
SEARCH

J.H. O’Geran, City University, London.
H.P. Wynn, City University, London.

A.A. Zhigljavsky, Leningrad University, St. Petersburg.

Keywords: Search,screening,optimization,entropy,sequential design, Bayes.

Abstract. The paper reviews the theory of search. The main viewpoint is statis-
tical but considerable space is spent on connections with other fields such as logic
and optimization. Three primitive ideas dominate: consistency, entropy and Bayes
methods. The theory of screening provides one of the central examples and there
is a section on non-sequential random search deriving from the work of Renyi. The
game of “bulls and cows” provides a motivating example for both sequential and
non-sequential algorithms.

1. Introduction

Search is a vast area if a simple paper-count is made. It also straddles many
different disciplines. Because of the normal intellectual separation between disci-
plines, it is not surprising to find the same ideas rediscovered or dressed differently
in various places. Fortunately, however, the differences seem to be crumbling and
we have been able to make a synthesis. We have conciously given the paper a statis-
tical slant and tried to draw together some of the results in the statistical literature
while making connections across to other disciplines. Within statistics screening and
group-testing are areas where search methodologies have been employed directly but
otherwise search has been a subliminal and even neglected subject.

There is a view that search may be a fundamental component to epistomology.
There is not the space to develop this idea here but it is enlightening to quote
from the American pragmatist philosopher C.S. Pierce on the game of 20 Questions
(Pierce, 1901)

“...twenty skillfil hypotheses will ascertain what two hundred thousand stupid
ones might fail to do. The secret of the business lies in the caution which breaks
a hypothesis into its smallest logical components, and only risks one of them at a
time. What a world of futile controversy might have been saved if this principle had
guided investigations...”

The idea of bifurcation, inherent in the game of questions is, of course, an ingre-
dient of many search methods, logic (true, false) and binary coding theory. The links

1

into these subjects are spelled out here but some of the more profound relationships
such as between search, packing information and computability are only touched on.
These are topics of research by the authors and they would be happy to stimulate
others to work on the connections. It is useful to cast search in the framework of
“observer logics” in which the result of observation is to impose futher constraints or
axioms on the system. If the authors were forced to choose then this would probably
be the preferred formulation.We note that we have not devoted space to globally
optimal dynamic programming (Bellman) solutions which prove to be intractable
for many non-linear search problems of the kind we cover.

A broad separation in the field is between sequential and non-sequential proce-
dures. Although most of the review is taken up by sequential procedures we use
the opportunity to expose some basic work on non-sequential procedures which can
provide bench-marks for the optimality of sequential methods. Understanding the
distinction between the two is important.

2.A set formulation

Search is an active process. It has a similar status to sequential experimentation,
dynamic control, optimization and a host of areas in which decisions need to be
made before and after observation. It could be cast as a “dynamic decision process”
or in some similar framework but we wish to avoid particular subject-labels. The
primitive notion adopted here is that the searcher selects a test set X to try to
identify a target set T . If X is chosen in the “right place” then it should interact
with T in some sence. For example if T and X have some elements in common, or
otherwise, then this may be recorded in some way.

Proceeding formally let X be a collection of units. The units may be subjects,
parameters, items, components etc. The target field T is a member of B(X) the
Borel subsets of X. Thus B(X) includes all finite intersections and subsets of X. In
much of what follows X will be finite. Write in this case

T = {T1, T2, ...} ⊆ B(X)

so that the target T = Tj for some j. A simplification in this review, which will
be retained throughout except where explicitly changed, is to take the search field
also to be subsets of the same units:

X ⊆ B(X)

In very special cases T = X but such cases are of considerable interest (see
Section 11 on the game of “bulls and cows”). The interaction between X ∈ X and
T ∈ T is measured by a non-negative search function

f : X × T → R+.

2

an evaluation of this function in a real situation is thus written f(X,T) and is
referred to as an observation. A search problem is the quadruple

J = (X, T ,X , f)

Sometimes we omit X from the quadruple.
The first primitive notion concerns the identifiability of the search problem.

Definition 1. A target t ∈ T is said to be achievable within the search problem
J = (X, T ,X , f) if for any T ′ ∈ T such that

f(X,T) = f(X,T ′) for all X ∈ X
it follows that T = T ′.

The idea here is that the search field together with the search function f is
enough to distinguish the target T . Now since T will typically be unknown and
may potentially take any “value” in T , the last definition leads naturally to

Definition 2. A search problem J = (X, T ,X , f) is solveable if every T in T is
achievable within J .

Solving a search problem J means finding the target set T or getting “close” in
some sense. Naturally observing f at every set X is usually not efficient so fast
algorithms are needed to find T . An algorithm, then, is a procedure which results
in a ordered collection of test sets in X called a test sequence:

A = {X1, X2, ..., XN} ⊆ X (N ≤ ∞)

An algorithm is called sequential if the observations

f(X1, T), f(X2, T), ..., f(Xt, T)

are used to determine Xt+1. Sometimes it is convenient to use the notation

Yt = f(Xt, T)

for the t-th observation. If the test sets X1, X2, ..., XN are chosen in a way func-
tionally independent of the observations then the algorithm is called non-sequential.
Note that in some cases N may be random. An algorithm giving rise to a test se-
quence A = {X1, X2, ..., XN} is said to be strongly separating if the search problem

J ∗ = (X, T ,A, f)

is always solveable. “Always” here, acknowledges the fact that A may depend on T .

3

Strongly separating means that there is no different T ′ 6= T leading to the
same sequence of observations {Yt}. Thus the algorithm distinguishes (separates)
the T ∈ T . Typically the algorithm will expose the true T at the last observation:
YN .

3. Consistency, predictability, admissibility.

A fundamental idea which pervades much of the methodology for deterministic
algorithms is that which is defined here as consistency. This is not exactly identified
with the concept of a consistency in statistics although there is a strong philosophical
connection. Indeed the present notion of consistency is a logical non-probabilistic
version of the statistical concept. The idea, here, is that if T is the true target then
the values

Y1 = f(X1, T), ..., Yt = f(Xt, T)

logically restrict the class of possible Tj which may remain as candidates to be the
target T .

Definition 3. For an algorithm A and a target T , a set Tj ∈ T is said to be
t-consistent with respect to T and A if

f(Xi, T) = f(Xi, Tj) (i = 1, 2, ..., t)

The set of t-consistent target sets is denoted T ∗
t but it should not be forgotten that

it depends on T and A. Note that T ∈ T ∗
t for all t.

A basic procedure for many algorithms is to eliminate after t observations all
Tj 6∈ T ∗

t .

Example 1. Group testing.

Define a search function f as binary if

f(X, T) =

{
= 1 if X ∩ T 6= ∅
= 0 otherwise

Then J ∗
t consists of all Tj for which

(a) f(Xi, Tj) = 1 for all i = 1, 2, ...t such that Xi ∩ T 6= ∅

(b) f(Xi, Tj) = 0 for all i = 1, 2, ...t such that Xi ∩ T = ∅
Thus considering (a) as defining live sets Xi and (b) dead sets, any Tj which does
not intersect a live set or which does intersect a dead set is eliminated.

Elimination above is taken in an “estimation” sense, information is gained by
eliminating sets which are definitely no longer candidates to be T . A similar notion

4

applies to test sets Xi. That is some Xi can be eliminated as not providing any
information about T .

Definition 4. A test set Xt+1 is said to be t-predictible for T in J if the value

Yt+1 = f(Xt+1, T)

can be determined without actual observation. That is there is a known function H
such that

Yt+1 = f(Xt+1, T) = H(Y1, ..., Yt).

