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Abstract
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1 Introduction

Group testing, known also as factor screening and search for defective (significant) factors,
is a vast area with many papers developing both theoretical and applied aspects.

Group testing algorithms aim at finding defective factors with a relatively small num-
ber of tests. To give a rough idea about the activity in the area, assume that the observa-
tions are error–free, the total number of factors, denoted by n, is large and t, the number
of defective factors, is small, relative to n. Let us also fix the function defining the output
of the tests. It is then typically possible to construct group testing designs, or at least
to prove existence of such designs, that provide exact determination of all the defective
factors in

N = N(t, n) ∼ Ct log n+O(1) (n→∞) (1)

tests, for some constant Ct. For large n this number of tests is much smaller than n. The
optimal design can be defined as a design with the minimal design length in a certain
class of designs. Asymptotic problems deal with minimization of the constant Ct and,
possibly, the constant in O(1) in (1).

Three different kinds of problem can then be distinguished:

(a) Construction of designs with minimal or at least reasonably small length N(t, n);

(b) Derivation of lower bounds for the length of optimal algorithms;

(c) Derivation of upper bounds for the length of optimal algorithms (existence theo-
rems).

In the present paper we deal exclusively with the problem (c) above, that is, with
establishing existence theorems. These theorems guarantee that there exist designs with
a length smaller than the derived upper bound; they also give an idea about the design
set where designs with good or even optimal design length can be expected. However,
they do not provide construction schemes for such designs. Moreover, in all nontrivial
cases, for large n and t > 2, the author has failed to find design schemes providing the
designs with lengths within the bounds derived below. This can perhaps be considered as
an indication of the fact that the optimum group testing design problem is rather complex.

A general statement of the group testing problem assumes that n factors (elements,
items, variables, etc.) x1, . . . , xn are given and some of them are defective (significant,
important, etc.). The problem is to determine which factors are defective by testing a
certain number of factor groups from a design set X , which contains some subsets of the
set X = {x1, . . . , xn}.

The problems differ in the following aspects:
(i) assumptions concerning the occurrence of defective factors;
(ii) assumptions on admissible designs;
(iii) forms of the test function which provides observation results;
(iv) definitions of the problem solution.
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The group testing problems considered below are specified by the following properties.

(i) Let t be some integer, 0 < t ≤ n. We assume that either there are exactly t
defective factors or the number of defective factors is smaller than or equal to t (see also
Section 6.2, where we modify some results to the problem of finding defectives in the
binomial sample, when each factor has a prior probability to be defective).

(ii) We only consider nonsequential designs. (Obviously, the upper bounds for non-
sequential designs can also serve as upper bounds in the sequential case.) Also, we only
consider the design sets X , which contain the factor groups consisting of either exactly s
or ≤s factors for some s ≤ n. We show that the former case is the principal one. In the
asymptotic considerations, when n→∞, we assume that s = s(n) = λn+ o(n), where λ
is some number, 0 < λ < 1.

(iii) Let T be the unknown collection of defective factors and X ∈ X be a test factor
group. In the models considered below the test function f is

f(X,T )=fK(X,T )= min{K, |X ∩ T |}. (2)

where | · | stands for the number of elements in a discrete set and K is some integer. This
is a rather general form of the output and corresponds to the K-channel model, see e.g.
Du and Hwang (2000), Section 10.4 and Tsybakov et al (1983).

The three well-known special cases are the following ones. In the binary (alternatively,
disjunctive) model K = 1. (In this model by inspecting a group X ⊂ X we receive 1
if there is at least one defective factor in X and 0 otherwise.) In the additive model
K = n (alternatively, any number between n and ∞ can be chosen as K) and therefore
f(X,T ) = |X ∩ T |. (In the additive model, after inspecting a group X we receive the
number of defectives in X.) In the multiaccess channel model K = 2 and therefore
f(X,T ) = min{2, |X ∩ T |}. The binary model is by far the most popular in the group
testing theory.

We mostly consider error–free models which assume that there are no observation er-
rors. However, in Section 6.1 we demonstrate that many results can be generalized to the
case when a few mistakes in the test results are possible; this corresponds to searching
with lies.

(iv) Concerning the requirements for the solution, we consider the problem of exact
determination of the collection of unknown defectives, strong separation, and the problem
of finding this collection in most cases, weak separation.

Group testing is a well established area attracting attention of specialists in optimum
design, combinatorics, information theory and discrete search. The paper Dorfman (1943),
devoted to sequential procedures of blood testing for detection of syphilitic men, is usually
considered as the first work on the theory of group testing. A state-of-art in the field is
well presented in the monograph Du and Hwang (2000). We do not consider an important
problem of finding efficient designs. We only refer to Du and Hwang (2000), Ghosh and
Avila (1985), Katona (1979), Katona and Srivastava (1983), Macula and Reuter (1998),
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Macula (1997b) and Patel (1987) as a sample of works dealing with design construction
schemes in important specific cases including the case of the binary model with two and,
more generally, t defectives.

The relationship between combinatorial group testing and discrete search is a key
ingredient of the present methodology. We refer to Ahlswede (1987), O’Geran et al
(1991) and Srivastava (1975), where different aspects of this relationship are thoroughly
described. In this respect we mention that the well-known paper Srivastava (1975) consid-
ers also some schemes of design construction and demonstrates many properties of design
matrices for combinatorial group testing problems in a general setup.

Existence theorems constitute an important part of the theory of discrete mathematics,
see e.g. Ahlswede (1987), Alon, Spencer and Erdős (1992). In the field of group testing,
the corresponding activity has been originated in the seminal work Rényi (1965) and
has been successfully continued by many authors, numerous examples are given in Du
and Hwang (2000). We especially mention a great input in the field of M.B. Malutov,
A.G. Dyachkov, V.V. Rykov and other representatives of the Moscow probability school,
see e.g. Dyachkov and Rykov (1983), Tsybakov et al (1983). The problem of using the
probabilistic methods for constructing upper bounds of the length of optimal strongly
separating designs in the binary group testing model has attracted a reasonable attention
in literature, see Du and Hwang (2000) for a survey of results. For a fixed number of
defectives t and n→∞, the best known upper bound for the length of strongly separating
designs in the binary group testing problem has been derived in Dyachkov, Rykov and
Rashad (1989), see also Theorem 7.2.15 in Du and Hwang (2000): N ≤ t

At
(1+o(1)) log2 n,

where

At = max
0≤q≤1

max
0≤Q≤1

{
−(1−Q) log2(1− qt) + t

[
Q log2

q

Q
+ (1−Q) log2

1− q
1−Q

]}

and At = 2
t log2 e

(1 + o(1)) when t→∞. The derivation of this bound heavily uses specific

features of the binary group testing problem and in this sense could not be considered as
a general methodology. Asymptotically, when both n and t are large, this is a marginally
better bound than the asymptotic bound (68) of Section 5.2, that is,

N ≤ N∗(n, t) ∼ e

2
t2 log n , n→∞, t = t(n)→∞, t(n)/n→ 0.

Note that the latter double asymptotic bound has been also derived in Dyachkov and
Rykov (1983) with the help of another version of the probabilistic method which is defined
in Section 2.4.

The case of strongly separating designs for the additive model, the simplest model
among considered in this paper, has been thoroughly studied in Zhigljavsky and Zabalka-
nskaya (1996). To some extent, the present work can be considered as a development of
the technique of that paper.

In the asymptotic considerations we assume that the number of defective factors is
small relative to the total number of factors n. This makes a big difference between the
asymptotic results of the present paper and the results obtained in a series of papers, see
e.g. Erdős and Rényi (1963), Lindstrem (1975), where the nonsequential group testing
problem for the additive model is considered with no constraints on both the test groups
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and the number of defective factors. The above papers yield the result Nmin ∼ 2n/log2 n,
n → ∞, for the minimal length of the nonsequential strategies that guarantee detection
of all defectives.

The group testing problem in the binomial sample is very popular in the group testing
literature. It has been introduced and thoroughly investigated in Sobel and Groll (1959).
For modern generalizations of this problem see e.g. Bruno et al (1988).

In recent years a number of papers have been published on the problem of constructing
optimal algorithms for finding one, two or three defectives in search with lies, see e.g. Hill
and Karim (1992), Hill (1995), Macula (1997a), DeBonis et al (1997).

The author is not aware of the existence theorems for the group testing designs in the
binomial sample problem and in the presence of lies.

The paper is organized as follows.
In Section 2 we consider the group testing problems from a general point of view

of discrete search and provide two general existence theorems. These theorems can be
applied as soon as suitable terms, called Rényi coefficients, can be computed for all the
pairs (T, T ′) of distinct possible groups of defective factors.

In Section 3 we demonstrate that in many interesting group testing problems the
set of these pairs can be partitioned into certain subsets, Ti, where the Rényi coeffi-
cients are equal and have closed-form representations through the binomial coefficients.
The number of elements in the sets Ti can also be expressed through the binomial co-
efficients. We thus show that the upper bounds can typically be written in the form
N(n) = min

{
k = 1, 2, . . . :

∑
i qi,nr

k
i,n < 1

}
for suitable numbers qi,n and ri,n.

In Section 4 we use general results of Sections 2 and 3 to derive specific forms of the
upper bounds for the length of optimal designs in specific group testing models.

In Section 5 we prove a general result, which in many particular cases allows to obtain
the asymptotic laws for N(n), n → ∞, and apply this result to derive asymptotic upper
bounds for optimal design length in specific group testing problems.

In Section 6 we demonstrate how the main existence theorems can be modified for the
group testing problems in the binomial sample and generalized for the case when several
lies in the test results can occur.

The Appendix contains several tables providing numerical illustrations.

2 General Existence Theorems

2.1 Discrete search problems

We consider the group testing problems from the general point of view of discrete search.
Let us first give several definitions.

Following O’Geran et al (1991) a discrete search problem can often be determined as
a quadruple {T ,X , f,Y} where T = {T} is a target field, that is an ordered collection of
all possible target elements T , X = {X} is a test field, that is a collection of all possible
test elements, and f : X × T → Y is a test function mapping X × T to some space Y . A
value f(X,T ) for fixed X ∈ X and T ∈ T is regarded as test or experimental result at a
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test element X when the unknown target is T . We only consider solvable search problems
where each T ∈ T can be separated (found) by means of the test results at all X ∈ X .

A nonsequential design DN of length N is a collection DN = {X1, . . . , XN} of test
elements, which are chosen before the tests start. We shall not consider sequential (adap-
tive) designs and will omit the word ‘nonsequential’ while referring to a nonsequential
design.

For a pair of targets T, T ′ ∈ T , we say that X ∈ X separates T and T ′ if f(X,T ) 6=
f(X,T ′). We say that a design DN = {X1, . . . , XN} separates T in T if for any T ′ ∈ T ,
such that T ′ 6= T , there exists a test element X ∈ DN separating the pair (T, T ′). A
design DN is strongly separating if it separates all T in T . A design DN is γ-separating if

| {T ∈ T : design DN separates T in T } |
| T | ≥ 1− γ , (3)

where γ is a fixed number, 0 ≤ γ ≤ 1.
0-Separating designs are strongly separating; γ-separating designs with γ > 0 are

called weakly separating.
Strongly separating designs are used when it is required to find the unknown target

T whatever the target T ∈ T is. Alternatively, weakly separating designs can be used
when it is sufficient to separate the target in the majority of cases. As we shall see later,
one can typically guarantee the existence of weakly separating designs with much smaller
length than for the strongly separating designs.

2.2 Existence theorems

The purpose of this section is formulation of two key theorems (Theorems 2.1 and 2.2).
For the sake of completeness these results are accompanied with short proofs. Note that
certain versions of these results are known in literature, see Rényi (1965), O’Geran et al
(1991), Zhigljavsky and Zabalkanskaya (1996), Dyachkov and Rykov (1983).

For the strongly separating designs we have the following existence principle, see e.g.
O’Geran et al (1991).

Let R be a probability distribution on X , Aij(N) be the event that the targets Ti and
Tj are not separated in N independent R-distributed random tests and let

pij = Pr{Aij(1)} = Pr{f(X,Ti) = f(X,Tj)}
be the probability that the targets Ti and Tj are not separated by one test at random
X ∈ X , which is distributed according to R.

Then Pr{Aij(N)} = pNij and therefore we have for the probability that at least one
pair Ti and Tj is not separated after performing N random tests:

Pr




⋃

i<j

Aij(N)



 ≤

∑

i<j

Pr{Aij(N)} =
∑

i<j

pNij . (4)

Hence, the probability that all pairs of distinct targets are separated after performing N
random tests is

1− Pr




⋃

i<j

Aij(N)



 ≥ 1−∑

i<j

pNij (5)
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Assume that N is large enough to provide the positivity of the right-hand side in (5),
then the discreteness of T immediately implies the existence of a deterministic design of
length N separating all the targets Ti ∈ T . We thus have the following upper bound for
the length of optimal designs.

Theorem 2.1 (Existence theorem for strongly separating designs.) Let {T ,X , f,Y} be
a solvable discrete search problem and R be any randomisation scheme. Then there exists
a strongly separating design with sample size

N ≤ N∗ = min

{
k = 1, 2, . . . such that

|T |∑

i=1

i−1∑

j=1

pkij < 1

}
. (6)

The inequality (4) and therefore the upper bound (6) seem to be crude. To a certain
extent, this is true in simple problems, when either N is small or all pij are equal or
approximately equal. For example, in group testing problems with one defective factor
the upper bound (6) gives the asymptotic upper bound 2 log2 n for the number of tests but
the optimal value is dlog2 ne, see Ahlswede(1987), Du and Hwang (2000), Rényi (1965),
Zhigljavsky and Zabalkanskaya (1996) for details. However, the bound (6) seems to be
reasonably sharp in many difficult problems including the problems discussed below. That
can be explained by the fact that the values of pij for most of the pairs (Ti, Tj) are relatively
small and the value of the sum in the right–hand side of (4) is basically determined by a
very small number of probabilities pij. This is the situation occurring in the group testing
problems discussed below.

Note that the events Aij(N) are typically dependent (which is certainly true for all
group testing problems with n ≥ 4) and therefore we actually have the strict inequality in
(4) and therefore non-strict inequality in the upper bound (6). Another minor refinement
to the bound (6) can be obtained if we choose Xi using the random sampling without
replacement rather than the random sampling with replacement, see Zhigljavsky and Za-
balkanskaya (1996) for details. These refinements can be of importance only when both
|T | and |X | are small.

Construction of upper bounds is similar in the case of weakly separating designs. To
derive these bounds, only a minor modification of the arguments leading to Theorem 2.1
is required. Indeed, by analogy with (4), for a fixed Ti ∈ T the probability that Ti is not
separated from at least one Tj ∈ T (Tj 6= Ti) after N random tests is less than or equal to∑
j 6=i (pij)

N and we thus have 1−∑j 6=i (pij)
N as a lower bound for the probability that Ti

is separated from all other Tj ∈ T . Summation over i and the use of (3) yields the upper
bound

N ≤ Nγ = min

{
k = 1, 2, . . . such that

2

|T |γ
|T |∑

i=1

i−1∑

j=1

pkij < 1

}
(7)

for the length of the optimal γ-separating design. We thus have the following theorem.
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Theorem 2.2 (Existence theorem for weakly separating designs.) Let {T ,X , f,Y} be
a solvable search problem, |T | ≥ 2, 0 < γ < 1. Then there exists a non-sequential
γ-separating design with the sample size (7).

If we rewrite the upper bound (7) in the form

Nγ = min

{
k = 1, 2, . . . such that

|T |∑

i=1

i−1∑

j=1

pkij <
|T |γ

2

}

then the resemblance with (6) becomes obvious: for given X and T , the difference between
the two formulae is that 1 in the right–hand side of the inequality inside the curly brackets
in the formula for N∗ should be replaced with |T |γ

2
in the formula for Nγ. Therefore,

if we would find a closed-form expression for the upper bound in the case of strong
separability, we automatically get a related expression for the upper bounds for the weakly
separating designs. Note that this only concerns nonasymptotic expressions. Asymptotic
considerations, when |T | → ∞, are usually different.

Note also that values of γ in (7) such that γ < 2
|T | do not have much sense since

γ-separation with γ < 2
|T | implies strong separation.

2.3 Group testing as a discrete search problem

In the group testing problems both X and T are certain collections of factor groups. In
the main body of the paper (until Section 6) we consider the problems when T is either
P tn or P≤tn and analogously X is either Psn or P≤sn . Here n is the total number of factors,
1 ≤ t ≤ n, 1 ≤ s ≤ n,

Pkn = {{xi1 , . . . , xik}, 1 ≤ i1 < . . . ik ≤ n} (8)

is the collection of all factor groups containing exactly k factors, and

P≤kn =
k⋃

j=0

Pjn (9)

is the collection of factor groups containing not more than k factors. In an important
particular case, P≤nn = 2X is the set of all possible 2n subsets of X = {x1, . . . , xn}.

All the test functions f considered below belong to the general class (2).

2.4 Randomisation schemes

The randomisation scheme R′ = R′(λ) where X = 2X = P≤nn and every element of X
is included into random X with a fixed probability λ (to be optimised at a later stage)
is known to work quite well in some group testing problems, see Du and Hwang (2000),
Dyachkov and Rykov (1983). We consider a different scheme, called R(s), where X = Psn
for some s andR is the uniform distribution on X . (Sometimes it might also be worthwhile
to consider X in the form P≤sn or even ∪s∈SPsn, where S is a subset of {1, . . . , n}; below
these cases are covered as well.)
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The advantages of the scheme R(s) over R′(λ) are as follows:

(i) numerical comparison shows that the optimal s in R(s) scheme always, for any n
and t and any group testing problem among considered, allows to achieve better (or
sometimes the same) upper bound than the optimal λ in the corresponding R′(λ)
scheme;

(ii) the use of the scheme R(s) with subsequent optimisation over s gives more infor-
mation about the structure of the design, where the upper bounds are achievable;

(iii) restriction on the number of elements in the test sets X in the form either X ∈
Psn or X ∈ P≤sn for some s is obviously important in many practical situations
(imagine blood testing, finding active compounds in drug development, detecting
false computer chips, weighing problems, etc.)

We should however mention that the leading terms in the asymptotic expressions (when
n→∞) for the upper bounds coincides for both schemes, R(s) and R′(λ) with s = bnλc,
in all the cases when the upper bounds based on the use of the scheme R′(λ) are known;
this follows, roughly speaking, from the fact that the major part of the randomly selected
test sets Xi in the scheme R′(λ) contain approximately λn factors.

We restrict our attention to the case when the distribution R is uniform on X . In this
case many probabilistic statements can be reduced to equivalent combinatorial ones. For
example, the probabilities pij in (6) and (7) can be written as

pij = kij/|X | (10)

where kij = k(Ti, Tj) is the number of X ∈ X such that f(X,Ti) = f(X,Tj); that is,

kij = |{X ∈ X : f(X,Ti) = f(X,Tj)}| for Ti, Tj ∈ T . (11)

The coefficients (11) in accordance with O’Geran et al (1991) will be called Rényi co-
efficients. Their derivation implies derivation of the upper bounds (6), (7) and constitutes
one of the main objectives of the present work.

3 Computation of the Rényi coefficients

To write down the upper bounds (6) and (7), we need to find a way of computing the
whole set of the Rényi coefficients (11), that is the set {kij, (Ti, Tj) ∈ T ×T }. It happens
that in many interesting group testing problems the set T × T can be partitioned into a
few subsets, they are (13), where the Rényi coefficients are equal and have a closed-form
representation through the binomial coefficients, see (28).

3.1 Branching of the target field

Let

(
n

n1 n2 . . . nk

)
=

n!

n1!n2! . . . nk!
for nr ≥ 0,

k∑

r=1

nr = n
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be the multinomial coefficient and let us use the following convention

(
n

n1 n2 . . . nk

)
= 0 if min{n1, . . . , nk} < 0 . (12)

Let 0 ≤ p ≤ m ≤ l ≤ n, p < l. Denote

T (n, l,m, p) = {(T, T ′) ∈ P≤nn × P≤nn : |T | = m, |T ′| = l, |T ∩ T ′| = p} . (13)

Note that the condition p < l guarantees that T 6= T ′ for all pairs (T, T ′) ∈ T (n, l,m, p).
The following theorem allows computing the number of elements in the sets (13).

Theorem 3.1 The number of different non-ordered pairs in T (n, l,m, p) equals

Q(n, l,m, p) =





(
n

p m−p l−p n−l−m+p

)
if m < l

1
2

(
n

p m−p m−p n−2m+p

)
if m = l

(14)

The proof contains only easy counting arguments, details see in Zhigljavsky and Za-
balkanskaya (1996).

3.2 Balanced test fields

Let X ⊆ P≤nn be a test field and (T, T ′) be any pair in P≤nn × P≤nn such that T 6= T ′.
Define the sets

Xuvr(T, T ′) = {X ∈ X : |X ∩ (T\T ′)| = u, |X ∩ (T ′\T )| = v, |X ∩ T ∩ T ′| = r} (15)

where u, v, r are some nonnegative integers.
Note that (T, T ′) ∈ T (n, l,m, p) for some l,m, p such that 0 ≤ p ≤ m ≤ l ≤ n and

p < l. Observe also that the sets Xuvr(T, T ′) may be non-empty only if

0 ≤ u ≤ l − p, 0 ≤ v ≤ m− p, 0 ≤ r ≤ p . (16)

Joining these restrictions on the parameters u, v, r with the restrictions on p,m and l in
the definition of the sets T (n, l,m, p), we obtain the combined parameter restriction

0 ≤ p ≤ m ≤ l ≤ n, p < l, 0 ≤ u ≤ l − p, 0 ≤ v ≤ m− p, 0 ≤ r ≤ p . (17)

Another consequence of (16) is the fact that for any pair (T, T ′), such that T 6= T ′,
the test field X can be partitioned as follows

X =
p⋃

r=0

l−p⋃

u=0

m−p⋃

v=0

Xuvr(T, T ′) . (18)

Definition. We shall call the test field X balanced if the number |Xuvr(T, T ′)| does not
depend on the choice of the pair (T, T ′) ∈ T (n, l,m, p) for any set of integers u, v, r, p,m, l
satisfying (17).
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For balanced test fields X the number |Xuvr(T, T ′)| for (T, T ′) ∈ T (n, l,m, p) will be
denoted R(n, l,m, p, u, v, r):

R(n, l,m, p, u, v, r) = |Xuvr(T, T ′)| for (T, T ′) ∈ T (n, l,m, p) . (19)

Note that the number R(n, l,m, p, u, v, r) depends on X .
Below we consider some examples of balanced test fields and derive explicit formulae

for R(n, l,m, p, u, v, r). Theorem 3.2 below demonstrating that the test field X = Psn is
balanced, is basic in this respect.

3.3 The case X = Psn
The case X = Psn is the main example of the test fields we consider. It deserves special
attention for the following reasons:

• the test field X = Psn is balanced, see Theorem 3.2;

• this case is the most important from practical point of view;

• the formulae for the Rényi coefficients and the upper bounds can often be simplified
using suitable combinatorial identities;

• as a rule, in the case X = Psn with optimal s one can achieve better bounds than,
say, in the case X = P≤s′n , with optimal s′.

Theorem 3.2 Let X = {x1, . . . , xn} be a collection of n ≥ 2 factors and let the integers
u, v, r, p,m, l satisfy (17). Then the test field X =Psn={X={xi1 ,. . . ,xis}} is balanced and

R(n, l,m, p, u, v, r) =
(
p

r

)(
l − p
u

)(
m− p
v

)(
n− l −m+ p

s− r − u− v

)
(20)

where, in accordance with (12),

(
b
a

)
= 0 for a < 0 and a > b. (21)

Proof. Let X = Psn, (T, T ′) be any pair in T (n, l,m, p) and integers n, m, l, p, u,
v, r be fixed and satisfy (17). Then R(n, l,m, p, u, v, r), the number of the test groups
X ∈ Xuvr, can be computed as follows. To construct a factor group X ∈ Xuvr we make
the following four sequential selection steps:

(1) select r factors from the set T ∩ T ′, there are
(
p
r

)
possibilities to do this;

(2) select u factors (0 ≤ u ≤ l− p) from the set T\T ′, there are
(
l−p
u

)
possibilities for

doing this;
(3) select v (0 ≤ v ≤ m − p) factors from the set T ′\T , we can do this by

(
m−p
v

)

choices;
(4) include s−r−u−v factors into X from the set X\(T ∪T ′) containing n− l−m+p

elements (obviously, we have
(
n−l−m+p
s−r−u−v

)
possibilities to do this).
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If s is either too small (i.e. s < l + m − p) or large (s > n − l − m + p) then the
last step in the selection procedure is impossible and the corresponding value of R equals
zero, which is in agreement with the convention (21).

To finish the proof we only mention that the above calculation of R(n, l,m, p, u, v, r)
does not depend on the choice of the pair (Ti, Tj) ∈ T (n, l,m, p). 2

3.4 Auxiliary statements

In this section we provide several lemmas that will be frequently used to simplify expres-
sions for the Rényi coefficients and the upper bounds in specific setups.

Lemma 3.1 For any balanced test field X and all integers n, l,m, p such that 0 ≤ p ≤
m ≤ l ≤ n, p < l, the following relationship holds:

|X | =
p∑

r=0

l−p∑

u=0

m−p∑

v=0

R(n, l,m, p, u, v, r) . (22)

Proof. Since for any pair (T, T ′) in P≤nn ×P≤nn such that T 6= T ′, the sets in the collection
{Xuvr(T, T ′)}u,v,r are disjoint and provide a partition of X , (22) follows from (18). 2

The following simple statement not requiring a proof shows that a union of two disjoint
balanced sets is also balanced. This and Theorem 3.2 imply, for instance, that the set
P≤sn is balanced, as is the set Psn. This also yields that the sets

X = XS = ∪s∈SPsn , (23)

where S ⊂ {0, 1, . . . , n}, are balanced; it also provides the way of computing values
R(n, l,m, p, u, v, r) for these sets. (Note that in particular cases S = {s} and S =
{0, 1, . . . , s} we have XS = Psn and XS = P≤sn , respectively.)

Lemma 3.2 Let the target field T be fixed, X ′ ∩X ′′ = ∅, both X ′ and X ′′ be balanced sets
with families of R-values {R′(n, l,m, p, u, v, r)}l,m,p,u,v,r and {R′′(n, l,m, p, u, v, r)}l,m,p,u,v,r
respectively. Then the set X = X ′ ∪ X ′′ is also balanced and

R(n, l,m, p, u, v, r) = R
′
(n, l,m, p, u, v, r) +R

′′
(n, l,m, p, u, v, r) (24)

for all admissible values of l,m, p, u, v, r.

As a corollary of Lemma 3.2 we obtain the following additivity property of the Rényi
coefficients.

Corollary 3.1 Let the target field T be fixed, X = X ′ ∪ X ′′ and X ′ ∩ X ′′ = ∅. Let also
{k′ij; Ti, Tj ∈ T }, {k′′ij; Ti, Tj ∈ T } be two sets of the Rényi coefficients (11) for the test

fields X ′ and X ′′, respectively. Then for any pair Ti, Tj of distinct elements in T we have

kij = |{X ∈ X such that |X ∩ Ti| = |X ∩ Tj|}| = k
′
ij + k

′′
ij . (25)
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The following classic combinatorial identity will help to simplify several expressions
involving the binomial coefficients.

Lemma 3.3 (Vandermonde convolution formula) For all positive integers a, b, c such that
c < a and b < a

(
a

b

)
=

c∑

k=0

(
c

k

) (
a− c
b− k

)
, (26)

where for certain values of k the convention (21) is perhaps used.

For a proof see, for instance, Riordan (1968), p.8.

For the ease of references let us also state two obvious relationships between the
binomial coefficients:

(
a− 1

b

)
=
a− b
a

(
a

b

)
,
(

a

b− 1

)
=

b

a− b+ 1

(
a

b

)
for 1 ≤ b < a . (27)

3.5 Computation of the Rényi coefficients

As the most general form of the test function f(·, ·) we consider (2). That is, we assume
that f(X,T )= min{K, |X ∩T |}, where K is some positive integer. The following theorem
provides a closed-form expression for the Rényi coefficients in this case and represents the
major input into the non-asymptotic expressions of the upper bounds in specific cases.

Theorem 3.3 Let the test function be defined by (2), 0 ≤ p ≤ m ≤ l ≤ n, p < l, X be
a balanced test field and (Ti, Tj) ∈ T (n, l,m, p). Then the value of the Rényi coefficient
kij does not depend on the choice of the pair (Ti, Tj) ∈ T (n, l,m, p) and equals kij =
K(X , n, l,m, p), where

K(X , n, l,m, p) =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r)

+
p∑

r=0

l−p∑
u=q

m−p∑

v=u+1

R(n, l,m, p, u, v, r) +
p∑

r=0

m−p∑
v=q

l−p∑

u=v+1

R(n, l,m, p, u, v, r) , (28)

with q = max{0, K − r}.

Proof. Let (Ti, Tj) ∈ T (n, l,m, p) and a be some integer. Introduce the sets

X a,a = {X ∈ X : |X ∩ Ti| = a, |X ∩ Tj| = a} ,
X a,>a = {X ∈ X : |X ∩ Ti| = a, |X ∩ Tj| > a} ,
X>a,a = {X ∈ X : |X ∩ Ti| > a, |X ∩ Tj| = a} .

Remind that kij = |{X ∈ X : f(X,Ti) = f(X,Tj)}| and f(X,T )= min{K, |X ∩ T |}.
We have the equality f(X,Ti) = f(X,Tj) if and only if one of the three following

cases occurs:

13



(i) X ∈ X a,a for some a ≥ 0;
(ii) X ∈ X a,>a for some a ≥ K;
(iii) X ∈ X>a,a for some a ≥ K.

Therefore,

kij =
∑

a≥0

|X a,a|+ ∑

a≥K
|X a,>a|+ ∑

a≥K
|X>a,a|. (29)

By definition, X ∈ Xuvr for some u, v and r such that the sets Xuvr = Xuvr(Ti, Tj) are
defined, see (15). The set of integers n, m, l, p, u, v and r satisfy then the constraints
(17). Using these constraints and the definition of the coefficients R(·), see (19), we can
re-express the sums in the right-hand side of (29) as follows:

∑

a≥0

|X a,a| =
p∑

r=0

m−p∑

u=0

|Xuur| =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r) ,

∑

a≥K
|X a,>a| =

p∑

r=0

l−p∑
u=q

m−p∑

v=u+1

|Xuvr| =
p∑

r=0

l−p∑
u=q

m−p∑

v=u+1

R(n, l,m, p, u, v, r) ,

where q = max{0, K − r}, and analogously

∑

a≥K
|X>a,a| =

p∑

r=0

m−p∑
v=q

l−p∑

u=v+1

|Xuvr| =
p∑

r=0

m−p∑
v=q

l−p∑

u=v+1

R(n, l,m, p, u, v, r) .

By substituting this into (29) we get (28). To finish the proof we just need to mention that
the above calculation does not depend on the choice of the pair (Ti, Tj) ∈ T (n, l,m, p). 2

4 Upper bounds for the length of optimal designs

In this section we use Theorems 2.1, 2.2, 3.1, 3.2 and 3.3 to formulate the upper bounds
for the length of optimal designs for the general case of K-channel model and general
balanced test fields X . We then make suitable simplifications in specific cases of the
additive, binary and multiaccess channel models.

4.1 K–Channel model

Theorem 4.1 Let the test field X ⊆ P≤nn be balanced, 1 ≤ t ≤ n, the target field T be
either P tn or P≤tn , for p < l the numbers K(X , n, l,m, p) be defined according to (28) and
K(X , n, l, l, l) = 0 for all l = 0, . . . , n. Then the upper bound N∗ for the length of optimal
strongly separating design for the model (2) is

N∗= min

{
k :

∑

l,m

∑

p≤m
Q(n, l,m, p)

(
K(X , n, l,m, p)

|X |

)k
< 1

}
. (30)

Analogously, for the γ-separating designs the upper bound can be written as

Nγ= min

{
k :

∑

l,m

∑

p≤m
Q(n, l,m, p)

(
K(X , n, l,m, p)

|X |

)k
<
γ|T |

2

}
. (31)
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In (30) and (31), the first summation is taken over m, l such that 0 ≤ m ≤ l ≤ t in the
case T = P≤tn ; in the case T = P tn the first summation disappears and m = l = t.

Theorem 4.1 is a direct consequence of Theorems 2.1, 2.2, 3.1, 3.2 and 3.3.

4.2 Additive model

In the additive group testing problem f(X,T ) = |X∩T | and we therefore can take K =∞
in (2) and (28). This removes two terms in (28) and simplifies the expression.

Theorem 4.2 Let the test function be f(X,T ) = |X ∩ T |, 0 ≤ p ≤ m ≤ l ≤ n, p < l,
and X be balanced. Then

K(X , n, l,m, p) =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r) . (32)

For X = Psn the formula (32) can be simplified to

K(Psn, n, l,m, p) =
p∑

u=0

(
l − p
u

) (
m− p
u

) (
n− l −m+ 2p

s− 2u

)
. (33)

Note that to get (33) from (32) and (20) we need to use the Vandermonde convolution
formula (26).

As simple consequences, Theorems 4.1 and 4.2 and expressions for R(n, l,m, p, u, v, r)
of Theorem 3.2 and Lemma 3.1 imply specific expressions, see Zhigljavsky and Zabalka-
nskaya (1996), for the upper bounds N∗ and Nγ of the additive group testing designs in
the cases when T is either P tn or P≤tn and X is either Psn or P≤sn .

4.3 Binary model

In the binary group testing K = 1 and thus

f(X,T ) =

{
0 if |X ∩ T | = ∅,
1 otherwise.

(34)

Theorem 4.3 Let the test function be (34), 0 ≤ p ≤ m ≤ l ≤ n, p < l and X be a
balanced test field. Then

K(X , n, l,m, p) = |X | −


l−p∑

u=1

R(n, l,m, p, u, 0, 0) +
m−p∑

v=1

R(n, l,m, p, 0, v, 0)


 . (35)

For X = Psn the formula (35) can be simplified to

K(Psn, n, l,m, p) =
(
n

s

)
−
(
n− l
s

)
−
(
n−m
s

)
+ 2

(
n− l −m+ p

s

)
. (36)
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Proof. Rewriting (28) for K = 1 we obtain

K(X , n, l,m, p) =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r)+
p∑

r=1

l−p∑

u=0

m−p∑

v=u+1

R(n, l,m, p, u, v, r)+

p∑

r=1

m−p∑

u=0

l−p∑

v=u+1

R(n,l,m,p,v,u,r) +
l−p∑

u=1

m−p∑

v=u+1

R(n,l,m,p,u,v,0) +
m−p∑

u=1

l−p∑

v=u+1

R(n,l,m,p,v,u,0)

=
p∑

r=1

l−p∑

u=0

m−p∑

v=0

R(n, l,m, p, u, v, r) +
l−p∑

u=1

m−p∑

v=1

R(n, l,m, p, u, v, 0) +R(n, l,m, p, 0, 0, 0).

The use of (22) yields (35).
Assume now that X = Psn. Then we can apply (20) and rewrite (35) in the form

K(X , n, l,m, p) =
(
n

s

)
−

l−p∑

u=1

(
l−p
u

)(
n−l−m+p

s− u

)
−

m−p∑

v=1

(
m−p
v

)(
n−l−m+p

s− v

)
.

Applying now the Vandermonde convolution formula (26) we obtain (36). 2

Corollary 4.1 Assume either T = P tn or T = P≤tn , t ≤ n, and let the test field X be
balanced. Then the upper bounds N∗ and Nγ can be expressed as follows

N∗ = min

{
k = 1, 2, . . . :

∑

l,m

∑
0≤p≤m
p<l

Q(n, l,m, p)×

×

1− 1

|X |



l−p∑

u=1

R(n, l,m, p, u, 0, 0) +
m−p∑

v=1

R(n, l,m, p, 0, v, 0)





k

< 1

}
, (37)

Nγ = min

{
k :

∑

l,m

∑
0≤p≤m
p<l

Q(n, l,m, p)×

×

1− 1

|X |



l−p∑

u=1

R(n, l,m, p, u, 0, 0)+
m−p∑

v=1

R(n, l,m, p, 0, v, 0)





k

<
|T |γ

2

}
(38)

where the first summation in the above formulae is over 0 ≤ m ≤ l ≤ t for the case
T = P≤tn and l = m = t; that is, the first summation disappears in (37) and (38), in the
case T = P tn.

The binary group testing model is the most popular in literature. In view of its
importance we provide below several specific existence theorems for this model. Of course,
all these theorems are easy corollaries of (36), (37), (38) and Theorems 3.1, 3.2.
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Corollary 4.2 Let T = P tn and X = Psn, where n ≥ 2, 1 ≤ t < n, 1 ≤ s < n. Then there
exists a nonsequential group testing design with the sample size N ≤ N∗ = N∗(n, t, s),
where

N∗ = min




k = 1, 2, . . . :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

1− 2 ·

(
n−t
s

)
−
(
n−2t+p

s

)
(
n
s

)


k

< 1





(39)

Corollary 4.3 Let T = P≤tn and X = Psn, where n ≤ 2, 1 ≤ t < n, 1 ≤ s < n. Then
there exists a nonsequential group testing design with the sample size N ≤ N∗ = N∗(n,≤
t, s) =

min




k = 1, 2, . . . :

1

2

t∑

m=1

m−1∑

p=0

(
n

p m−p m−p n−2m+p

)

1−2

(
n−m
s

)
−
(
n−2m+p

s

)
(
n
s

)


k

+
t∑

l=1

l−1∑

m=1

m∑

p=0

(
n

p l−p m−p n−l−m+p

)

1−

(
n−l
s

)
+
(
n−m
s

)
−2

(
n−l−m+p

s

)
(
n
s

)


k

< 1





As illustrations, Tables 1 and 2 in the Appendix provide values of N∗(n, t, s) and
N∗(n,≤ t, s) for t = 3, s = dλne, various n and λ.

The additivity property of the Rényi coefficients (24) implies the following statements.

Corollary 4.4 Let T = P tn and X = P≤sn , where n ≤ 2, 1 ≤ t < n, 1 ≤ s ≤ n.
Then there exists a nonsequential group testing design with the sample size N ≤ N∗ =
N∗(n, t,≤ s) =

min




k = 1, 2, . . . :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

1−

2
s∑

w=0

((
n−t
w

)
−
(
n−2t+p

w

))

s∑
w=0

(
n
w

)




k

< 1




.

Corollary 4.5 Let n ≥ 2, 1 ≤ t < n, T = P tn and X = P≤nn . Then there exists a
nonsequential group testing design with the sample size N ≤ N∗ = N∗(n, t,≤ n) =

min



k = 1, 2, . . . :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

) (
1− 21−t + 2p+1−2t

)k
< 1



 .

Corollary 4.6 Let n ≥ 2, 1 ≤ t < n, T = P≤tn and X = P≤nn . Then there exists a
nonsequential group testing design with the sample size N ≤ N∗ = N∗(n,≤ t,≤ n) =

min



k = 1, 2, . . . :

1

2

t∑

m=1

m−1∑

p=0

(
n

p m−p m−p n−2m+p

) (
1− 21−m + 2p+1−2m

)k

+
t∑

l=1

l−1∑

m=1

m∑

p=0

(
n

p l−p m−p n−l−m+p

) (
1− 2−l − 2−m + 2p+1−l−m)k < 1



 .
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Obviously, Corollary 4.5 is a special, although important, case of Corollary 4.4. We
shall not provide formulae for N∗ in other particular cases, they can be derived in similar
manner.

As was mentioned earlier, the formulae for Nγ have the form analogous to the formulae

for N∗ and can be obtained by substituting |T |γ
2

for 1 in the right–hand side of the
inequality inside the curly brackets in the formulae for N∗. As an example, we formulate
the analogue of Corollary 4.2.

Corollary 4.7 Let 0 < γ < 1, T = P tn and X = Psn, where n ≥ 2, 1 ≤ t < n,
1 ≤ s < n. Then there exists a nonsequential group testing design with the sample size
N ≤ Nγ = Nγ(n, t, s) =

min




k=1, 2, . . . :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

1−2 ·

(
n−t
s

)
−
(
n−2t+p

s

)
(
n
s

)


k

<
γ

2

(
n

t

)



. (40)

4.4 Multiaccess channel

Consider the multiaccess channel problem, where the test function is

f(X,T ) = min{2, |X ∩ T |} =





0 if |X ∩ T | = 0,
1 if |X ∩ T | = 1,
2 if |X ∩ T | ≥ 2.

(41)

The first step is to deduce from Theorem 3.3 simpler expressions for the Rényi coeffi-
cients.

Theorem 4.4 Let 0 ≤ p ≤ m ≤ l ≤ n, p < l and X be a balanced test field. Then
K(X , n, l,m, p) =

|X | −
l−p∑

u=1

R(n, l,m, p, u, 0, 0)−
l−p∑

u=1

R(n, l,m, p, u, 0, 1)−
l−p∑

u=2

R(n, l,m, p, u, 1, 0)

−
m−p∑

v=1

R(n, l,m, p, 0, v, 0)−
m−p∑

v=1

R(n, l,m, p, 0, v, 1) −
m−p∑

v=2

R(n, l,m, p, 1, v, 0). (42)

For X = Psn the formula (42) can be simplified to

K(Psn, n, l,m, p) =
(
n

s

)
−
(
n−l
s

)
−
(
n−m
s

)
− l

(
n−l
s− 1

)
−m

(
n−m
s− 1

)

+2

(
n−l−m+p

s

)
+ (l+m)

(
n−l−m+p

s− 1

)
+ 2(l−p)(m−p)

(
n−l−m+p

s− 2

)
. (43)

Proof. Let (Ti, Tj) ∈ T (n, l,m, p) and X ∈ Xuvr(Ti, Tj). Applying Theorem 3.3 we get

K(X , n, l,m, p) =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r) +
p∑

r=0

l−p∑
u=q

m−p∑

v=u+1

R(n, l,m, p, u, v, r)
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+
p∑

r=0

m−p∑
u=q

l−p∑

v=u+1

R(n, l,m, p, v, u, r),

where q = max{0, 2− r}. This implies

K(X , n, l,m, p) =
p∑

r=0

m−p∑

u=0

R(n, l,m, p, u, u, r) +
p∑

r=2

l−p∑

u=0

m−p∑

v=u+1

R(n, l,m, p, u, v, r)

+
p∑

r=2

m−p∑

u=0

l−p∑

v=u+1

R(n, l,m, p, v, u, r) +
l−p∑

u=1

m−p∑

v=u+1

R(n, l,m, p, u, v, 1)

+
m−p∑

u=1

l−p∑

v=u+1

R(n, l,m, p, v, u, 1) +
l−p∑

u=2

m−p∑

v=u+1

R(n, l,m, p, u, v, 0)

+
m−p∑

u=2

l−p∑

v=u+1

R(n, l,m, p, v, u, 0) =
p∑

r=2

l−p∑

u=0

m−p∑

v=0

R(n, l,m, p, u, v, r)

+
l−p∑

u=1

m−p∑

v=1

R(n, l,m, p, u, v, 1) +
l−p∑

u=2

m−p∑

v=2

R(n, l,m, p, u, v, 0)

+R(n, l,m, p, 0, 0, 1)+R(n, l,m, p, 1, 1, 0)+R(n, l,m, p, 0, 0, 0).

The use of (22) leads to (42).
Note that (42) can be rewritten in the form

K(X ,n,l,m,p) = |X | −
l−p∑

u=0

[R(n,l,m,p,u,0,0) +R(n,l,m,p,u,0,1) +R(n,l,m,p,u,1,0)]

−
m−p∑

v=0

[R(n,l,m,p,0,v,0) +R(n,l,m,p,0,v,1) +R(n,l,m,p,1,v,0)] + 2R(n,l,m,p,0,0,0)

+2R(n,l,m,p,0,0,1) + 2R(n,l,m,p,1,1,0) +R(n,l,m,p,0,1,0) +R(n,l,m,p,1,0,0)

Assume now that X = Psn. Applying (20), the expression for K(·) in case X = Psn, and
six times the Vandermonde convolution formula (26), we obtain (43). 2

As an example, let us formulate the existence theorem for the optimal multiaccess
channel designs for T = P tn and X = Psn.

Corollary 4.8 Let the test function be (41), T = P tn and X = Psn, where n ≥ 2, 1 ≤ t <
n, 1 ≤ s < n. Then there exists a strongly separating design with the length

N ≤ N∗ = N∗(n, t, s) = min



k :

1

2

t−1∑

p=0

(
n

p t− p t− p n− 2t+ p

)
×

×

1−2

(
n−t
s

)
+ t

(
n−t
s−1

)
−
(
n−2t+p
s

)
− t

(
n−2t+p
s−1

)
− (t−p)2

(
n−2t+p
s−2

)
(
n
s

)


k

< 1





(44)

Obviously, formulae for N∗ and Nγ in other particular cases can be written down in
the same manner.

Tables 5 and 6 provide values of N∗(n, t, s) for T = P3
n and T = P5

n, X = Psn,
s = dλne, various n and λ.
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5 Asymptotic bounds

5.1 Auxiliary statements

In this section we present several auxiliary statements which will be used in deriving the
asymptotic versions of the upper bounds of Section 4.

Theorem 5.1 Let I and n0 be some integers, ci, ri, αi (i = 1, . . . , I) be some real numbers,
ci > 0, 0 < ri < 1, at least one of αi be positive, {qi,n}, {ri,n} be families of positive
numbers (i = 1, . . . , I, n ≥ n0) such that 0 < ri,n < 1 for all i and n ≥ n0,

qi,n = cin
αi(1 + o(1)), ri,n = ri + o

(
1

log n

)
as n→∞ , (45)

N = N(n) = min

{
k = 1, 2, . . . such that

I∑

i=1

qi,nr
k
i,n < 1

}
, (46)

L = L(n) be the solution of the equation

I∑

i=1

qi,nr
L
i,n = 1 , (47)

C = max
i=1,...,I

αi
− log ri

, (48)

c be the solution of the equation
∑
j∈J cjr

c
j = 1 where J is the subset of the set {1, . . . , I}

where the maximum in (48) is attained. Then N(n) = bL(n)c+ 1 for all n ≥ n0 and

L(n) = C log n+ c+ o(1) when n→∞ . (49)

Proof. The relation N(n) = bL(n)c + 1 for all n obviously follows from the definitions
(46) and (47) for N(n) and L(n), respectively. The problem is in proving (49).

Let us define the sets

I={1, . . . , I}, I+ ={i∈I such that αi>0 }, I−=I \ I+ ={i∈I such that αi≤0} .

Also, for i ∈ I define

N(i, n) = min
{
k = 1, 2, . . . such that qi,nr

k
i,n < 1

}
. (50)

Then for all i ∈ I and n = 1, 2, . . . we have N(i, n) = bL(i, n)c+ 1, where L(i, n) are the
solutions of the equations qi,nr

L
i,n = 1; that is,

L(i, n) =
log qi,n
− log ri,n

.

Obviously, L(i, n) ≤ L(n) for all i, n and L(i, n) are bounded for i ∈ I−.
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Consider the asymptotic behaviour, as n→∞, of L(i, n) for i ∈ I+:

L(i, n) = − log qi,n
log ri,n

= − log ci + αi log n+ o(1)

log(ri + o( 1
logn

))
=
αi log n+ log ci
− log ri

+ o(1), n→∞ .

Let j ∈ J ; that is, j is one of the indices where the maximum in (48) is attained.
Then the above asymptotic expressions for L(i, n) imply that for i ∈ I+ \ J

L(j, n)− L(i, n) =

(
C − αi

− log ri

)
log n+O(1)→∞ when n→∞ .

If i ∈ I− then L(i, n) is bounded and the fact L(j, n) − L(i, n) → ∞ when n → ∞ is

obvious. The facts that qi,nr
L(i,n)
i,n = 1 for all i and n (this is the definition of L(i, n)) and

L(j, n)− L(i, n)→∞ as n→∞ for any j ∈ J and i ∈ I \ J imply for all i ∈ I \ J

qn,ir
L(n)
i,n ≤ qn,ir

L(j,n)
i,n = qn,ir

L(i,n)
i,n r

L(j,n)−L(i,n)
i,n = o(1) when n→∞ ,

where j is any index in J .
This yields that for large n the equation for L(n) is

∑

j∈J
qj,nr

L(n)
j,n = 1 + o(1) when n→∞ .

This can asymptotically be rewritten as

∑

j∈J
cjn

αjr
L(n)
j = 1 + o(1) when n→∞ . (51)

It is straightforward to check that l(n) = C log n+ c is the solution of the equation

∑

j∈J
cjn

αjr
l(n)
j = 1 (52)

and that L(n) and l(n), the solutions of the equations (51) and (52), are such that
L(n) = l(n) + o(1), n→∞. This completes the proof. 2

The following statement is a simple consequence of Theorem 5.1.

Corollary 5.1 Let the conditions of Theorem 5.1 hold and the maximum in (48) is at-
tained at a single index j, 1 ≤ j ≤ I; that is, J = {j}. Then

C = − αj
log rj

, c = − log cj
log rj

(53)

and therefore

N(n) =

⌈
αj log n+ log cj
− log rj

+ o(1)

⌉
as n→∞ . (54)
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All the upper bounds of Section 4 have the form (46); therefore, Theorem 5.1 and
Corollary 5.1 can potentially be applied. To facilitate the applications, we present two
auxiliary statements.

Lemma 5.1 Let n, u, w be positive integers, n → ∞, u and w be fixed, s = s(n) =
λn+O(1) when n→∞, where 0 < λ < 1. Then

(
n−w
s−u

)
(
n
s

) = λu(1− λ)w−u +O
(

1

n

)
when n→∞ .

The proof directly follows from (27).

Lemma 5.2 Let the integers p, m, l, n and the coefficients Q(n, l,m, p) be as in Theo-
rem 3.1, p, m, l be fixed and n→∞. Then

Q(n, l,m, p) = cl,m,p · nl+m−p
(

1 +O
(

1

n

))
, n→∞ , (55)

where

cl,m,p =

{ 1
p!(m−p)!(l−p)! if m 6= l ,

1
2p!((m−p)!)2 if m = l .

(56)

Proof. Let m < l. Then applying the Stirling formula we obtain

Q(n, l,m, p) =
n!

p!(m− p)!(l − p)!(n− l −m+ p)!

=
nn+1/2

p!(m− p)!(l − p)!(n− l −m+ p)n−l−m+p+1/2 · el+m−p
(

1 +O
(

1

n

))

= cl,m,pn
l+m−p

(
1 +O

(
1

n

))
, n→∞ .

The case m = l differs from the case m < l in the multiplier 1
2

in the original and
asymptotic expressions for Q(n, l,m, p). 2

5.2 Additive model

Consider the asymptotic behaviour of N∗ when n is large. Let X = Psn, T = P tn and

n→∞, t = t(n) ≥ 2,
t(n)

n
→ 0, s = s(n)→∞, s(n)

n
→ λ, (57)

where λ, 0 < λ < 1, is some number and t = t(n) is either fixed or increasing with n in
such a way that t(n) = o(n), n → ∞. We only consider the case X = Psn and T = P tn.
Note that if the number of defectives is apriori unknown, then it can often be received in
one preliminary test by selecting the full set X as the test group.
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Theorem 5.2 Let X =Psn, T =P tn, t ≥ 2 be fixed, n → ∞, s = s(n) = λn + O(1) when
n→∞, 0 < λ ≤ 1

2
, 0 < γ < 1. Then N(n, t, s) = dN (as)(n, t, λ) + o(1)e as n→∞, where

N∗(n, t, λn)∼N (as)
0 (n, t, λ)=dgλ ((t+ 1) log2 n−log2(t− 1)!−1) e, (58)

gλ=
1

− log2(λ2+(1−λ)2)

and the minimal value of gλ is equal to 1 and is achieved at λ=1
2
. Also, for the weakly

separating designs,

Nγ(n, t, n/2) =
t log2 n−log2 tγ

2t−log2(2t)!+2 log2 t!
+ o(1), n→∞, (59)

and the value λ=1
2

is optimal in this case as well.

The theorem can be deduced from Theorems 4.1 and 5.1. We refer to Zhigljavsky and
Zabalkanskaya (1996) for its direct proof and a thorough discussion concerning this and
similar results for the additive model. We only note that for the optimal value of λ,
namely for λ=1

2
, the leading terms in the asymptotics in (58) and (59), for any 0 < γ < 1,

are

N∗(n, t, n/2) ∼ (t+ 1) log2 n and Nγ(n, t, n/2) ∼ 2t log n/log(πt) (60)

correspondingly, where n → ∞ and also t → ∞ in such a way that t/ log n → 0. The
relationship (60) demonstrates that the problem of weak separation can be resolved more
efficiently.

5.3 Binary model

Lemma 5.3 Let the test function be (34), 0 ≤ p ≤ m ≤ l ≤ n, p < l, and the test field
be X = Psn. Then

K(X , n, l,m, p)
|X | = pn,l,m,p,s

where

pn,l,m,p,s = 1− 1(
n
s

)
[(
n− l
s

)
+
(
n−m
s

)
− 2

(
n− l −m+ p

s

)]
. (61)

If moreover s = s(n) = λn+O(1), n→∞, where 0 < λ < 1, then

pn,l,m,p,s = rl,m,p(λ) +O
(

1

n

)
, n→∞ , (62)

where

rl,m,p(λ) = 1−
[
(1− λ)l + (1− λ)m − 2(1− λ)l+m−p

]
, n→∞ . (63)

23



The proof easily follows from (36) and the application of Lemma 5.1 three times, with
u = 0 and w = l, w = m, w = l +m− p.

Strongly separating designs

Here we consider the cases T = P tn and T = P≤tn , where t ≥ 2 is a fixed integer. We also
assume that X = Psn, the total number of factors n tends to infinity, s = s(n) = λn+O(1),
where n→∞, λ is some fixed number, 0 < λ < 1. There are many different asymptotic
formulae for the upper bounds depending on the relation between λ and t. We are mainly
interested in the ranges for λ giving the smallest asymptotic rate for the upper bounds
N(n, t, s) and N(n,≤ t, s) and we thus do not consider the whole interval (0,1) for λ. By
a similar reason we do not consider the test fields X = P≤sn : we did not find cases where
these sets provide better upper bounds than the sets X = Psn.

Let us first consider the case when the number of significant factors is known.

Theorem 5.3 Assume that the test function is (34), X = Psn, T = P tn, t ≥ 2 is fixed,
n→∞, s = s(n) = λn+O(1) as n→∞, 0 < λ ≤ 1

2
. Then N(n, t, s) = dN (as)(n, t, λ) +

o(1)e as n→∞, where

N (as)(n, t, λ) =
(t+ 1) log n− log(t− 1)!− log 2

− log(1− 2λ(1− λ)t)
. (64)

Proof. Corollary 4.2 implies the following expression for N(n, t, s):

N(n, t, s) = min



k :

t−1∑

p=0

Q(n, t, t, p) · pkn,t,t,p,s < 1



 (65)

where pn,t,t,p,s are defined in (61) with l = m = t and satisfy (62).
The statement follows from Corollary 5.1, Lemma 5.2 and the inequality

2t− p
− log rt,t,p(λ)

<
t+ 1

− log rt,t,t−1(λ)
(66)

which holds for any p = 0, 1, . . . , t − 2 and 0 < λ ≤ 1
2
; it is equivalent to the fact that

the maximum in (48) is attained at the unique value of the summation index: p = t− 1;
the inequality (66) follows from the fact that for any λ the left-hand side in (66) is an
increasing function of p in the interval [0, t− 1]. 2

Corollary 5.2 For fixed t and n the minimal value of N (as)(n, t, λ) defined in (64) is
reached when λ = 1/(t+ 1) and equals

N∗(n, t) = min
λ
N (as)(n, t, λ) =

(t+ 1) log n− log(t− 1)!− log 2

− log (1− 2tt/(t+ 1)t+1)
. (67)

The proof is straightforward. The corollary immediately implies that for n → ∞, t =
t(n)→∞ and t(n)/n→ 0 we have

N∗(n, t) ∼ e

2
t2 log n . (68)
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Consider now the case T = P≤tn .

Theorem 5.4 Let X = Psn, T = P≤tn , t ≥ 2 be fixed, n → ∞, s = s(n) = λn + O(1) as
n→∞, 0 < λ ≤ 1

2
. Then N(n,≤ t, s) = dN (as)(n,≤ t, λ) + o(1)e as n→∞, where

N (as)(n,≤ t, λ) =
t log n− log(t− 1)!

− log (1 + (1− λ)t − (1− λ)t−1)
. (69)

Proof. The proof is analogous to the proof of Theorem 5.3, the difference is that
we have the summation over m, l, p in the analogue of (65) rather than over p only and
that the term (α0, r0), where the maximum in (48) is attained, corresponds to the case
(l,m, p) = (t, t−1, t−1) rather than to the case (l,m, p) = (t, t, t−1) in the case T = P tn. 2

Corollary 5.3 For fixed t and n the minimal value of N (as)(n,≤ t, λ) defined via (69) is
reached when λ = 1/t and equals

N∗(n,≤ t) = min
λ
N (as)(n,≤ t, λ) =

t log n− log(t− 1)!

− log (1− (t− 1)t−1/tt)
. (70)

For illustration, Table 3 in the Appendix provides values of N∗(n,≤ t) for various t
and n.

Corollary 5.3 implies that for n→∞, t = t(n)→∞ and t(n)/n→ 0 we obtain

N(n,≤ t) ∼ et2 log n . (71)

Comparing (68) with (71) we see that, roughly speaking, the binary group testing
problem with large number of defectives is twice more complicated in the case T = P≤tn
than in the case T = P tn.

As it was mentioned in the Introduction, the asymptotic bounds (68) and (71) follow
also from the results in Dyachkov and Rykov (1983), which were derived by the applica-
tion of the probabilistic method based on the randomisation scheme R′, see Section 2.4
for a description.

Weakly separating designs

Theorem 5.5 Let T be either P tn or T = P≤tn , t ≥ 2, γ (0 < γ < 1) be fixed, X = Psn,
λt = 1−2−1/t, s = s(n) = λtn+O(1) when n→∞. Then Nγ(n, t, s) = dN (as)

γ (n, t)+o(1)e
and Nγ(n,≤ t, s) = dN (as)

γ (n, t) + o(1)e for n→∞, where

N (as)
γ (n, t) = t log2 n−log2 γ+c (72)

and c = c(t) is the solution of the equation

t−1∑

p=0

2−c(t−p)/t
t!

p!(t− p)!2 = 1 . (73)

Moreover, λt = 1− 2−1/t is the optimal value of λ providing the smallest value of the rate
of increase of both Nγ(n, t, dλne) and Nγ(n,≤ t, dλne) as n→∞.
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Proof. For λ = λt = 1− 2−1/t and every p = 0, . . . , t− 1 we have

t− p
− log2 rt,t,p(λ)

=
t− p

− log2(1− 1/2− 1/2 + 21+(p−2t)/t)
= t , (74)

where the quantities rt,t,p(λ) are defined in (63). The Stirling formula implies

|P tn| =
(
n

t

)
∼ nt

t!
for n→∞ and fixed t .

Using this and the equality (74) we obtain that in the sum inside (38) all the terms
corresponding to l = m = t and arbitrary p ≤ t − 1 have the same asymptotic rate as
n→∞.

The main statement of the theorem follows now from Theorem 5.1 and the inequality

l +m− p− t
− log rl,m,p(λ)

<
t− p

− log rt,t,p(λ)
, (75)

which holds for every l=1, . . . , t−1 ; m=1, . . . , t−1; p=0, 1, . . . , t−2 and λ = 1 − 2−1/t.
Indeed, substituting this value for λ in (63), the asymptotic formula for the Rényi coeffi-
cients, we have (74) and

l +m− p− t
− log2 rl,m,p(λ)

=
l +m− p− t

− log2(1− 2−m/t − 2−l/t + 2(p−m−l+t)/t)
.

Note that for l+m−p− t ≤ 0 the inequality (75) holds since the left-hand side of it is
non-positive and the right-hand side is positive.

Let l+m−p−t>0. Simple algebra implies

l+m−p−t
− log2(1−2−m/t−2−l/t+2(p−m−l+t)/t)

=
t

1+
t log2(1+2(l+m−t−p)/t−2(m−t−p)/t−2(l−t−p)/t)

t+p−l−m
<t

since
t log2(1+2(l+m−t−p)/t−2(m−t−p)/t−2(l−t−p)/t)

t+p−l−m > 0

for l < t,m < t, p < t− 2.
Let us show now that λ = 1−2−1/t is the optimal value of λ = λt. Indeed, consider the

term corresponding to l=m= t, p=0. Then λ = 1−2−1/t is the value where t/(− log2 rt,t,0)
achieves the minimum and therefore Theorem 5.1 implies that any other value of λ gives
a worse asymptotic rate for Nγ. 2

For illustration, Table 4 in the Appendix compares values of N∗(n, t), defined in (67),
and N (as)

γ (n, t), see (72), for T = P tn and different t, γ and n.
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5.4 Multiaccess channel

Lemma 5.4 Let the test function be (41), p, m, l be integers such that 0 ≤ p ≤ m ≤ l,
p < l, and let X = Psn, 0 < λ < 1, s = s(n) = λn+O(1), n→∞. Then

K(X , n, l,m, p)
|X | = pl,m,p(λ) +O

(
1

n

)
, n→∞ ,

where

pl,m,p(λ) = 1− (1 + (l − 1)λ)(1− λ)l−1 − (1 + (m− 1)λ)(1− λ)m−1 + (76)

2(1− λ)l+m−p + (l +m)(1− λ)l+m−p−1 + 2(l − p)(m− p)(1− λ)l+m−p−2 .

Proof is analogous to the proof of Lemma 5.3 and relies on the use of the formula (43)
for K(·) and multiple application of the combinatorial identity (27) and Lemma 5.1. 2

This lemma will now be applied to deriving the asymptotic expressions for the upper
bounds for the length of strongly separating designs in cases T = P tn and T = P≤tn . We
then optimize the choice of λ in both cases and consider the asymptotics when t is large.

Theorem 5.6 Let the test function be (41), X = Psn, T = P tn, t ≥ 2 be fixed, n → ∞,
s = s(n) = λn+ O(1) when n→∞, 0 < λ < 1. Then N(n, t, s) = dN (as)(n, t, λ) + o(1)e
as n→∞, where

N (as)(n, t, λ) =
(t+ 1) log n− log(t− 1)!− log 2

− log(1− 2λ(1− λ)t−1(1 + λ(t− 2))
. (77)

Proof. Corollary 4.8 and Theorem 5.4 imply that N(n, t, s) can be written as

N(n, t, s) = min



k = 1, 2, . . . :

t−1∑

p=0

Q(n, t, t, p) · rkn,t,t,p,s < 1



 , (78)

where

rn,t,t,p,s = rt,t,p(λ) +O
(

1

n

)
, n→∞ ,

and, according to (76),

rt,t,p(λ) = 1− 2(1 + (t−1)λ)(1−λ)t−1 + 2(1−λ)2t−p−2
(
(1−λ)2 + t(1−λ) + (t−p)2

)
.

The statement of the theorem follows now from Corollary 5.1 and the inequality

2t− p
− log rt,t,p(λ)

<
t+ 1

− log rt,t,t−1(λ)
,

which holds for every p = 0, 1, . . . , t − 2 and 0 < λ < 1; this inequality is equivalent to
the fact that the maximum (over p) in (48) is attained at p = t−1 and only at p = t−1. 2
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The optimal value of λ, which maximizes the denominator in the expression (77), is

λt = (t− 4 +
√

5t2 − 12t+ 8)/(2t2 − 2t− 4) . (79)

Note that λt is a continuous function of t and is defined for all t ≥ 1; for t = 2 we have
λt = 1

2
by continuity.

For illustration, Table 7 in the Appendix provides values of N (as)(n, t, λ), defined in
(77), for X = Psn, T = P tn, t = 4, 5, 6, various n and λ = λt.

It is interesting to note the following bounds for λt in (79), expressed in terms of the

Golden Section ϕ =
√

5+1
2
' 1.618034 :

ϕ

t
− ϕ

t2
< λt <

ϕ

t
, 1 ≤ t <∞,

which implies, in particular, that λt ∼ ϕ
t

as t→∞.
This yields the following corollary.

Corollary 5.4 For fixed t, the minimal value of minsN(n, t, s) defined in (77) is reached
when s = λtn+O(1), n→∞, and asymptotically, when t = t(n)→∞, t/n→ 0, equals

min
s
N(n, t, s) ∼ (ϕ− 3

2
)eϕt2 log n ,

where (ϕ− 3
2
)eϕ ' 0.595265.

Let us now consider the case T = P≤tn .

Theorem 5.7 Let the test function be (41), X = Psn, T = P≤tn , t > 1 be fixed, n → ∞,
s = s(n) = λn+O(1) as n→∞, 0 < λ < 1. Then for n→∞ the following holds:

(i) If either t = 2 or t = 3 then N(n,≤ t, s) = dN (as)(n, t, λ) + o(1)e, where
N (as)(n, t, λ) is defined in (77);

(ii) If t > 3 then N(n,≤ t, s) = dN (as)(n,≤ t, λ) + o(1)e, where

N (as)(n,≤ t, λ) =
t log n− log(t− 1)!

− log(1− λ(1− λ)t−2(1 + λ(t− 2))
. (80)

Proof is analogous to the proof of the previous theorem, the difference is that for t > 3
the decisive term in the expression for N(n,≤ t, s) corresponds to l = t,m = p = t − 1
rather than to l = m = t, p = t − 1; at the same time, for t = 2 and t = 3 this term
corresponds to l = m = t, p = t− 1, as in Theorem 5.6. 2

The optimal value of λ, which maximizes the denominator in the expression (80), is

λ≤t = (t− 3 +
√

5t2 − 14t+ 9)/(2t2 − 4t) (81)

(note that the expression (80) can be applied only for t ≥ 4).
For illustration, Table 8 in the Appendix provides values of N (as)(n,≤ t, λ) for X =

Psn, T = P≤tn , t = 4, 5, 6, λ = λ≤t and various n.
Analogously to the bounds for λt, we have

ϕ

t
< λ≤t <

ϕ

t
+

ϕ

6t2
for t ≥ 4,

which again gives the asymptotics λ≤t ∼ ϕ
t

when t→∞.
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Corollary 5.5 For fixed t ≥ 4 the minimal value of minsN(n,≤ t,s) defined in (80) is
reached when s=λ≤t n+O(1), n→∞, and asymptotically, when t= t(n)→∞, t/n→ 0,
equals

min
s
N(n,≤ t, s) ∼ (2ϕ− 3)eϕt2 log n

where (2ϕ− 3)eϕ ' 1.19053.

Corollaries 5.4 and 5.5 imply that, similarly to the binary model, for large t the case
T = P≤tn can be thought as twice more difficult than the case T = P tn.

6 Two Generalizations

6.1 Search with lies

Let us return to the concept of a general discrete search problem considered in Section 2.
Assuming that some test results may be wrong, we say that we have a search problem
with lies (errors). In this case the test result Y = Y (X,T ) at X ∈ X may differ from
f(X,T ).

There are different search models with lies. We only consider the problems, called
L-lie search problems, where the number of wrong answers is bounded by a given number
L ≥ 0. Also, we only consider the existence theorems for the strongly separating designs
(the case of weakly separating designs can be considered analogously).

Let us mention that if a search problem is solvable then it is solvable as the L-lie search
problem as well. Indeed, to provide a strongly separating design for the L-lie problem one
may take a strongly separating design for the ordinary 0-lie search problem and repeat
all the tests 2L+ 1 times. Analogously to the 0-lie case, strong separating designs should
provide unique identifiability of all T ∈ T .

An important observation is that if a non-sequential design DN = {X1, . . . , XN} is
applied in a general L-lie search problem, then one can guarantee that the target can
be uniquely defined if and only if the two vectors FT = (f(X1, T ), . . . , f(XN , T )) and
FT ′ = (f(X1, T

′), . . . , f(XN , T
′)) differ in at least 2L+ 1 components where (T, T ′) is any

pair of different targets in T . Let us formulate this observation as a proper statement.

Proposition 6.1. Let {T ,X , f,Y} be a general solvable L-lie search problem. A
non-sequential design DN = {X1, . . . , XN} is strongly separating if and only if for any
T, T ′ ∈ T , T 6= T ′

dH(FT , FT ′) ≥ 2L+ 1 , (82)

where FT = (f(X1, T ), . . . , f(XN , T )) , FT ′ =
(
f(X1, T

′
), . . . , f(XN , T

′
)
)

and dH(·, ·) is

the Hamming distance in YN .

Recall that the Hamming distance between two vectors F = (f1, . . . , fN) and F ′ =
(f
′
1, . . . , f

′
N) is the number of components of F and F ′ that are different; that is,

dH(F, F
′
) = the number of i (1 ≤ i ≤ N) such that fi 6= f

′
i .

29



The following statement is a generalization of Theorem 2.1 to the case of L-lie search
problem.

Theorem 6.1 (Existence theorem for the L-lie search problem.) Let {T ,X , f,Y} be a
solvable L-lie search problem and

kij = k(Ti, Tj) =| {X ∈ X : f(X,Ti) = f(X,Tj)} |
be the Rényi coefficients. Then there exists a non-sequential strongly separating design
with the length

N ≤ N∗(L) = min



k = 1, 2, . . . :

|T |∑

i=1

i−1∑

j=1

2L∑

l=0

(
k

l

)
(pij)

k−l (1− pij)l ≤ 1



 , (83)

where pij = kij/|X |.

Proof. For a given design DN = {X1, . . . , XN}, consider the matrix

AN = ‖f(Xi, Tj)‖N,|T |i,j=1

which rows correspond to the test sets Xi and the columns correspond to the targets Tj.
According to (82) the design DN is strongly separating if all the pairs (ai, aj), i 6= j, of

the columns of AN have at least 2L+ 1 different components; that is, dH(ai, aj) ≥ 2L+1.
Let (X1, X2, . . . , XN) be a random sample from X . Then for any fixed pair (i, j) such

that i 6= j (i, j = 1, . . . , |T |) and any integer l (0 ≤ l ≤ N) we have

Pr{dH(ai, aj) = l} =
(
N

l

)
(pij)

N−l (1− pij)l

and therefore

Pr{dH(ai, aj) ≤ 2L} =
2L∑

l=0

(
N

l

)
(pij)

N−l (1− pij)l

This yields

Pr{design DN is strongly separating}

= Pr{dH(ai, aj) ≥ 2L+ 1 for all i, j = 1, . . . , |T |, i 6= j}

= 1− Pr{dH(ai, aj) ≤ 2L for at least one pair (Ti, Tj) ∈ T ×T , i 6= j}

≥ 1−
|T |∑

i=1

i−1∑

j=1

Pr{dH(ai, aj) ≤ 2L} = 1−
|T |∑

i=1

i−1∑

j=1

2L∑

l=0

(
N

l

)
(pij)

N−l (1− pij)l

Applying Proposition 6.1 we obtain the required. 2
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One can consider a version of the L-lie search problem where all wrong answers are
the same; that is, the wrong results are equal to some y ∈ Y , and this value y can be
obtained by correct answers as well. This problem is a little simpler than the general L-lie
problem and in this problem it is enough to ensure that

dH(FT , FT ′ ) ≥ L+ 1,

rather than (82), to guarantee the strong separability of a design. For this problem the
upper bound (83) is reduced to

N ≤ min



k = 1, 2, . . . :

|T |∑

i=1

i−1∑

j=1

L∑

l=0

(
k

l

)
(pij)

k−l (1− pij)l ≤ 1



 . (84)

In Section 3 for several setups of the group testing problem we have derived the closed-
form expressions for the Rényi coefficients kij; we therefore can easily compute the upper
bounds (83) and (84) for the corresponding L-lie group testing problems as well. These
bounds will look similar to the ones formulated in Section 4 (but, of course, there is an
extra sum in the right-hand side of the corresponding expressions).

Let us now consider the modifications required to apply the asymptotic formulae of
Section 5 to the general L-lie search problem considered in Theorem 6.1 and compare
the L-lie and 0-lie problems in terms of the leading asymptotic terms. (In a simpler case
leading to (84), in all related formulae 2L has to be substituted by L.)

Note first that the upper boundsN∗(L) computed according to (83), form an increasing
sequence; that is, N∗(0) ≤ N∗(1) ≤ . . . In all asymptotic considerations above N∗(0)→∞
and thus in all corresponding L-lie problems N∗(L)→∞ for every L.

For fixed i and j denote p = pij = kij/|X | and consider the terms

p(k,l) =

(
k

l

)
pk−l(1− p)l (l = 0, . . . , 2L)

in the right-hand side of (83). Since we are interested in the values of k such that
k ≥ N∗(0)→∞, for each l < 2L we have

p(k,l)

p(k,2L)

=
(k − 2L)!(2L)!

(k − l)! l!

(
p

1− p

)2L−l
=

(2L)!

l!

(
p

1− p

)2L−l
1

k2L−l (1 +O(1)) = O
(

1

k

)

as k → ∞. This implies that the terms in the sum in the rigth-hand side of (83) corre-
sponding to l = 2L dominate all the other terms:

∑
i,j

∑2L
l=0

(
k
l

)
(pij)

k−l(1− pij)l
∑
i,j

(
k

2L

)
(pij)k−2L(1− pij)2L

= 1 +O
(

1

k

)
as k →∞ .

This yields the following result.
Proposition 6.2. For a fixed L, consider a family of solvable L-lie search problems

{T ,X , f,Y}n such that N∗(0)→∞ as n→∞. Then

N∗(L) ∼ NL = min



k = 1, 2, . . . :

|T |∑

i=1

i−1∑

j=1

(
k

2L

)
(pij)

k−2L (1− pij)2L ≤ 1



 (85)
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as n→∞, where N∗(L) is defined in (83) and both N∗(L) and NL depend on n.

For all k ≥ 6 and L = 0, 1, . . . , bk/4c we have
(
k

2L

)
≤ (k − 2L)2L .

Using this inequality, the inequalities 1 − pij ≤ 1 for all i, j and introducing the new
variable m = k − 2L we obtain from the definition of NL, see (85), that for fixed L ≥ 0
and large enough n (here n is such that N∗(0) ≥ max{6, 4L}):

NL ≤ 2L+ min



m = 1, 2, . . . such that m2L

|T |∑

i=1

i−1∑

j=1

(pij)
m ≤ 1



 . (86)

Note that in the right-hand side of (86) all the terms pmij decrease exponentially fast as
m→∞, while the multiplier m2L (which can be considered as a penalty for lies) increases
only as some power of m. This implies that we should expect that the asymptotic be-
haviour of N∗(L) is not much different from the asymptotic behaviour of N∗(0) as n→∞.

Proposition 6.3. Consider a family of L-lie search problems {T ,X , f,Y}n such that
pij ≤ r < 1 for some constant r and all n, i and j such that i 6= j. Assume also that
N∗(0) ∼ C log n as n → ∞ for some constant C. Then for any L ≥ 0 and ε > 0 there
exists n∗ = n∗(L, ε) such that

N∗(L) ≤ (C + ε) log n (87)

for all n ≥ n∗.

Proof. For every n and some ε > 0, let us consider m = (1 + ε)N∗(0) in the sum in
the right-hand side of (86):

m2L
|T |∑

i=1

i−1∑

j=1

(pij)
m = m2L

∑

j<i

(pij)
N∗(0) (pij)

εN∗(0) ≤ m2LrεN
∗(0)

∑

j<i

(pij)
N∗(0) . (88)

The definition of N∗(0) implies that the sum in the right-hand side of (88) does not
exceed 1; the multiplier m2L has the order of growth of a power of log n:

m2L = (1 + ε)2L(N∗(0))2L ∼ (C(1 + ε) log n))2L, n→∞;

at the same time, the multiplier rεN
∗(0) decreases as a power of n:

rεN
∗(0) ∼ rCε logn =

1

nb
, n→∞,

where b = −Cε log r > 0. This implies that the right-hand side of the inequality (88)
tends to 0 as n→∞ and will certainly be smaller than 1 for all large enough n. In view
of the inequality (86) this yields

NL ≤ 2L+ (1 + ε)C log n
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for all n large enough. The last inequality and the asymptotic relation (85) immediately
imply the statement of the proposition. 2

All the group testing problems considered above satisfy the conditions of Proposi-
tion 6.3. Therefore, we can apply it and deduce that the asymptotic behaviour of the
L-lie upper bounds N∗(L) for all these group testing problems asymptotically almost co-
incide (in the sense defined in Proposition 6.3) with the asymptotic behaviour of the 0-lie
upper bound N∗(0).

6.2 Binomial sample group testing problems

In this section we show how to modify the results of the paper for the binomial sample
group testing problem, that is for the problem of finding all defectives in a binomial sample.
Specifically, assume that each element in the set X = {x1, . . . , xn} has a prior probability
q to be defective and the events ‘element xi is defective’ are independent. We also assume
that the test function is defined by (2) and the test field X is balanced, for example,
X = Psn.

Strongly separating designs do not have much sense in this case. Unlike them, the
weakly separating designs can be of interest.

First, let us use the notation of Section 2.1 and generalize the definition of γ-separating
designs, see (3).

Let {T ,X , f,Y} be a solvable search problem and µ be a prior probability measure
on T . A design DN is called γ-separating with respect to µ if

µ{T ∈ T : design DN separates T in T } ≥ 1− γ , (89)

where γ is a fixed number, 0 ≤ γ ≤ 1.
In the binomial sample group testing problems T = P≤nn (that is, T is the set of all

possible subsets of X) and µ is such that

µt = µ{|T | = t} =
(
n

t

)
qt(1− q)n−t for t = 0, . . . , n .

Set

qX ,n,t,m,p =

{
K(X , n, t,m, p)/|X | if m ≤ t
K(X , n,m, t, p)/|X | if t ≤ m,

where K(X , n,m, t, p) are the Rényi coefficients for the test function (2), see Theorem 3.3
(note that using the convention K(X , n, t, t, t) = 0 of Theorem 4.1, we have qX ,n,t,t,t = 0
for all t = 0, . . . , n).

Theorem 6.2 (Existence theorem for weakly separating designs in the binomial sample
group testing problem.) Let us consider the binomial sample group testing problem, where
the test function is defined by (2), the test field X is balanced, each element of X has a
prior probability q to be defective and the events ‘element xi is defective’ are independent.

33



Then for any 0 < γ < 1 there exists a non-sequential γ-separating design with the sample
size N ≤ N(n, q, γ) =

min



k :

n∑

t=0

qt(1−q)n−t min




(
n

t

)
,

n∑

m=0

min{t,m}∑

p=0

(
n

p m−p t−p n−t−m+p

)
qkX ,n,t,m,p



 < γ





Proof. Let us extend the arguments proving Theorem 2.2. Let, as above, DN =
{X1, . . . , XN} be a random design. Then

PN = Pr{T is not uniquely determined after application of DN} =
n∑

t=0

µtPN,n,t(X ) ,

where PN,n,t(X ) is the probability

PN,n,t(X ) = Pr{T is not uniquely determined after application of DN | |T | = t} .

Note that X is a balanced test field and therefore the probability PN,n,t(X ) is correctly
defined; that is, it does not depend on the choice of a particular T such that |T | = t.

According to the definition of γ-separability, see (89), we need to choose N large
enough to guarantee

n∑

t=0

µtPN,n,t(X ) < γ . (90)

For a pair (T, T ′) of different elements of T set P (N, T, T ′) to be the probability of
the event that T and T ′ are not separated after N random tests. If T = Ti and T ′ = Tj
then, in the notation of Section 2.1, P (1, T, T ′) = pij = kij/|X |, where kij are the Rényi
coefficients and P (N, T, T ′) = (P (1, T, T ′))N .

Similarly to the proof of Theorem 2.2, for a fixed T , such that |T | = t, the probability
PN,n,t(X ) that after N random tests T is not separated from all T ′ 6= T , is less than or
equal to

PN,n,t(X ) ≤ QN,n,t(X )

where

QN,n,t(X ) = min{1, ∑
T ′ 6=T

P (N, T, T ′)} = min{1, S1 + S2 + S3} . (91)

Here

S1 =
∑

T ′:|T ′|<t
P (N, T, T ′), S2 =

∑

T ′ 6=T,|T ′|=t
P (N, T, T ′), S3 =

∑

T ′:|T ′|>t
P (N, T, T ′) .

The arguments analogous to those leading to (31) give

S1 =
1(
n
t

)
t−1∑

m=0

m∑

p=0

Q(n, t,m, p)

(
K(X , n, t,m, p)

|X |

)N
,
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S2 =
2(
n
t

)
t−1∑

p=0

Q(n, t, t, p)

(
K(X , n, t, t, p)

|X |

)N

and

S3 =
1(
n
t

)
n∑

m=t+1

t∑

p=0

Q(n, t,m, p)

(
K(X , n,m, t, p)

|X |

)N
.

Using the definition of qX ,n,t,m,p we obtain

S1 + S2 + S3 =
1(
n
t

)
n∑

m=0

min{t,m}∑

p=0

(
n

p m−p t−p n−t−m+p

)
qNX ,n,t,m,p .

The inequality

PN =
n∑

t=0

µtPN,n,t(X ) ≤
n∑

t=0

µtQN,n,t(X ) =
n∑

t=0

(
n

t

)
qt(1−q)n−t min{1, S1+S2+S3}

and the definition of γ-separability, see (90), implies the statement of the theorem. 2

The binomial sample group testing problem is more difficult than the related group
testing problem for T = P≤τn with τ = nq (here τ is the average number of defective
elements in X) in the following two aspects: (i) we have to test the separation of the
unknown target T from all the alternatives T ′ ∈ P≤nn rather than only from those with
|T ′| ≤ |T |, and (ii) the number of defective elements can be larger than τ .

The first difficulty is related to the inclusion of the term S3 into the sum S1 +S2 + S3

in the right-hand side of (91). This term may dominate the other two terms (S1 and S2

correspond to the alternatives T ′ with |T ′| < |T | and |T ′| = |T |, respectively) and thus
the derivation of the asymptotic formulae for the upper bounds may change.

The second difficulty can be dealt with by restricting the number of defective elements
in T by the smallest τδ = τ(n, q, δ) such that

Pr{|T | ≤ τδ} =
τδ∑

t=0

(
n

t

)
qt(1−q)n−t ≥ 1− δ (92)

and leaving the other part of γ for the probability of separating the elements of P≤τδn .
Here δ can be chosen as any positive number such that δ < γ.

The quantity τδ is just (1−δ)-quantile of the Binomial distribution Bin(n, q). If n is
large then either normal or Poisson (if the value of nq is small) approximations can be used

to approximate τδ. Using the normal approximation, we obtain τδ ' nq + tδ
√
nq(1− q),

where tδ is the (1−δ)-quantile of the standard normal distribution. We can also use the
Chebyschev inequality Pr{ξ ≥ Eξ + a} ≤ var(ξ)/a2 , where ξ ∼Bin(n, q), Eξ = nq and
var(ξ) = nq(1 − q). Solving the equation var(ξ)/a2 = δ with respect to a, we obtain

τδ ≤ nq +
√
nq(1− q)/δ. In either case, τδ can be expressed as τδ =nq+c

√
nq, where c is

some constant, c≤
√

(1−q)/δ.
We use these arguments to simplify the upper bound of Theorem 6.2 so that the results

of Section 5 can be directly used to obtain the asymptotic versions of the upper bounds
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in the binomial sample group testing problems.

Proposition 6.4. Consider the binomial sample group testing problem with the prob-
ability q for the elements of X to be defective. Let also δ and γ be such that 0 < δ < γ < 1
and τδ is the (1−δ)-quantile of the Binomial distribution Bin(n, q). Then there exists a
non-sequential γ-separating design with the sample size

N ≤ Nθ(n,≤τδ) , (93)

where θ = (γ− δ)/(1− δ) and Nθ(n,≤ t) is the length of the optimum θ-separating design
for T = P≤tn , the same test field and the same test function.

Proof. In the notation used in the proof of Theorem 6.2, for each t = 1, . . . , n we
have the inequality

1−PN = Pr{T is uniquely defined after N random tests} ≥

Pr{T ∈ P≤tn } Pr{T is uniquely defined after N random tests |T ∈ P≤tn } .
Let us choose t = τδ and apply the minimal length θ-separating design in T ∈ P≤tn .
We then obtain using (92) and (3) that the right-hand side of the last inequality is
larger or equal than (1 − δ)(1 − θ). Therefore, recalling the definition of θ, we obtain
1− PN ≥ (1− δ)(1− θ) = 1− γ. This implies the inequality (93). 2

Note that in the asymptotic versions of the upper bounds, the value τδ typically comes
as a multiplier in the constant C of the main term C log n, while the value of the difference
γ − δ does not affect the value of C; this effect is similar to that observed in Section 5,
see, for example, (59) and (72). Therefore, the value of δ should be chosen so that γ − δ
is much smaller than δ (at least, when n is large).

The inequality (93) does not seem as sharp as (90) but it is very convenient for deriving
the asymptotic upper bounds: indeed, it estimates the upper bounds for a binomial sample
group testing problem through the upper bounds for the related group testing problem
with T = P≤tn . The asymptotic versions of the upper bounds for T = P≤tn have been
derived in Section 5 and can thus be applied to obtain upper bounds in the binomial
sample case.

As an example, consider the most important case of the binary model, when the test
function is defined by (34). In this case Theorem 5.5 and the inequality (93) imply that
for any 0 < γ < 1 there exists a non-sequential γ-separating design with length

N ≤ τδ log2 n+O(1) as n→∞ ,

where (if the normal approximation is used) τδ = nq+ tδ
√
nq(1− q) +O(1) as n→∞, tδ

is the (1−δ)-quantile of the standard normal distribution and δ is any number such that
0 < δ < γ.
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Appendix: Tables

Binary model

λ n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
0.05 32 98 127 184 218 261
0.10 32 56 85 105 124 149
0.15 24 44 64 82 96 115
0.20 24 40 59 73 86 102
0.25 25 39 58 71 83 99
0.30 25 41 59 73 86 102
0.35 34 45 66 79 92 110
0.40 34 52 73 89 104 124
0.45 59 62 90 105 122 145
0.50 59 79 107 128 149 176

Table 1: Values of N∗(n, t, s), see (39), for t = 3, s = dλne, various n and λ.

λ n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
0.05 59 161 195 279 326 388
0.10 59 88 126 153 179 212
0.15 36 65 89 112 132 156
0.20 36 55 78 94 110 131
0.25 32 50 70 86 100 119
0.30 32 48 68 82 96 113
0.35 37 50 70 84 97 115
0.40 47 54 76 91 106 125
0.45 59 64 91 105 122 145
0.50 59 79 107 128 149 176

Table 2: Values of N∗(n,≤ t, s), see Corollary 4.3, for t = 3, s = dλne, various n and λ.
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n t = 2 t = 3 t = 4 t = 5 t = 10
500 44 111 207 326 1249

1 000 49 125 232 367 1425
2 000 53 137 256 407 1600
5 000 60 156 290 461 1832

10 000 65 169 315 502 2008
30 000 72 189 354 566 2286
50 000 76 199 373 596 2415

Table 3: Values of N∗(n,≤ t), see (70), for various t and n.

n t = 3 t = 4

N∗ N
(as)
0.05 N

(as)
0.0001 N∗ N

(as)
0.05 N

(as)
0.0001

500 100 33 42 100 42 51
1 000 111 36 45 111 46 55
2 000 112 39 48 112 50 59
5 000 138 43 52 138 55 64

10 000 150 46 55 150 59 68
20 000 162 49 58 162 63 72
30 000 169 50 59 169 65 74

Table 4: Values of N∗(n, t), see (67), and N (as)
γ (n, t), see (72), for T = P tn, t = 3, 4.

Multiaccess channel

λ n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
0.05 32 98 116 169 198 236
0.10 32 49 71 86 101 120
0.15 17 34 46 59 69 82
0.20 17 26 38 46 54 64
0.25 12 22 31 39 46 54
0.30 12 20 29 35 41 49
0.35 12 19 27 33 39 46
0.40 12 19 27 33 38 46
0.45 13 19 28 34 40 47
0.50 13 21 30 36 42 50

Table 5: Values of N∗(n, t, s), see (44), for T = P3
n, X = Psn with s = dλne.
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λ n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
0.05 37 126 159 236 281 339
0.10 37 64 99 124 148 178
0.15 19 45 68 90 107 129
0.20 19 38 60 76 91 110
0.25 18 35 56 71 85 103
0.30 18 36 58 72 86 104
0.35 27 40 64 79 94 113
0.40 27 48 73 90 107 129
0.45 58 60 93 109 129 155
0.50 58 82 115 140 165 197

Table 6: Values of N∗(n, t, s) for t = 5, X = Psn, s = dλne, various n and λ.

n t = 2 t = 3 t = 4 t = 5 t = 10
100 19 33 52 74 224
500 26 46 72 103 331

1 000 29 51 81 116 377
5 000 36 64 101 146 484

10 000 39 69 109 159 530
100 000 49 87 138 201 682

1 000 000 59 105 167 243 835

Table 7: Values of N (as)(n, t, λ), see (77), for X =Psn, T =P tn, various t, n and optimum λ.

n t = 4 t = 5 t = 6 t = 10
100 56 91 132 351
500 77 127 188 521

1 000 86 143 211 594
5 000 108 180 267 764

10 000 117 195 291 837
100 000 148 248 370 1080

1 000 000 178 300 450 1322

Table 8: Values of N (as)(n,≤ t, λ), see (80), for X = Psn, T = P≤tn , various t, n and
optimum λ.
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