Mastermind, aka “Bulls and Cows,” is a codebreaking game.
The authors put the game to serious use by testing how well
various search algorithms work to solve the game. One result
is some guidelines on characteristics of more successful

algorithms.

Mastermind as a Test-Bed for
Search Algorithms

J.H. O’Geran, H.P. Wynn, and A.A. Zhiglyavsky

We present this piece as an exam-
ple of research that siraddles the
two fields in Chance’s subtitles, sta-
tistics and computing. While more
technical than our usual articles,
the material is not too difficult to
follow if one reads carefully.

Search is one of those arsas of
applied mathematics that im-
pinges on many different areas of
science but has not, until recently,
had the prominence it deserves.
One area of application is com-
puter science, where it forms the
basis of many of the inference en-
gines for artificial intelligence. In
statistics and probability, it arose
first in group testing: finding the
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sick person by screening out oth-
ers by pooling blood samples and
screening for significant factors
using screening designs. The bad-
penny problem is perhaps the
best-known parlor problem, find-
ing the bad penny out of 12 using
weighing scales.

Statistics and probability have
much to contribute to this area in
the future. There are two main rea-
sons for this. First, entrapy and
Bayes’ methods can help us to un-
derstand how to act sequentially,
and, second, random strategies are
a good, cheap tool for analyzing
how well we can search. At its
simplest level, we could, for ex-
ample, compare any strategy with
looking at random strategies.

As any computer scientist
knows, even simple games can be
very hard to analyze if, in some
sense, we are looking for intelli-
genl algorithms. The game of Mas-
termind will provide us with a
test-bed to study some algorithms
that use statistical principles.

Mastermind (known in some
parts of the waorld as “bulls and
cows”) is a search game for two
players. The first player conceals a
“target,” which is a code of digits
{or colored pegs). The second
player then tries to discover the
code by sequentially presenting
test codes, for each of which he or
she receives a score. Each score
consists of the number of “bulils”
and “cows,” a bull being achieved
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for each digit that is correct and in
the correct position and a cow for
each digit that is correct but in the
wrong position. The game contin-
ues until the second player deter-
mines (often with considerable
thought) the target code. Here is an
example of a simple game in which
the target is a four-digit code cho-
sen from the digits 0 to 6. The first
line is the target, T, unknown to the
second player. Lines 2 to 6 repre-
sent the second player's trials X to
X, and on the right are the bull and
cow scores (b,c) achieved by these
trials. So, for example, on the third
trial, the test code (2354) and the
target code (2418) have two digits
in common, one in the correct po-
sition (the 2} and one in the wrong
position (the 4), and hence the
score is one bull and one cow:

T 24186 be
X1 0123 02
Xz 1045 02
X3 2354 11
X4 2406 30
Xs 2416 40

The target is found using five tri-
als (the player used the “first con-
sistent’” algorithm, which will be
described later).

In general, let the target consist
of m digits chosen from a set of
d, T=(,...t,) say, where
t,e {0,...,d-1} (in the preced-
ing example, m=4,d=7). lfm=
1, the game is trivial; hence, il is
assumed that 2 £ m < d. There are
two variants of the game. In the
“gastern’ variant, components
within the target T and the test
sets X,,X,, ... must be distinct,
whereas in the “‘western” vari-
ant, components may be re-
peated. We consider the eastern
variant.

There are sequential and nonse-
quential tactics for finding T. In &
sequential strategy, the previous k
test results may be considered
when selecting a new test set X
for each k> 1. In the nonsequen-
tial case, the whole series

32  voL.g,NO.1,1808

{X,, ... X of test sets is chosen
beforehand in such a way that T
can be uniquely determined by
the test results.

We consider Mastermind a
search problem and investigate
the properties of algorithms ap-
plied to the game. In the next sec-
tion, Mastermind is defined for-
mally in terms of search notation,
along with some examples of simi-
lar search problems. In the third
section, nonsequential algorithms
are discnssed and numerically
canstructed optimal nonsequen-
tial designs are given. In the fourth
section, sequential algorithms for
solving the Mastermind search
problem are considered. Some op-
timality criteria are discussed, and
some good sequential algorithms
are described with numerical re-
sults.

Mastermind as a Search
Problem

The general (discrete) search prob-
lem can be represented as a triple
(TXf), where T=1{T] is the target
field, that is, the set of all possible
target combinations T,X= (X} is
the test field, that is the set of all
possible test combinations, and
fiXx T— ¥is a search function
mapping Xx T to some space 7.
Values fIX,T) for X e X,T e T are
regarded as test or experimental
results at a test point X when the
unknown target is 7. The game of
Mastermind has the pleasant
property that the target and search
fields are the same,

T=X=[X=Ix,..

.,Xm},

X € {D,l,..‘,d—‘l],xjf—&x,-fori¢j}

but the complication that X, T)
is two-valued,

o

where b=5bXT) =[#i:x=1)
and c=c(X,T)=#i x,=t,1#)).

We call b the number of bulls and
¢ the number of cows and define
a=b+c=(#1:xe (1f,... [ to
be the number of animals. Thus,
the number of animals is the
number of correct digits regard-
less of their position.

In the western variant of the
game, where elements of T and X
may coincide,

T=X={X=1{x,..
xe(0,1,.. Ld=1})

* JXmI :

f, a, and b are determined as pre-
viously, and ¢=a—b. This vari-
ant of the game is somewhat
harder to study. In particular, un-
like the eastern variant, the test
function f{-,-) is not symmetric;
that is, X, T) = fiT.X) in general.
Another wey to think of this sym-
metry is as arising from consider-
ing X or T as permutations.

It is instructive to mention some
similar search problems. The sym-
bols a, b, and ¢ will be used
throughout and are as defined pre-
viously.

Case 1: Binary Screening (Group
Testing, Bad Penny)

Binary screening or group testing
occurs when groups of units are
tested simultaneously to discover
whether there is at least cne defec-
tive in the group. Savings in tests
are achieved for negative test re-
sulis because the whole group is
then classified as nondefective us-
ing a single test. Algorithms are re-
quired to screen out all of the de-
fective items in a small number of
tests. For example, blood samples
may be pooled and tested for the
presence of some disease. A posi-
tive test signifies that at least one
of the patients in the group is in-
fected. We can express this using
the “‘animal” notation a. Let X =

"{x,, . . X} be the group of units to

be tested and T ={i, ..
set of defectives. Then

..1.) be the

1 ifa>0
f(X’T){:D ifa=0



where a=(#iix; e {f,...1])) is
the number of animals in X,

Case 2: Additive Screening w1r_h
Equal Effects
The models here are sumlar to
Case 1, differing only in the ex-
pression of the test function f
which in this case is additive,

fXTD=a=@#Exe {L,.. .5},
that is, the number of defectives
(or significant factors) in the test
set. This corresponds, for exam-
ple, to an additive model in which
all factors giving a nonzero effect
have an equal, known effect. Ob-
viously, the test information in
Case 2 is more detalled than in
Case 1.

The following two models are
variants of Mastermind itself.

Case 3: Bulls Only

Define the game as previously, ex-
cept that only the number of bulls
is given by the test function; that
is, AX,T) = b. This distance is es-
sentially the Hamming distance
for the multilevel case and is fa-
miliar from coding theory,

Case 4: Cow Distances

This is an analogue of the Mas-
termind game with more de-
tailed information on the re-

sponse. Let p be the distance on
{0,1,...,d -1} defined by p(i,j) =
min(li—jl, d— 1/-jl}and define
for given [, 0 £ 1< [mn/2], where []
denotes the integer part of,
X=0x,....x,),and T={(,...,t,),
the number of cows at distance !
by ¢ =(#ij:t;=x, p(i,j)=1). The
test function f is then given by
ﬂX T] (o« - '?CIPTI,"Z])‘

Different variations of the Mas-
termind game might be consid-
ered as variants of the binary
screening problem in Case 1 with
some partial information on
which units are defective. We can
see from this collection of prob-
lems that Mastermind is a close
relative of some quite important
problems in statistics and has a
surprisingly strong link (via the
Hamming distance) to information
theory. Indeed, we shall see that
eniropy, which derived from sta-
tistical mechanics and took root in
information theory, is a very use-
ful tool.