By a known function we mean computable from knowledge of J and Y1, ..., Yt but
without any additional knowledge about T .

The following is a duality theorem connecting t-consistency and t-predictibility.
The proof should be taken as applying when X is finite.

Theorem 1. For a target set T and an algorithm A the set Xt+1 is t-predictible if
and only if

T ∗
t = T ∗

t+1

that is, the t-consistent and (t + 1)-consistent sets are identical.

Proof. Assume Xt+1 is t-predictible. By t-consistency of T ∗
t ,

f(Xi, Tj) = f(Xi, T) (i = 1, 2, ..., t)

for all Tj ∈ T ∗
t . But then for Tj ∈ T ∗

t

f(Xt+1, T) = H(f(X1, T), ..., f(Xt, T))
= H(f(X1, T), ..., f(Xt, Tj))
= f(Xt+1, Tj).

Hence T ∗
t ⊆ T ∗

t+1. But trivially T ∗
t+1 ⊆ T ∗

t thus T ∗
t+1 = T ∗

t .
Assume that T ∗

t+1 = T ∗
t . Then no more sets are eliminated after observing

Yt+1 = f(Xt+1, T). That is for all Tj ∈ T ∗
t , f(Xt+1, T) takes the same value. Since

T ∗
t is a known collection, that is can be evaluated by checking against Y1, ..., Yt,

selection of any member of Tj ∈ T ∗
t will yield

f(Xt+1, T) = f(Xt+1, Tj).

The formal definition of H is: H(Y1, ..., Yt) = f(Xt+1, Tj) for any Tj in T ∗
t for which

f(Xt+1, Tj) = f(Xt+1, T) (i = 1, ..., t). 2

A more general notion than predictability is that of admissibility. To understand
this we need to define an idea of “gives more information than” in terms of the
structure of the set T ∗

t .

5

Definition 5. A partion Q of a collection T is a subdivision into disjoint subcol-
lections: T = T (1) ∪ ∪ T (k). A partition Q of T is finer than a partition Q′ if
for any T (i) in Q there is a T ′(j) in Q′ such that T (i) ⊆ T ′(j) and for some pair i, j
there is strict inclusion.
This idea of a finer partition of is fundamental to the idea that an observation using
one particular X is better than with another. An observation induces a partition
on T into blocks within which all Tj have the same observation value f(X, T) and
across which have different values.

Definition 6. A test set X ′
t+1 is t-inadmissible (relative to observations Yi =

f(Xi, T), i = 1, ..., t) if there is a different test set Xt+1 which induces a finer
partition of T ∗

t . If the partition of T ∗
t induced by Xt+1 is either finer than or equal

to the partition induced by X ′
t+1 we use the term weakly inadmissible.

Theorem 2.
(i) If there is a t-nonpredictable test set Xt+1 then any t-predictable set is t-
inadmissible.
(ii) Assume that X ′

t+1 is t-inadmissible and an admissible set Xt+1, which dominates
X ′

t+1 in the sense of Definition 6, is used at time t + 1, then if there is a (t + 1)-
nonpredictable set Xt+2 then X ′

t+1 is (t + 1)-inadmissible.
(iii) If X ′

t+1 is t-inadmissible then it is (t + 1)-weakly inadmissible (whatever Xt+1

is used).
The interpretation of this theorem is that, provided improvements continue to be
made, once a test set is inadmissible it remains so.

Proof. The proof of (i) is immediate since Xt+1 is t-nonpredictable if and only if T ∗
t

is not partitioned at all. Part (ii) follows since any (t + 1)-predictable set produces
a finer partition than T ∗

t itself, by part (i). But using X ′
t+1 at time t + 1 cannot

produce a finer partition than is generated by T ∗
t+1 itself since the latter already

generates a finer partition. Part (iii) follows a similar argument.
There is a strong relationship here with the statistical notion of maximum like-

lihood or Bayes rules. In statistics one may consider heuristically what parameter
values give the highest (posterior) probability of achieving the given data. If this
probability for a given parameter value is actually zero then such a parameter value
would under no circumstances be allowable as an estimator. We shall return to this
idea in Section 9.

4. Matrix representation.

Matrix representations of search are useful and provide strong connections with
experimental design and coding theory. Define the search matrix of a (finite) search

6

problem J by

S =




f(X1, T1) . . . f(X1, TM)
. .
. .
. .

f(Xk, T1) . . . f(Xk, TM)




the rows of S are indexed by the test field X and the columns by the target field

T . The following is evident.

Proposition 1. A search problem J = (X, T ,X , f) is solvable if and only if all
the columns of S are different.

The matrix S, of course, does not need to be calculated explicitly and is usually
very large. An algorithm uses only some rows of S, picked sequentially or non-
sequentially. The elimination in passing from T ∗

t to T ∗
t+1 in Section 2 is equivalent to

deleting all columns of S incosistent with the existing data. Notice a slight ambiguity
of notation between the order in X and the algorithmic order X1, ..., Xt, ... of the
rows.

Let X ∗
t be the set of t-nonpredictable sets and T ∗

t be the set of t-consistent sets,
then let

J ∗
t =

{
f(X, T)

}
X∈X ∗t , t∈T ∗t

.

The procedure which eliminates any X not in X ∗
t+1 and any T not in T ∗

t+1 is interpri-
tated as (a) delete any row of S∗t with elements all equal and (b) delete any column
not consistent with the T -column.

Similarly, for an algorithm let

SN =
{
f(Xi, T)

}
i= 1,...,N ; T∈T

be the submatrix for the actual realised test sets X1, ..., XN . Then the following can
be stated.

Proposition 2. Let J be a solveable search problem. Then a search problem is
strongly separating if one and only one column of the submatrix SN corresponds to
the data vector (transposed) (f(X1, T), ..., f(XN , T))T .

For a non-sequential algorithms the condition of Proposition 2 should hold re-
gardlees of the test results (i.e. regardless of the true set T) thus a stronger condition
is required.

Proposition 3. A non-sequential algorithm is strongly separating if all the columns
of SN are different.

7

If the consistency approach is taken to eliminate consistent columns as the algo-
rithm procedes then it will solve J if and only if one column remains, that corre-
sponding to the true target T .

5. Tree Representation.

A convenient way to represent a sequential search algorithm is by a decision tree.
In this context a tree consists of inner nodes, branches and outer nodes, or leaves.
Inner modes may be thought of as a corresponding to test sets Xt ∈ X specified by
the algorithm, branches as corresponding to the observed outcomes of these tests,
and leaves corresponding to a partition of the target set T .

The search is defined by a direct path through the tree, performing the tests
represented by each of the inner nodes encountered and following the branch corre-
sponding to the outcome of the test until a branch leads to a leaf, at which point
the search is finished. The leaf represents the subset of the target set T which is
consistent with all of the test results observed along the path through the tree.

Example 2. Bad Penny.
A number of coins are of the same weight except one which is heavier. With

the aid of a balance scale the odd coin is to be found with a minimum number of
weighings. Figure 1 shows the tree representing the optimal solution for nine coins,
where the coins are arbitrarily labelled A,B, ..., I.

¢
¢
¢
¢¢

A

A HEAVIER

B

BALANCE

A
A

A
AA

C

C HEAVIER

¢
¢
¢
¢¢

D

D HEAVIER

E

BALANCE

A
A

A
AA

F

F HEAVIER

¢
¢
¢
¢¢

G

G HEAVIER

H

BALANCE

A
A

A
AA

I

I HEAVIER
¢
¢
¢
¢
¢¢

A
A

A
A

AA

¢
¢
¢
¢
¢¢

A
A

A
A

AA

¢
¢
¢
¢
¢¢

A
A

A
A

AA

½
½

½
½

½
½

½

WEIGH A vs C WEIGH D vs F

Z
Z

Z
Z

Z
Z

Z

WEIGH G vs I

ABC HEAVIER

BALANCE

½
½

½
½

½
½

½

Z
Z

Z
Z

Z
Z

Z

GHI HEAVIER

WEIGH ABC vs GHI

8

Fig. 1. Optimal tree for bad penny problem.

An inner node corresponding to a test set Xt is said to be the parent of all
nodes connected to it by the branches corresponding to the possible test outcomes
f(Xt, T). A node is its parents’ offspring. If there is a path leading from a node
corresponding to test set Xt to one corresponding to Xt+k (k = 1, 2, ...), then the
latter is the former’s descendent. A node is its descendent’s ancestor. A tree is said
to be rooted if the following three conditions hold.

(1) There is a single node, called the root, which is the ancestor of all other
nodes.

(2) No node is its own ancestor (i.e. there are no “loops” in the tree).
(3) Each node other than the root has exactly one parent.

In search terms, condition (1) corresponds to an algorithm having a unique starting
point X1. Condition (2) specifies that a search should not repeat a test or sequence of
tests (there are of course search problems where one may wish to repeat observations,
for example in the presence of observation errors, but these cases are not discussed
here). Although condition (3) demands unique parentage of nodes, it may be the
case that two or more nodes correspond to the same test set.

Several properties of a search may be considered in terms of the tree representa-
tion. A search is strongly separating if and only if the leaves of the tree correspond
to individual target sites Ti ∈ T and the union of the sites is T . At time t during
the search the consistent set T ∗

t is the union of the target subsets corresponding
to the set of leaves which are descendents of the current node. From this and the
definition of predictability, it follows that a test set is predictable if and only if its
corresponding node has exactly one offspring.

For a strongly separating design suppose that there is a probability distribution
on the target sites and write pi = prob(Ti = T ; Ti ∈ T) i = 1, ..., M , so that each
leaf can now be considered as having a probability, or weight, of being the stopping
point of the search through the tree. The length of a leaf is defined as the number
of branches along the unique path from the root to that leaf. Hence the expected
number of tests in the search is

∑M
i=1 pili where li is the length of the i-th leaf.

Example 3. Alphabetic tree search.
Suppose the target set (and hence the set of leaves on the tree) have some

arbitrary or natural ordering, and relabel the elments of T in such a way that
T1 < T2 < ... < TM , where “a < b” is not necessarily a numerical comparison but
rather has the meaning that a comes before b with respect to the ordering. An

9

alphabetic search is where the test function can be written in the form

f(X,T) =





−1 if X < T
0 if X = T
1 if X > T

(1)

An example of such a test function is where one is sorting an alphabetically ordered
list of files, picking a file at random or according to some rule, and if the target is
not found, choosing another file with respect to the previous results. There are two
main versions of such a search which may be thought of as retrieval and insertion.
When retrieving a file, assuming that the file exists, the test field and target field
coincide, i.e. X = T . All three outcomes of f(X, T) given in (1) are possible in this
case.

When inserting a file however, assuming the file does not have the same name
as any other file in the list, the target corresponds to a “space” between two files.
Suppose there are M−1 files in the list. As before the test field is the set of files, label
these X1, X2, ..., XM−1. Then the target field may be written as { T1, T2, ..., TM }
where

T =





T1 if T < X
Tj if Xj−1 < T < Xj

TM if T > XM−1

(1)

Hence, in this case, f(X, T) as in (1) can only take the values ±1. It will be seen
in Section 10 that the nested binary group testing problem can be considered as a
sequence of alphabetic retrieval searches.

For the retrieval case, suppose that prob(T = Ti) = pi, hence {pi}i=1,...,M form
a set of weights on the leaves of the search tree. Then the following “bottom up”
tree construction gives the optimum algorithm (in the average case) for solving this
problem.

Step 1. Start with outer nodes p1 , p2 , . . . , pM . Combine the nodes i and j
are chosen according to the following rules:

(i) No end-node occurs between i and j.
(ii) The sum pi + pj is minimum among all (i, j) satisfying (i).
(iii) The index i is minimum over all (i, j) satisfying (i), (ii).
(iv) The index j is minimum over all (i, j) satisfying (i), (ii), (iii). This is

repeated until only one node remains, i.e. a rooted tree has been constructed. Each
outer node is then assigned its length li as its weight. Inner nodes are discarded
and a new tree is constructed by combining nodes i and j where i and j satisfy the
following rules:

10

(i) The nodes i, j are adjacent in the sequence.
(ii) The lengths li, lj are maximal.
(iii) The index i is minimal over all (i, j) satisfying (i), (ii).

6. Belief measures and random T .

It will turn out that a convenient way of generating good algorithms is to let the
choice of the test set Xt+1 depend on our state of knowledge or belief. Our belief at
time t or after t observations is measured, then, by a belief function µt on B(T),
that is a collection of sets in T . This represents our current beliefs about the possible
candidates for T . The notation µt({Ti}) refers to the value of the function at the set
{Ti} constructed now as a single point in B(T). Thus for example, {T1} ∪ {T1, T2}
is the pair {T1} and {T1, T2} and is not to be confused with say, T1 ∪T2 or {T1, T2}.
The advantage of placing the belief function on B(T) rather than, say, on X itself
will become clearer as we procede.

Example 4. Alphabet.
Let X be the letters of the alphabet a,b, . . . ,z . Let T be the collection of all

target words and T be a target word. Then if µt is a measure on B(T) this can be
consideredd as a function on the collection of words. It represents for a particular
collection of words the belief that T lies in the collection.

The following axioms will often be assumed, but will be made clear at the time.

(i) (normalization) For all T ∈ T , 0 ≤ µt({T}) ≤ 1.
(ii) (elimination) For any B ∈ B(T), µt(B) = 0 ⇒ T /∈ B.
(iii) (achievment) µt({Tj}) = 1 and µt({Tj}) = 0 for all Ti ∈ T , Ti 6= Tj, ⇒ T = Tj.
(iv) (additivity) For disjoint B1, B2 in B(T), µ(B1 ∪B2) = µ(B1) + µ(B2).

It transpires that the measure µt is a convenient way to put certain sequential
and non-sequential algorithms into the same framework.

For the non-sequential algorithms defined in the next section one is only con-
cerned with µ0, a start measure which defines a prior assumption in the location of
T . For example if each unit x is in T independently with probability p (the Bernoulli
assumption) then this clearly induces a belief measure on T :

µ0(T) = p|T |(1− p)M−|T |

where |T | is the size of T . For non-sequential algorithms all probabilities are then
evaluated with respect to µ0.

For Bayes, entropy based and similar strategies a typical algorithm will look like
this:

11

µ0 µ1 µ2

X1 X2 . . .

f(X1, T) f(X2, T)

¡
¡

¡µ

¡
¡

¡µ

¡
¡

¡¡µ

¡
¡

¡¡µ

? ?

There are two decision rules to study. The first is to select a new test set based on
current beliefs

µt → Xt+1

and then to update the beliefs using the new observation f(Xt+1, T). A warning
is due at this point. It is to be expected that µt should summarise all the current
information about the “state” of the system. However it is a very familiar fact
that this is over simplistic. It is often very difficult to achieve a globally optimum
sequential procedure with a simple one-step-ahead algorithm. This complicates
many sequential decision procedures in sequential experimentation, dynamic control
and AI.

7. Non-sequential algorithms.

It turns out that the matrix representation of Section 3 is particularly useful in
assessing non-sequential measure µ0 is taken to be a proper probability measure.

Definition 7. A search algorithm leading to a design A = {X1, . . . , XN} is called
γ-separating with respect to an initial probability measure µ0 if

µ0(|T ∗
N | = 1) ≥ (1− γ) (0 ≤ γ < 1)

where T ∗
N is the N -consistent set for A.

The quantity µ0(|T ∗
N | = 1) is be interprited as the probability that the final

consistent set of the algorithm contains only one member (the target). Therefore
a γ-separating algorithm finds the target with probability not less than 1 − γ. A
γ-separating algorithm in general is called weakly separating. A strongly separating
algorithm then, as defined in Section 2 is 0-separating in the present terminology
and because of the inequality in Definition 7 is γ-separating for any γ > 0. For
strongly separating algorithms |T ∗

N | = 1 with probability one. Usually 0-separating
disigns are also strongly separating.

It is sometimes the case that for a search algorithm the γ-separating property is
defined with a probability measure other than µ0. This is typically the case when
the algorithm itself is random, that is the search introduces a probability in selection

12

of the test sets X. Great care must be taken in reading the literature in establish-
ing where the probabilities come from and distinguishing between prior/posterior
probabilities and randomization in the choice of test set.

There are several reasons for the popularity of random search in the sense of
selection of X. Here are two. First, random algorithms may be useful when the
construction of optimal or good design is too complex. Roughly a random search
may have reasonably “space-filling” features. Second, if bounds for µ0(|T ∗

N | = 1) or
prob(|T ∗

N | = 1) can be found under a randomization scheme then the existence of
at least one deterministic algorithm which achieves the bound can be inferred. The
following methodology originated in the work of A. Renyi in establishing the exis-
tence of γ-separating algorithms with given “sample size” N in many combinatorial
search problems.

Let XN =
{
{X1, . . . , XN}, Xi ∈ X

}
be a certain family of N -collections of

test sets. The family consists of the test sequence for various search algorithms
with sample size N . Let PN be a probability measure on B(XN) and let ξN be
the associate random vector in XN . The vector ξN can be considered as giving a
realized algorithm under PN . The Renyi method is formalised as follows.

Proposition 4 (existence principle). If for some N and PN on XN ,

PN = prob{ξngives a γseparating algorithm} > 0

then at least one (non-random) γ-separating algorithm with sample size N exists.

Notice here that the outside probability is computed with respect to the sampling
scheme PN but that µ0 is still used in the γ-separating definition. The proof of
Proposition 4 is transparent. Consider a sequence {ξN,i} of independent realizations
of random ξN and define

βN,i =

{
1 if ξN,i leads to a γ − separating algorithm
0 otherwise .

Then, since 0 ≤ γ < 1,
Prob{βN,i = 1} = p > 0

so that with probability one at least one member of {ξN,i} corresponds to a γ-
separating algorithm.

The art, then is to choose PN to make the probability Pn in Principle 4 large
enough to establish useful lower bounds of the form

PN > lN .

If PN can be found such that ln ≥ 0 then a γ-separating algorithm exists. Alterna-
tively one can have

PN ≥ lN > 0,

13

achieving the same result. Typical choices for PN are uniform on B(XN) and sam-
pling without replacement from XN .

The following theorem generalizes some results of A.Renyi.

Theorem 3. Let J = (X, T ,X , f) be a solveable search problem. Let |T | = M
and |X | = R. Let kij (i, j = 1, 2, . . . ,M) be the number of X ∈ X such that

f(X, Ti) = f(X, Tj).

Then there exists a non-sequential strongly separating search algorithm with sample
size

N ≤ min

{
n :

M∑

i=1

i−1∑

j=1

(
kij

R

)n

≤ 1, n = 1, 2, . . . ,

}
,

Proof. The key to the proof is to select N large enough so that there is positive
probability of the columns of the corresponding matrix S in the notation of Section
4 being distinct.

Let N be fixed and let PN be the uniform distribution on B(XN), i.e. the
product of uniform distribution on X . Thus X1, . . . , XN are independent uniformly
distributed on X . This can also be thought of classical simple random sampling
with replacement. It implies that the rows of A = {f(Xi, Tj)} are indepently and
identically distributed. Denoting the columns of thematrix by a1, . . . , am. Then

prob{ai = aj} = prob{f(Xl, Tj) for l = 1, . . . , N}

=
∏N

l=1 prob{f(Xl, Ti) = f(Xl, Tj)} =
∏N

l=1(kij/R) = (kij/R)N .

Now the probability that the matrix S gives does not give a strongly separating
algorithm is

prob{ai = aj for some pair (i, j) i < j} ≤ ∑

i<j

∑
(kij/R)N .

Thus the probability that the algorithm is strongly separating is not smaller than

1 − ∑

i<j

∑
(kij/R)N ,

yielding the result. 2

Corollary 3. Let the conditions of Theorem 1 hold and let

k = max
i6=j

kij.

14

Then
(a) There exists a non-sequential strongly separating algorithm with sample size

N ≤

 log

(
R(R−1)

2

)

log
(

R
k

)

 + 1

where [.] means the integer part.
The following technique can be used to establish lower bounds for the lenght

of strongly separating algorithms. First, it is clear that the number of possible
answers in N experiments should not be smaller than the number of targets. This
immediately gives

LN ≥ R,

where L is the maximal number of values which the test function f(., .) can have.
In some cases the corresponding lower bound for N ,

N ≥ log R

log L
,

can be improved using the structure of the search problem. Suppose, for instance,
that the collection of test results { f(X, T) }t∈T coincide for all X ∈ X . Then for
any s (0 ≤ s ≤ L) we can ignore k(s) elements from T corresponding to some s test
results, supposing that the corresponding elements are separated. Then we obtain

(L − s)N ≥ R − N k(s).

In particular, in the game of mastermind described in Section 11 for m ≥ 3 (in the
notation of that section) we can choose s = 1, k(s) = 1 and always improve the
lower bound.

The second type of lower bound is based naturally on entropy (see Section 9).
Letting h denote the maximal entropy contained in a single observation and H the
total entropy of the system we use the subadditivity of entropy to obtain: H ≤ Nh
or

N ≥ H

h
.

8. Observer logics.

Search routines are built into the whole AI machinery. Languages such as PRO-
LOG and systems too numerous to refer to contain tree or graph search methods of
various kinds. Various methodologies have cores which are search-like and one can

15

mention: computational learning theory, dynamic decision processes, mechanical
theorem proving and so on.

One way to tie together the set-based formulation of search in this paper is
directly with the propositional calculus of logic in the following way. Let X be a
collection of primitive propositions. We want as our target the collection of true
propositions, but this is a little inexact. Let T be the collection of true propositions
by which we mean that the proposition

T̃ = ∧x∈T x ∧x/∈T ¬x

is true. Thus for any Tj 6= T the statement

T̃j = ∧x∈Tj
x ∧x/∈Tj

¬x

is false.
Considering the binary case of Example 1 a set X is used to test for T in the

following way. Let

X̃ = ∨x∈X x

Then let f(X,T) = 1 if

X̃ ∧ T̃ =
(
∨x∈X x

)
∧

(
∧x∈T x ∧ ∧x/∈T¬x

)

is the true and f(X,T) = 0 otherwise. We shall abuse the notation here by
identifying T with T̃ and X with X̃.

Now the logic of search is dynamic in the following sense. The set of true propo-
sitions is unknown. Observations are the declaration of the truth or falsehood of new
specimen propositions such as X̃ ∧ T̃ . It is worth working through the consistency
/ non-predictability steps of Theorem 1 in terms of truth tables.

If T ∗
t is the consistent set after t steps then T ∗

t in terms of the logic contains all
sets Tj which are still “candidates” for the set of true propositions, that is cannot
be eliminated purely on the basis of statements up to t steps. Within T ∗

t let T◦ be
the true target (set of true targets). In the following table the observation is the
second column, the third and fourth columns being implied.

16

T0 X ∧ T0 X X ∨ T0

T T T T

T F F T

Table 1.

Now consider a second table in which the results of the first table are taken as
inputs.

X X ∧ Tj X ∨ Tj Tj

T F T F

F F F F

Table 2.

Since X true implies X ∨ Tj true and X false implies X ∧ Tj false, two of the
cells in Table 2 are obtained directly from the input values of X. However, if the
ringed cells yield “false” then Tj can be eliminated as false, i.e. 6= T . Following
Theorem 1 it is seen that predictability means that for no Tj ∈ T ∗

t do the ringed
cells yield false that is each such Tj acts to yield a “true” making it indistinguishible
from T◦ itself.

Now turn to the idea of a belief function. The most obvious is the indicator
function

µt({T}) =

{
1 if t ∈ T ∗

t

0 otherwise.

17

This can be extended to all of B(T) by additivity.
In the context of the logical approach in which X and T are possible statements

in the same propositional calculus it is natural to take a 3-valued logic

µ̃t(A) = 1 if it is known that A is true

= 0 if it is known that A is false

= c (0 < c < 1) when the truth or falsehood of A
is not decideable from the data.

An “observer logic” is then a method of choosing Xt+1 and updating µ̃t(A) to µ̃t+1(A)
for every A consistent with the rules of propositional calculus. An observation has
the status that

µ̃t(Xi) = 1 or 0 (1 ≤ i ≤ t),

and Xt+1 is predictable if
µ̃t(Xt+1) = 1 or 0.

Similarly T ∗
t is the set of Tj for which

µ̃t(Tj) = c

and X ∗
t (the set of unpredictable Xj) includes those for which

µ̃t(X
∗
t) = c.

At the last step µ̃t(T) = 1 for exactly one T ∈ T ∗
t and = 0 otherwise. This approach

can be used with any interrogating system for which interrogation leads to the truth
or falsehood of a proposition. An alternative to the binary test would be an inclusion
test

f(X, T) =





1 if T ⊆ X

0 otherwise.

Taking the interpretation of T and X as before

{f(X,T) = 1} ⇐⇒ {¬ (T ∧ ¬X)}

⇐⇒ {T → X}
similarly

f(X,T) = 0 ⇐⇒ (T ∧ ¬X).

Finally a deeper interpretation of a solveable search algorithm is as a method of
proving that T contains exactly all the true statements, mechanically. A request

18

to use a test set Xt is merely the incorporation of a line in the proof. Solving a
search problem is then equivalent to writing down a proof of every true statement.
Conversely if a search problem is not solveable then there is some choice of T for
which the truth of T cannot be decided given the test sets X . Going further one can
interpret the declaration of the truth value of a test set X as an axiom. This becomes
more useful when the statements being tested are not just the truth of propositions
but the truth of statement incorporating any connectors including ¬ , → and brack-
ets. Although there is no difficulty in the core of finite alphabets and first order
logics one can see that deep problems of consistency and predictability may arise.
If an observation is a new axiom, what guarantees that the new system is consistent
or complete?

9. Bayes and Entropy Methods.

A simple way to formulate the Bayes version of the search problem

J = (X, T , X , f)

is to assign prior, and then posterior, probabilities to the inclusion of a particular x
(in X) in the target T . This can be done easily with indicator functions (at time t)

It(x) = 1 if x ∈ T

= 0 otherwise.

The statement T = Tj is then equivalent to

It(x) = 1 if x ∈ Tj

= 0 otherwise.

The collection of indicator functions It(x) induces a measure on B(T) in a straight-
forward fashion. If Ti is considered as a point in B(T) then define

µt({Tj}) = probt(Tj = T)

= probt(It(x) = 1, x ∈ Tj; It(x) = 0, x /∈ Tj)

= probt(
∏

x∈Tj
It(x) = 1)

The extension to the whole of B(T) is by additivity

µ(B) =
∑

{Tj}⊆B

µt({Tj}).

19

At this point there is a serious question of interpretation. One view might consider
T as fixed and the indicator functions as being updated in the Bayesian fashion.
The other view would be to consider T as fixed and the indicator functions as being
updated in the Bayesian fashion. The other view would be to consider T itself as
random with distribution given by µt at time t and the indicator function as merely
induced by µt. We are inclined in this section to take the second view as it gives an
easier conceptual development of a classical Bayes formulation. Note that when T
is continuous a full random set development is necessary. in that case the random
indicator process It(x) induces a random set theory on X.

Let µ0 be the prior distribution arising from the initial joint distribution of the
It(x). The Bayesian updating step is to condition on the new observation f(Xt+1, T).
Note that in what follows we write T = Ti to mean the statement that the random
variable T takes the value Ti.

If all the probabilities are (already) conditional on the current data

yi = f(Xi, T) i = 1, . . . , t

then
µt+1(Tj) = (prob(T = Tj | f(Xt+1, T) = yt+1)

=
prob({T = Tj} ∩ {f(Xt+1, T) = yt+1})

prob{f(Xt+1, T) = yt+1)}

=
prob({T = Tj} ∩ {f(Xt+1, T) = yt+1})∑

i prob(f(Xt+1, Ti) = yt+1)µt(Ti)

Following a classical decision-theoretic formulation we introduce a loss function
L(T, T̂) which determines a loss on taking the action T̂ . This action is interpreted
as a declaration that T = T̂ . At time t the Bayes risk conditional on Y1, . . . , Yt for
a new observation Yt+1 is

Rt+1(T̂) = EYt+1 E(L(T, T̂)|Yt+1)

where Yt+1 = f(Xt+1, T). The inside expectation is conditional on Y1, . . . , Yt+1.
The Bayes rule is to select T = T̂B to achieve

min
T̂

E(L (T, T̂)|Yt+1)

namely the choice of T̂ is to minimise the posterior risk given Y1, . . . , Yt+1.
The Bayes selection of Xt+1, namely the Bayes sampling procedure is to select

Xt+1 which achieves
min
Xt+1

Rt+1(T̂B)

That is to minimise with respect to Xt+1 the Bayes risk, or equivalently the prior
expectation of the posterior risk.

20

Various loss functions may be used. For example

(i) L(T, T̂) = 0 if T = T̂
= 1 otherwise.

(zero-one loss)

(ii) L(T, T̂) = |T4T̂ |

where T4T̂ is the symmetric-difference T4T̂ = (T ∩ T̂) ∪ (T ∩ T̂).

Example 5. Bernoulli. Consider the case where each indicator I0(x) is independent
Bernoulli with prob(I0(x) = 1) = p. Let f(X,T) be as in Example 1, and take the
loss function (i) above. Consider the first stage update from µ0 to µ1. Suppose the
first data value is

y1 = f(X1, T) = 1.

Note that
µ0(Tj) = prob(T = Tj) = p|Tj |(1− p)|X|−|Tj |,

and under µ0

prob(f(X1, T) = 1) = prob(T ∩X1 6= ∅)

= 1 − (1− p)|X1|.

Thus

µ1(Tj) =
(1− (1− p)|X1|) p|Tj | (1− p)|X|−|Tj |

∑
i(1− (1− p)|X1|) p|Ti| (1− p)|X|−|Ti|

and
µ1(Tj) = 0 for X ∩ Tj = ∅.

For succesive values of f(Xt, T) the elimination of Tj is as for the non-Bayesian case
and the remaining Tj have their probabilities renormalised.

In this example, with the (0-1) loss function, (i) the Bayes action T̂ is to select
the Tj with the highest posterior probability and the sampling rule Xt+1 is to make
the expected value of this as high as possible. This could be described as a “greedy”
algorithm.

An approach is possible which does not explicitly use a loss and risk function but
rather a measure of dispersion directly on µt. The best known of these is entropy
defined as

Ent (µt) = − ∑

Ti

µt(Ti) log µt(Ti).

This can also be considered as one definition of the entropy of the family of indicator
functions {It(x)} at time t. A useful equivalence exists between this entropy and

21

that of {f(Xt, T)} the collection of observations as Xt ranges over all X . Clearly
{f(Xt, T)} is functional dependent on T and hence on {It(x)}. If every T in T is
achievable (that is if the original search problem J is solveable) then every It(x) is
functional related to {f(Xt, T)}. For example if f(Xt, T) is binary then a measure
mt is induced on X and

Ent (µt) = Ent (mt).

There is a convenient formula for updating the entropy on observing
yt+1 = f(Xt+1, T).

Ent (mt) = Ent (y (Xt+1, T)) + Eyt+1(Ent (mt|yt+1)).

So that
Ent (µt) = Ent (yt+1) + Eyt+1(Ent (µt|yt+1)).

The quantity Ent (µt|yt+1) is just Ent (µt+1) the conditional entropy given all ob-
servations up to and including yt+1. The full second term on the right hand side is
the prior expectation of this quantity, the direct entropy analog of the preposterior
Bayes risk. At time t the entropy Ent (mt) is fixed. Thus to minimise the preposte-
rior entropy (second term) it is necessary and sufficient to maximise the first term
over the choice of Xt+1. Here of course the entropy is conditional on y1, . . . , yt. In
the Binary case this step is achieved if, conditional on y1, . . . , yt,

prob(f(Xt+1, T) = 1) =
1

2

prob(f(Xt+1, T) = 0) =
1

2
.

This represents a generalised bifurcation rule and also an upper bound on the amount
of entropy reduction possible at every t.

Finally, in this section the minimax sequential rule should now be clear. It
is similar to the entropy rule except the criterion if different name select Xt+1 to
minimise

max
B∈Q

|B|.
where Q is the partion induced in T ∗

t by Xt+1. Thus we attempt to make the
partition finer not in the sense of entropy but with respect to the size of the largest
block among in the partion of the consistent sets.

10. Screening and Group Testing.

Consider the case where some response function depends on a large number
of controllable factors, but where it is known (or suspected) that only a few of
these factors actually have any significant effect on the response. By observing

22

the response from tests involving groups of factors (group tests), we aim to find
the important ones using as few tests as possible. Such an experiment is called
screening.

To formulate the problem in the search notation, denote the factors x1, x2, . . . , xn,
thus the set of search units is X = {xi}. A test group consists of some (or any)
combination of factors, so that X ⊆ B(X). Let the target T be the set of important
factors so that T ⊆ B(X). The search function is the response, written f(X, T).

The group testing problem consists of two main cases, those with a binary re-
sponse and those with an additive response. These two cases will now be discussed
along with several possible algorithms.

Binary group testing.

This was discussed earlier in example 1. To recap, the population consists of
dichtomous units, satisfactory and defective say, and the response is binary and of
the form

f(X, T) =





1 if X ∩ T 6= ∅

0 otherwise

where the target T is the set of defective units. A group which is known to contain
at least one defective is called a defective group. Example 3 considered the Bayesian
updating of this problem when there is a prior probability distribution over the target
set T . In particular, the binomial case was considered where units are independently
defective or satisfactory with probabilities p and q = 1 − p respectively.

We now consider two algorithms which have particular interest to search proce-
dures in general.

Consider first the maximum entropy algorithm. Example 3 stated that the
amount of entropy in a group test is maximised by choosing the test group X
such that the probability of either outcome of the test function f(X,T) is as close
as possible to 1

2
, i.e. minimise

|1
2
− ∑

j

f(X, T |T = Tj) µ(Tj)| (2)

where in this case the value of the belief function at a target site is the probability
of the target being at that site, i.e. µ(Tj) = prob(T = Tj). However, the amount of
computation required to compute (2) for each choice of Xt+1 is usually prohibitively
large. Although at the begining of the search the independence and symmetry of
the factors of the probability distribution over T make it possible to minimise (2)
explicity, as the search progresses and the distribution is updated with respect to
the test results, µ generally becomes increasingly complex. One solution is to search
for a test set such that prob(f(X,T) = 1) is “sufficiently” close to 1

2
. This along

23

with several other properties of the problem, reduces the amount of computation
required.

An alternative way of approximately minimising (2) which achieves great reduc-
tions in computation is non-mixing. This involves imposing constraints, dependent
on previous results, on the choice of the next test set. Non-mixing uses the following
result:

Lemma 1. (Sobel and Groll) Suppose a binomial group A + B is tested giving a
positive result, and a further test on A only also gives a positive result. Thus A
forms a defective group. Then the updated distribution of B conditional on these
two results is the same as the original binomial distribution.

The proof of this lemma is easily derived using Bayes rule.
Suppose we impose the restraint (known as non-mixing) on each choice of test

group that it must be a subset of a defective group if one exists at that stage.
Then by the above lemma, at each stage all unclassified units belong to one of only
two sets, a defective set or a binomial set. Then, since within each set units are
identically distributed, the problem is reduced only to finding the size of the next test
group. Further computational savings are achieved with the use of bounds on the
test group size obtained by. However, the test group size may be found immediately
to within ±1 by simply considering the probability of either outcome, as follows:
In the binomial case, if |X| denotes the number of units in the group X, then

prob(f(X,T) = 0) = 1− q|X|.

Setting this to 1
2

gives

|X| ≈ log 1
2

log q
.

In the defective case, let D be the defective set from which the test group is to be
chosen so that X ⊂ D. Then

prob(f(X,T) = 0) =
1− q|X|

1− q|D|

and setting this to 1
2

gives

|X| ≈ log(1
2
(1− q|N |))
log q

.

In either case, the integer just above or just below the given value is the optimum
group size. Once the size of the test group has been determined the group may be
chosen arbitrarily from within the relevant set (i.e. binomial set or defective set).

Thus it is seen that sequentially restraining where the search “looks next”, large
computational savings may be achieved.

24

We now consider an optimal non-mixing procedure. Suppose that the units
are arbitrarily ordered x(1), x(2), . . . , x(n) and that, without loss of generality, when
choosing a test group of size k (where k is determined by the algorithm used), the
group is formed from the first k unclassified units (with respect to the ordering).
Then it is clear that provided k does not exceed the size of the defective set if
one exists,or the size of the binomial set if the defective set is empty (this condi-
tion is by definition automatically satisfied by any non-mixing algorithm), then the
non-mixing constraint is satisfied. Now it is intuitively clear (by virtue of lemma
(1)) that if there are any defectives in the population then a non-mixing algorithm
carried out in this manner will reach a point where the defective group consists of
a single unit, x(i) say. This unit will be the first defective unit in the population
(with respect to the ordering). At this point the units x(1), . . . , x(i−1) will have been
classified as satisfactory whereas the units x(i+1), . . . , x(n) will have the original bi-
nomial distribution. Note that this is true regardless of what non-mixing algorithm
was used. The unclassified (binomially distributed) units x(i+1), . . . , x(n) will then
also be broken down until the first defective is found (if one exists) and so on until
the whole population has been classified. Thus it can be seen that a non-mixing
algorithm can be problematically reduced to a series of searches within decreasing
binomial sets for the first defective unit.

Now consider the binomially distributed ordered units x(1), . . . , x(n) as the leaves
of a search tree and consider the problem of searching for the first defective amongst
these leaves. A group test consists of testing the first k units x(1), . . . , x(k) where k is
the test group size. Suppose now that there is an imaginary point, x∗ say, between
the leaves x(k) and x(k+1). Then if the group test f({x(1), . . . , x(k)}, T) is positive
then the first defective lies before x∗ (with respect to the ordering), whereas if the
test is negative then the first defective lies after x∗. The search for the first defective
can therefore be viewed as an alphabetic search, choosing (imaginary) points x∗t say
and observing whether the target (the first defective) lies to the right or left of that
point. As was seen in Section 5, an alphabetic search can be optimally solved using
a tree construction algorithm. Hence we see that the optimal non-mixing algorithm
consists of a sequence of optimal alphabetic trees.

Additive group tessting and hierarchical procedures.

Another version of the screening problem is the case where important factors
contribute an additive effect towards the response. This may be considered for
example as an amount of “bad” ingredient present in defective units.

The main difference between this model and the binary model is that if a test
is performed on a subgroup of a group which has already been tested, then the
difference between the two response observations provides equal information about
the complement of the subgroup (within the original group). However, the updating
of µt is complicated since all previous results must be considered when updating at

25

each stage. This problem can be overcome by considering the class of hierarchical
procedures, wherein two factors may be tested together in a group only if each
previous test group contained neither or both of the factors. In this case only the
outcome of the most previous test containing all members of the current group need
be considered when updating µt.

It may be that there is some prior knowledge about the additive model, for
example aprior distribution on T (where T ∈ T is as usual the set of important
factors), or alternatively there may be some prior knowledge about the size of the
additive effect (or amount of “badness”) of effective factors. Consider again the
binomial case with factors independently effective or non-effective with probabilities
p and q = 1− p respectively, and suppose that effective factors have a positive but
arbitrary effect. Let N∗(r) be the expected number of tests required to classify
r factors using an optimal hierarchical procedure. Then N∗(r) may be expressed
recursively as

N∗(r) = −qr + min
1≤k≤r

{N∗(k) + N∗(r − k)} (3)

with boundary condition N∗(1) = 1. Moreover, the minimising value of k in (3) is
also the optimum test group size if the r factors form a defective group. Furthermore,
the recursive equation

F (n) = f(n) + min
1≤k≤n

{F (k) + F (n− k)} (4)

where F (1) = 0 and f(.) is a concave non-decreasing function, is minimised by
taking k = k∗ where k∗ is the unique power of 2 satisfying

n

3
≤ k∗ <

2n

3

– the so-called power of 2 rule. Sinse (3) may be expressed in this form, it is seen that
the power of 2 rule provides an optimum hierarchical tree for the additive screening
case.

Furthermore, the power of 2 rule is optimum here regardless of the value of p,
hence no prior knowledge is required of the probability of being defective is required
to obtain the optimum algorithm (although independence and equal p is assumed).

11. The game of “mastermind” or “bulls and cows”.

Consider the game known as “Mastermind” or “Bulls and Cows”. The aim is
to search for an unknown target T which is an ordered m-collection of some of d
“colours” or “digits” which we numerate as 0, 1, . . . , d− 1. The variant of the game
we consider here is the “eastern” version in which none of the digits coincide. In
other words, the target field is

26

T = {T = {t1, . . . , tm} : ti, tj ∈ D = {0, . . . , d− 1},
ti 6= tj for any i, j = 1, . . . , m, i 6= j},
M = |T | = d(d− 1) . . . (d−m + 1)

A test set X = (x1, . . . , xm) is an arbitrary ordered m-collection of different
digits from the same set D, and so the test field coincides with the target field:
X = T , R = M . The test result f(X,T) for given test set X and target T is the
ordered pair (b, c) where b is the number of “bulls”, i.e. such elements xi of X
that coincide with the corresponding elements ti of T for i = 1, . . . , m, and c is
the number of “cows”,i.e. such elements xi of X which correspond with some of
tj (j = 1, . . . , m; j 6= i). In other words, for X = (x1, . . . , xm), T = (t1, . . . , tm) we
have f(X,T) = (b, c) where

b =
m∑

i=1

1[xi−ti], c =
m∑

i=1

1[xi∈{t1,...,tm} \ {ti}].

If m = 1 then the mastermind search problem is trivial. Here we suppose 2 ≤ m ≤ d.
Another version of the game, the “western version” allows ti to coincide and the

development is very similar.
Let us mention three simple properties of the search problem J = (T ,X , f)

determined by the variant eastern version.

Property 1: the test function f(·, ·) is symmetrical, i.e. for any A1, A2 ∈ T = X
the equality

f(A1, A2) = f(A2, A1)

holds.

Property 2: for any two sets A1, A2 ∈ T (or equivalently A1, A2 ∈ X), there
exists a transposition π : D → D of digits 0, 1, . . . , d− 1 such that π(A1) = A2 (this
transformation may not be unique).

Property 3: if π : D → D is any transposition of digits and A1 and A2 are any
elements of T (or X) then

f(A1, A2) = f(π(A1), π(A2)),

and
f(A1, π(A2)) = f(π−1(A1), A2). (5)

Consider the non-sequential search problem. To study the existence of a γ-
seperable non-sequential search algorithm with a given N apply Theorem 3. To
do this we should have a method for computing

∑
j:j 6=i(kij)

n for various n and i
where kij = k(Ti, Tj), where T1, . . . , TM are the elements of T ordered according to

27

a fixed rule, k(G,B) is the number of X ∈ X such that f(X,G) = f(X,B) for any
G,B ∈ T .

Proposition 5. For the above formulated search problem it holds that

m∑

j=2

(k1j)
n =

∑

j:j 6=i

(kij)
n (6)

for each n and i = 1, . . . , m.

Proof. Let i ∈ {1, . . . , m} be fixed and πi : D → D be a transposition of digits
0, . . . , d − 1 such that Ti = πi(T1). The existence of such a transposition follows
from Property 2.

By definition, kij = k(Ti, Tj) is the number of l ∈ {1, . . . , M} such that

f(Tl, Ti) = f(Tl, Tj). (7)

According to Principle 3 we have

f(Tl, Ti) = f(Tl, πi(T1)) = f(π−1(Tl), T1),

f(Tl, Tj) = f(π−1(Tl), π
−1(T1)).

Denote T ′
j = π−1

i (Tj) and T ′
l = π−1

i (Tl). By definition of πi we have T ′
i = T1 and

{T ′
j}j = {T ′

l }l = {Tj}j = T .

Thus, (7) is equivalent to
f(T ′

l , T1) = f(T ′
l , T

′
j)

and
k(Ti, Tj) = k(T1, T

′
j),

∑

j:j 6=i

(kij)
n =

∑

j:j 6=i

(k(Ti, Tj))
n

=
∑

j:j 6=i

(k(T1, T
′
j))

n =
∑

j:j 6=i

(k(T1, Tj))
n =

M∑

j=2

(kij)
n. 2

Equality (6) is followed by

M∑

i=1

∑

j 6=i

(
kij

M

)n

= M
M∑

j=2

(
K1j

M

)n

(8)

28

and

max
i=1,...,M

∑

j 6=i

(
kij

M

)n

=
M∑

j=2

(
k1j

M

)n

(9)

where M = d(d− 1) . . . (d−m + 1). These formulae simplify computations needed
for applying Theorem 1. Moreover, in order to compute the right hand side of (8)
and (9), it is neccesary only to compute all possible values of K1j (j = 2, . . . ,M)
and how many times they occur among {k1j}. Denote M1=number of times when
k1j = kl, j = 2, . . . , M ; l = 1, . . . , L. Then, evidently,

M∑

j=2

(
k1j

M

)n

=
L∑

l=1

Ml

(
kl

M

)n

. (10)

2

Let

N∗ = min
{
n = 1, 2, . . .

∣∣∣M
2

L∑

l=1

Ml

(Kl

M

)n ≤ 1
}
,

namely the sample size of a strongly separating non-sequential search algorithm, is
given for some n and d. As an example consider the case d = 5, m = 4. Then the
values of kl for l = 1, . . . , 8 are respectively 18, 20, 26, 32, 34, 36, 44, 46, and the
corresponding values of Ml are 8, 12, 48, 24, 6, 10, 8, 3. The upper bound N∗ = 8
in this case.

We complete the study of mastermind by give the results of three sequential
algorithms. More extensive results will appear in a later paper. For all three algo-
rithms the test sets are placed in lexigraphic order. For example for m − 4, d = 8
the order is 0123, 0124,...,4567.

Algorithm 1. “First consistent”. At each iteration Xt+1 is the first element from
the order which is consistent with the data, i.e. the first element of T ∗

t .
Algorithm 2. “Best consistent”. At each iteration we compare the entropy of the

partitions generated by the elements of T ∗
t and select the first which has maximum

entropy.
Algorithm 3. “Best entropy”. At each step we compare the entropies generated

by all elements of T (consistent and inconsistent) and select the first having maximal
entropy.

The results are given in Tables 3, 4 and 5. The length of the algorithms are given
for every possible positions of the target producing frequencies and average length.
The conclusion is that even the simplest algorithm is highly efficient. Algorithm
3 is always best or almost best among one-step-ahead procedures and seems close
to optimal among all procedures. There is a slight uncertainty connected with
placing the elements in standard order but this the does not significantly affect
their efficiency.

29

Length
Algorithm 1 2 3 4 5 6 E(N(T))

1 1 12 73 161 81 8 3.991071
2 1 14 77 190 54 0 3.839286
3 1 14 100 213 8 0 3.633929

Table 3. Length frequency and average length of three sequential search
algorithms for m = 3, d = 8.

Length
Algorithm 1 2 3 4 5 6 E(N(T))

1 1 15 208 791 547 118 4.322619
2 1 16 232 985 422 24 4.120833
3 1 10 327 1031 307 4 3.979167

Table 4. Length frequency and average length of three sequential search
algorithms for m = 4, d = 8.

Length
Algorithm 1 2 3 4 5 6 7 8 E(N(T))

1 1 17 311 1949 3108 1227 105 2 4.823958
2 1 17 339 2657 3340 366 0 0 4.550000
3 1 15 484 2825 3231 164 0 0 4.452679

Table 5. Length frequency and average length of three sequential search algo-
rithms for m = 5, d = 8.

12. Search for a subset of T .

The problem where the researcher is interested in finding any subset of T rather

30

than the whole target also often occur. Algorithms searching for parts of T can be
parts of many algorithms searching for T , they are natural in optimization problems
(i.e. search for an optimal value of a function), when solving equations (i.e. search
for a root of a function), etc. In some sense such problems are easier than the initial
ones (since T is a subset of T) but they usually occur when the initial problems are
too complicated or can not be solved.

Let us formalize new aims for the search problem J = (X, T ,X , f). We do not
need any more achievability for any T ∈ T and so we shall not require solvability
for J in this section. Instead of this we need some rules which permit us to decide
whether we have found a subset of T or not. Let us consider three such rules which
are natural for various problems. The first rule is evident:
Rule (i). If T is found than the problem is solved. Applying Rule (i) only we have
the same problem as above.
Rule (ii). At each t-th iteration of a search algorithm we deduce for a set Z ∈ B(X)
that Z ⊂ T if Z ⊂ Ti for each Ti ∈ T ∗

t such that µt(Ti)) 6= 0.
Note that the set Z in Rule (ii) cannot belong to T or X . In most cases it is

sufficient to consider Z in Rule (ii) one-point sets {x}, x ∈ X. Alternative situations
may arise if we are interested in subsets of T of a given configuration.

So, to apply Rule (ii) in partice one should check whether there exists Z ⊂ X
such that Z ⊂ Ti for each Ti ∈ T ∗

t , µt(Ti) > 0. (Usually it is enough to check
one-point sets Z only). Rule (ii) can easily be applied in some screening problems.

The third rule can be used for particular search problems which we shall call
subtarget evaluable ones.
Rule (iii). After evaluating f(Xt, T) for some Xt ∈ X we can check whether Xt ⊂ T
or not.

Definition 8. A search problem J = (X, T ,X , f) is called a subtarget evaluable
search problem if for any test set X ∈ X we can determine whether X ⊂ T simul-
taneously with evaluating f(X, T). The solution of equations with given accuracy,
some optimization problems (problems with known optimal values), and screening
in linear models without errors and equal known values of parameters corresponding
to important factors give us examples of subtarget evaluable search problems. The
main difference between rules (ii) and (iii) is that applying (ii) we check various
subsets of X that cannot belong to X but applying (iii) we check only one subset of
X belonging to X . Sometimes all three rules can be applied.

Let us formulate a particular result concerning relative efficiency of deterministic
search algorithms solving a subtarget evaluable search problem precisely and random
γ-separating algorithms (i.e. algorithms that give a correct answer concerning a
subset of T with probability not smaller than 1− γ, γ > 0).

Consider the search algorithms A that consist of two stages. In the first stage
N = N(A) test sets X1, . . . , XN are chosen from X according to some probability
distributions

31

Pt(dXt |X1, . . . , Xt−1, f(X1, T), . . . , f(Xt−1, T)), t ≥ 1.

In the second stage a decision is made according to Rule (iii). Denote byR0 the class
of deterministic algorithms A (for them probability distributions P are degenerate)
that solve the problem precisely for any T ∈ T , and by Rγ the class of random
algorithms solving the problem with probability not smaller than 1− γ. Denote

Nγ = inf
A∈Rγ

N(A), γ ≥ 0. (11)

Obviously, R′ ⊂ Rγ and Nγ ⊂ N0 for any γ > 0. The next assertion establishes
other inequalities connecting N0 and Nγ.

Proposition 6. Let J = (X, T ,X , f) be a subset evaluable search problem, X
consists of R elements and N0 and Nγ are defined as in (11). Then for γ ≤ 1/e ