample of sizes

N = 1, 000 and N = 10, 000. The black regions show regions of efficiency< 0.97, note

however that this is a minimum possible efficiency and that this minimum efficiency occurs
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(A) (B) (C)

(a) (b) (c)

Figure 8: v
PM

(c∗, b, w′)/v
PM

(c×, b, w′) for sample sizes of N = 1, 000 (fig-

ures A, B and C) and N = 10, 000 (figures a, b and c) and c∗ approxi-

mated by (a) cA with A = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}, (b) ca = 0.125 + 0.7125b and

(c) ca = (4.5253w′2−1.8543w′+0.523)b2 + (3.0743w′3−2.43w′2+0.7115w′+0.4255)b. Black

regions show efficiency< 0.97.

for a given significance level and sample size. The methods become more robust as the

sample size increases and also as the significance level decreases.

Fig. 8(a) shows the robustness when estimating cA by ĉA with A = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}. This

method is clearly most robust when cA = c∗. Note, that for small b close to zero and large

w′ close to 0.8, where the ZTM should be efficient, the PM method when using preliminary

ZTM estimators can become less robust. This is not surprising, however, since the coefficient
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of variation for k̂ even for ML in this area is exceptionally high (see Fig. 2(b)).

Fig. 8(b) and Fig. 8(c) show that the corresponding regression methods become less

robust when the true parameters are close to the boundary w′ = −b/ log(1 − b). In this

region of the parameter space the coefficient of variation of k̂ is exceptionally high. The

possible loss of efficiency for both regression methods is clearly negligible, except for at the

boundary, and both methods may therefore be implemented in practice to obtain robust and

efficient estimators of the NBD distribution.

4.6. Degenerate Samples

For any c ∈ [0, 1], in the implementation of the power method there is a positive probability

that the estimator for k has no valid positive solution when equating the sample moment to

the corresponding theoretical moment, even though the sampling distribution is NBD.

Figure 9: From left to right: Probability of obtaining a degenerate sample with sample size

N = 10, 000 using (a) MOM, (b) PM (c = 0.5) and (c) ZTM.

Fig. 9 shows the probability of obtaining a sample that generates an invalid estimator for k

using a sample size of N = 10, 000 within the (k, w′) parameter space for the MOM, PM (c =

0.5) and ZTM estimators. The probability is calculated using the fact that asymptotically

(N → ∞) the estimators follow a bivariate normal distribution (see Section 3.2) and that

an invalid estimator is obtained when x̄ > s2, ĉX < exp (−x̄(1− c)) and p̂0 < exp (−x̄) for

the MOM, PM and ZTM respectively.
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In literature (see e.g. Anscombe (1950)) it is often assumed that, when an invalid esti-

mator for k is obtained, the Poisson distribution may be fitted and k̂ = ∞. The probability

of obtaining an invalid estimator k̂ increases as the NBD converges to the Poisson distribu-

tion and the Poisson approximation to the NBD therefore seems reasonable. If forecasting

measures are sensitive to changes in the value of k then care must be taken, since an invalid

estimator k̂ may be obtained even for small values of k, albeit with a small probability.

5. Simulation Study

In this section we consider the results of a simulation study comprising R = 1, 000 sample

runs of the NBD distribution with sample size N = 10, 000 for various parameters (m, k)

with m ∈ {0.1, 0.5, 1, 5, 10} and k ∈ {0.01, 0.25, 0.5, 1, 3, 5}. The efficiency of estimators of k

are investigated by comparing the coefficient of variation for the ML, MOM, PM at c∗ and

ZTM estimators. The robustness of implementing the PM in practice when using preliminary

ZTM estimators is investigated by showing the variation of the preliminary estimates within

the (b, w′) parameter space.

Table 1 shows the coefficient of variation κ̂ =
√

N
√

1
R

∑R
i=1(k̂i − k)2/k =

√
N MSE/k

for the ML, MOM, ZTM and PM at c∗ against the theoretical coefficient of variation

κ =
√

v
ML

/k (see Fig. 2 (b)). A value of κ̂ = ∞ indicates that k̂i ≤ 0 or k̂i = ∞ for

at least one sample. For all samples with κ̂ < ∞ the PM at c∗ has a consistently lower κ̂

than both the MOM and ZTM estimators. The largest percentage difference between the

PM at c∗ and the combined MOM/ZTM method occurs when k = 1 and m = 10 when the

value of κ̂ is increased by a factor of 26% by using the MOM/ZTM method.

Fig. 10 shows preliminary ZTM estimates, (b̃, w̃′), for different NBD parameters within

the (b, w′) parameter space. For each parameter pair, ZTM estimates for 1, 000 different NBD

samples of size N = 10, 000 are shown. When comparing the ZTM estimates in Fig. 10 (a)

to values of c∗ in Fig. 3(b) it is clear that, even with the variation in the estimates (b̃, w̃′) for

each parameter pair (b, w′), the variation in the corresponding estimated values of c∗ will be

small in most regions of the (b, w′)-space. The regions where c∗ is sensitive to small changes
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(a) (b) m = 0.1 k = 0.25 (b) m = 0.1 k = 1

(b) m = 1 k = 1 (b) m = 1 k = 5 (b) m = 5 k = 1

Figure 10: (a) ZTM preliminary estimators for m ∈ {0.1, 0.5, 1, 5, 10} and

k ∈ {0.01, 0.25, 0.5, 1, 5} in (b, w′)-space. (b) ZTM preliminary estimators with correspond-

ing 95% confidence ellipse.

in (b, w′) and the corresponding maximum possible loss of efficiency in these regions was

shown in Fig. 8. The maximum possible loss of efficiency was based on a 95% confidence

ellipse. Fig. 10 (b) shows examples of preliminary ZTM estimates within the corresponding

theoretical 95% confidence ellipses for (b, w′). These pictures are typical for each of the

parameter pairs considered in Fig. 10 (a).

We would like to thank the referee for the careful reading of our manuscript and valuable

comments.
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A. Asymptotic Distribution of Estimators

In this section we provide details on obtaining the asymptotic normal distributions of the

estimators for the NBD parameters (m, k), (a, k), (b, w) and (b, w′) when using the MOM,

ZTM and PM methods of estimation.

The asymptotic distribution of the estimators can be derived by using a multivariate ver-

sion of the so-called δ-method (see e.g. Serfling (1980), Chapter 3). Define g=(g1, g2), µ=Eg

and G(g)=(G1(g), G2(g)) and let N2(µ∗,Σ∗) denote the bivariate normal distribution with

mean vector µ∗ and variance-covariance matrix Σ∗. According to the multivariate ver-

sion of the δ-method, if limN→∞
√

N (g−µ)′∼N2 (0′,Σ) then limN→∞
√

N (G(g)−G(µ))′∼
N2(0

′,DΣD′). Here D = [∂Gu/∂ḡv]u=1,2,v=1,2 is the matrix of partial derivatives of G eval-

uated at µ.

A.1. Asymptotic Distribution of Sample Moments

In the estimation of the NBD parameters the estimators for the MOM, ZTM and PM

are functions of f
MOM

= (x, x2)′, f
ZTM

= (x, p̂0)
′ and f

PM
= (x, ĉx)′ respectively. It is well

known that such functions f of sample moments follow an asymptotic normal distribution

(see Serfling (1980)). It is straightforward to show that each of the sample moments

f0 = x =
1

N

N∑
i=1

xi, f1 = x2 =
1

N

N∑
i=1

x2
i , f2 = p̂0 =

n0

N
, and f3 = ĉX =

1

N

N∑
i=1

cxi

have means

Ef0 = m, Ef1(X)=ak(a+1+ka), Ef2(X)=(a+1)−k and Ef3(X)=(1+a−ac)−k .

20



The asymptotic normalized covariance matrix for f
MOM

, f
ZTM

and f
PM

are

V
MOM

= lim
N→∞

N Σ(x̄,x2) = ka(a+1)


1 2ka+2a+1

2ka+2a+1 4k2a2+6ka+10ka2+6a2+6a+1




V
ZTM

= lim
N→∞

N Σ(x̄,p̂0) =


 ka(a+1) −ka(a+1)−k

−ka(a+1)−k (a+1)−k
[
1−(a+1)−k

]




V
PM

= lim
N→∞

N Σ
(x̄,ĉX)

=


 ka(a+1) ka(a+1)(c−1)(1+a−ac)−k−1

ka(a+1)(c−1)(1+a−ac)−k−1 (1+a−ac2)
−k−(1+a−ac)−2k




A.2. Asymptotic Distribution of Estimators

Since the sample moments asymptotically follow the normal distribution the MOM, ZTM and

PM estimators (m̂, k̂
MOM

)′, (m̂, k̂
ZTM

)′, (m̂, k̂
PM

)′ are asymptotically normally distributed

with mean vector (m, k)′ and asymptotically normalized covariance matrix

lim
N→∞

N Σ(m̂,k̂
MOM

) = D
MOM

V
MOM

D′
MOM

, lim
N→∞

N Σ(m̂,k̂
ZTM

) = D
ZTM

V
ZTM

D′
ZTM

and

lim
N→∞

N Σ(m̂,k̂
PM

) = D
PM

V
PM

D′
PM

for the MOM, ZTM and PM respectively. The matrix of partial derivatives are

D
MOM

=


 1 0

2ka+2a+1
a2 − 1

a2


 , D

ZTM
=


 1 0

− 1
(a+1) log(a+1)−a

− (a+1)k+1

(a+1) log(a+1)−a


 and

D
PM

=


 1 0

c−1
r log(r)−r+1

− rk+1

r log(r)−r+1


 ,

where r = 1 + a− ac.

To find the asymptotic normal distribution of the estimators for (a, k), (b, w) and (b, w′)

we apply the same approach. We have the relationships

â = 1 +
m̂

k̂
, b̂ = 1−

(
1 +

m̂

k̂

)−k̂

, ŵ =
m̂

1−
(
1 + m̂

k̂

)−k̂
and ŵ′ =

1

m̂

(
1−

(
1 +

m̂

k̂

)−k̂
)
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and since the asymptotic normal distributions of the estimators (m̂, k̂) are known for the

MOM, ZTM and PM it is straightforward to compute the values of the asymptotic normal

distribution of the estimators (a, k), (b, w) and (b, w′) for each of these methods.
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