Nonsequential Algorithms

In statistics, experimental design

helps us select where to observe in

an investigation. The notation ¥ =
AX,T) should prompt us to think
of X as a design point (treatment
combination) and T as simply an

unknown parameter. A fixed set of
X/s is then just an experimental
design. Thus, a nonsequential al-
gorithm is a collection of test sets
Xy, .. Xy, which are chosen be-
fore the game begins [the test re-
sults fiX,,7), ... fX,T) are not
used in the selectlon of X,,.,). The
matrix that has as its (i,j)* entry
the j®® component of the test set
X is called the design, The test
function is observed for all test
sets in the design, and the number
of tests in the game is fixed,

To ensure that the target is
found, it is required that all
T'e Tmust be distinguishable by
the design; that is for any pair
T,Ty e I, T;# T,, there must be at
least one [, 1<i<N, such that
fiX, Ty = fiX,Ty). This is exactly
the parameter identifiability idea;
we have enough data to estimate,
or in this case find, the parameter.

Table 1 presents examples of
optimal nonsequential designs in
the sense that the tabulated collec-
lions {X,, ... Xyl can distinguish
any Te 7, and N is minimal over
all such collections, although
these designs are not unique. The
designs were mostly obtained us-
ing an entropy-guided global com-
puter search, which we do not de-
scribe here, and for the remaining
(d.m), analytic construction was
possible. These are fixed strategies

Table 1—Optimal Nonsequential Designs for Various Values of mand d

Test set m=3 m=3 m=3 m=3 m=4 m=4 m=4 m=4

d=4 d=56 d=8 d=10 d=4 d=6 d=8 d=10
X1 012 012 012 ot1e 0123 0123 0123 0123
Xz 310 251 170 470 3021 5210 3402 8542
X 213 530 053 527 0132 4025 2076 5917
Xa - 452 361 983 1302 2351 1265 7381
X5 — e 436 158 - 3p1z2 5607 9471
Xg — — 247 134 — 4102 0234 1026
X e — — 096 — — 7032 3297
Xe — —_ — — — — 4652 7405
Xo - — - — — — — 7630
X10 — = — . — — = 3765
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for which any T can be found (of
course, given enough time).

Sequential Algorithms

A sequential algorithm is a proce-
dure that generates a sequence of
test sets X,,X,,. ... Xy which are
used to determine 7. For each
f>1, a sequental algorithm con-
siders the previous test resulis
XD, fXT),. . fiX,T) when
selecting the next test set X,,,, For
a given algorithm, the number
N=N(T) of observations needed
to determine the target T uniquely
is called the search-length and
will generally depend on Te T
Therefore, an algorithm may
therefore be characterized by the
complete set of search-lengths
given by the target sets in T,
[(N(D)}r. s which we call the
search-length frequency distribu-
tion. Two important charac-
teristics of the search-length fre-
guency distribution are the
average length (assuming that the
target T is chosen at random)

.

mZNm

TeT

EN) =

(where |71 is the number of target
sets Te 7T)and the maximal length
N, = max{N(T), T e T}. Tables 2—
7 give, for various values of {m,d),
the distribution [ N(T)};. 7'and the
average length E(N) for various al-
gorithms. These tables also present
the relative efficiency E[N)/E(N*),
where E(N*) is the minimal average
length among the lengths of all al-
gorithms investigated.

Many algorithms were applied to
this problem. Those we consider
most interesting will be described.
First, some definitions will be
given that expose important ideas
that arise in all useful algorithms in
this general area of search.

Suppose that observations made
at test sets X, ... ,X, give rise tc
test results AX,D=y,...,
fiX,.T) =y, Then the set
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Table 2—Search-length Characteristics for -
m=3,d=4 e

Search—'length‘ frequency distl_'ibu.;ioh ‘

Algorithm 1 2 e LR 4
1 1 10 BE N

2 1 7 16

3 1 10 19

4 1 10 ki

5 1 10 qg

& i 12 11

7 i 12 11

B 1 "2 11

Table S—Seérchelength Chéracjéris_qtidg"“fdr; '

m=3,d=6
Search-length frequency distribution

Algorithm 1 2 3 4 5 EN ——F-
el BN

1 1 Dt ge S S o oy

2 1 12 76 29 2k 86 % 1088

3 1 10 78 31 — ‘315 1.082;

- b el 14- 78 27 — - 309 - 1,082

5 1 14 B7 18 e 3.02 '1.038""

6 1 18 83 10 — - 283 1.007

7 1 10 95 14 — 3.02:° 1.088

8 1 16 95 8 — 2.91 ' 1.000°

T ={T'e T: fX,,T"

SRR :f(Xr:T’)=Yr]

is called the consistent set of tar-
get sets with respect to the pre-
vious data, and any member of
T+ is called consistent. The idea
here is that each observation
fiX,Dj=1,2,....t can be
thought of as putting constraints
on the possible candidates for
the target, namely, that only
those T’e T that are consistent
with the previous data remain
candidates for T.

The set 77 characterizes the un-
certainty concerning the location
of the target at the % step of an
algorithm (in particular, if
| T =1, then the target is found).
The aim at each step of an algo-
rithm is to reduce the uncertainty.
For each X, ; € X, we can predict

. the reduction in uncertainty by

considering the partition

Ta =Ty € T A T =y} (1)

yeo

where ¥is the set of possible out-
comes of f{X,T); that is, T} is par-



Table 4—Search-length Characteristics for m=3,d =10

Search-length frequency distribution

titioned according to which target
sets would still be consistent after
any particular outcome of the test
fiX, .., 7). Obviously, some of the
sets in the partition (1) may be
empty. The lineness of the parti-
tion (1) determines the reduction
in uncertainty at the (¢t + 1) step.
Thus, a test set X,., which gener-
ates the finer partition should be
congidered preferable. As an ex-
ample, let m =3, d =5, and sup-
pose that the first observation is

777

T b,c

Xi 012 2,0

Then the consistent set T is

T,=(0,1,3) T,=(0,1,4) T, =(0,1,5)
T,=(0,3,2) T,=(0,4,2) T,=(0,52)
T,=(3,1,2) Ty=(4,1,2) Ty=(5,1,2)

(the subscripts on T are unimpor-
tant). Now consider taking X, =
T,=(0,1,3). Then T,,...,T, are
partitioned into groups according
to the value of fiX,,T) as follows:

b, c Group ni= size
of group
30 T 1
20 Te, T3 2
10 Ts, Ts, T, Tg 4
11 Ta, T7 2
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; E(N)
o 1 3 5 6 8
Algorithm 2 4 E(N) BN
1 1 11 46 82 341 205 34 — 5.09 1.184
2 1 12 69 176 293 118 46 4 4.82 1.121
3 1 8 62 222 341 B4 2 s 4.80 1.070
4 1 9 78 247 362 23 — — 4.43 1.030
5 1 14 72 206 305 86 36 — 4,67 1.086
6 1 14 79 304 318 4 s — 4.30 1.000
7 1 12 71 287 349 — S — 4.35 1.012
8 1 14 79 306 3186 4 = = 4.30 1.000
One criterion for measuring the
Table 5—Search-length Characteristics for gmeness 018 aTiion 18 Banogy,
: uppase that the current consis-
m=4,d=4 tent set 7 contains n elements
o and that a test set X,,, partitions
Search-length frequency distribution T* into | subsets of size n,, . . . 0,
EN) where m>012i<gl and
Algorithm 1 2 3 4 5 E(N) B ny+. ..+ n=n (llustrated in the
EN) preceding example). Than the en-
tropy of the partition is defined as
1 1 1 6 16 — 3.54 1.117
2 1 4 8 9 2 3.29 1.038 ent({n, ... .,n)) =
3 1 4 5 14 — 3.33 1.050 |
4 1 4 9 10 -— 3.17 1.000 n;
5 B 4 10 7 2 321 1013 log _; n 08 #
6 1 4 9 10 — 3.17 1.000
7 . 4 g 10 — 317  1.000 The one-step entropy criterion is
8 q 4 g 10 _ 317  1.000 that the larger the entropy of a par-
tition caused by a test set X, , ;, the
better the test set.

A second criterion is pair-split-
ting. If 77 contains n elements,
then the total number of pairs
of target sets (T,T), 1#jin T is
n(n—1)/2. Suppose that X, , par-
titions 77 into subsets of sizes
ny, ..., Then the number of
pairs split by X, (that is, distin-
guished by being sent to different
subsets of the partition) is

nn—-1)
2

I
Z n,(n; 1) (3)

By the pair-splitting criterion, the
larger the value of (3), the better
the test set X, ,.

Several algorithms for solving
the Mastermind problem will be
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described roughly in order of sim-
plicity of implementation. For
tabulated values of m and d, no
computation is required to obtain
the test sets for Algorithm 1 (al-
though the stopping rule is not nec-
essarily trivial), whereas Algorithm
8 requires a large computer search
to obtain the test set af each stage.

Algorithm 1. Sequential
nonsequential

Table 1 gives nonsequential de--
signs for solving the problem for
various m and d. These are collec-
tions of test sets that can always
find T. It will not always be neces-
sary, however, to test all of the sets
to find T. This is because for some
targets T'e 7, the outcome of the
test function at some of the test sets
will be predictable from the other
test results. For example, if X, =T,
then a score of m bulls will be ob-
tained on the first test, thus
uniquely determining T, Therefore,
one might sequentially test sets
from a nonsequential design, stop-
ping when enough information has
been obtained to uniquely deter-
mine T. Such an algorithm we call
sequential nonssquential. Algo-
rithm 1 selects X, from the relevant
design in Table 1 as the test set at
the " step.

Algorithm 2. First consistent
A common strategy for playing

Table 6—Search-length Characteristics for
m=4,d=6
Search-length frequency distribution

; EN)
Algorithm 1 2 3 5 6 Ef e

g (M) EN)

1 1 11 89 169 68 22 389 1.191

2 1 17 144 79 27 . -— ° 357, 1,068

3 1 23 128 160 45 2  364. 1.087
4 1 24 157 168 10 S 3dAE 141080

5 1 19 174 162 4 — B4t 1018

6 1 22 185 152 @ — — © 336 1.003

7 1 16 182 159 2 — . '340 1015

8 1 22 187 150 — — 7335 1.000

Mastermind seems to be to
choose as the next test set a com-
bination that, given the previous
test results, is a possible candi-
date for T, that is, a consistent
set. Algorithm 2 chooses at the
(t+ 1" step (t=0,1,...) the first
member of 7} as the next test set
X,., (where it is supposed that
the members of 77 are listed in
lexicographical order, for exam-
ple, with m =4, d= 10, this is
0123, 0124, ..., 6789).

Algorithm 3. Entropy-besi
sequential nonsequential
As with Algorithm 1, this algo-
rithm selects test sets from the

nonsequential designs given in
Table 1. In this case, however, at
the (t+1)" step the test set from
the relevant design is chosen that
produces the finest partition (by
the entropy criterion) of the con-
sistent set T3,

Algorithm 4. Entropy-best se-
quential nonsequential plus first
consistent

This algorithm is a combination of
Algorithms 2 and 3, choosing as
the next test set either the first
consistent set or a set from the
relevant nonsequential designs in
Table 1, to give the maximal en-
tropy partition on 77.

Table 7—Search-length Characteristics for m=4, d=10

Search-length frequency distribution

Algorithm 1 2 3 4 5 6 7 8 9 10 E(N) E(—A?

: E(N)
1 1 7 86 709 1517 1548 759 331 68 14 5.69 1.262
2 1 15 211 1240 2108 1203 252 10 — = 5.01 1.111
3 1 9 139 1151 2446 1127 161 5} s . 5.00 1.109
4 1 11 202 1580 2543 666 37 = — — 4,75 1.053
5 1 16 228 1555 2688 542 10 — — — 4.70 1.042
B 1 12 259 2086 2500 180 2 == s — 4.51 1.000
7 1 11 228 1946 2685 169 = == — s 4.55 1.009
8 1 12 261 2086 2496 184 — — — — 4.51 1.000
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Algorithm 5. Entropy-best
consistent

The consistent set that produces
the partition of 77 with the maxi-
mum entropy is chosen as the next
test set X, ..

Algorithm 6. One-step entropy
All sets in 7 are compared, and
that which produces the partition
of T} with the maximum entropy
is chosen as the next test set X,, ,.
The test sets in Tare searched lexi-
cographically, beginning with the
consistent sets 7%, and if more
than one set gives the optimal en-
tropy partition, then the first is
taken as X, + 1.

Algorithm 7. One-step pair-
splitting

This is as in Algorithm 6, except
that the pair-splitting criterion (3)
is taken as the optimality criterion
instead of entropy.

Algorithm 8. One-plus-two-step
entropy

As in Algorithm 6, all sats in Tare
compared in terms of the entropy
of the partition of 7} they induce.
If a single set obtains the maximal
entropy, then it is taken as the next
test set X, ,. If, however, more than
one set is optimal, then a second
step is considered in the following
way. Let X} be the collection of test
sets that give the optimal entropy
partition on 77, and let 73(X) be the
partition of 77 given by X. Then for
each X*e X}, compute the sum of
the entropy of the optimal parti-
tions of the suhsets in 7%(X. That
X"e X7 for which this sum is maxi-
mal is taken to be X, ,.

All algorithms finish at time ¢ =
N such that T3 contains exactly
one member, this being the target.
Tables 2-7 compare the charac-
teristics of Algorithms 1-8 for d =
4,6,10, m=3, 4.

Discussion

Some broad conclusions may be
drawn from these results that can

be tested on similar models, lead-
ing, we hope, to some useful
guidelines for building algo-
rithms in similar settings.

As expected, the sequential al-
gorithms perform better than the
fixed nonsequential algorithms.
A substantial gain is obtained in
expected (not maximum) search-
length by using a fixed algorithm
in a sequential manner. Entropy
is a very valuable tool in search,
and this is borne out in this case.
We were pleased to find that an
alternative criterion such as pair-
splitting worked almost as well
and somelimes better. This is be-
cause both criteria hinge on the
fineness of the partition pro-
duced by an observation. At first
sight, it may seem paradoxical
that Algorithm 5 (entropy and
consistency) performs worse than
Algorithm 6 (pure entropy). On
closer inspection, it is clear that
an inconsistent set can some-
times serve as a better test set
than a consistent set: A good pre-

dicted “value"” in Tis not neces-
sarily a good test “value" in X
Consistency is a very basic idea,
however, and very cheap for large
problems. Even for small prab-
lems, the gain in expected length
seems remarkable. One point is
that, at least for smaller prob-
lems, increasing the window size
to allow two-step-ahead entropy
gives very little improvement.
The one-step-ahead entropy algo-
rithm seems close to the opti-
mum solution.

There is much work {o be done
applying these methods to more
complex problems and to study
matters in computer science such
as memory usage, speed of com-
putation, and more complicated
heuristic learning strategies.

Additional Reading

O’Geran, J.H., Wynn, H.P., and
Zhigljavsky, A.A. (1991), “Search,”
Acta Applicande Mathematicae,
25, 241-276.
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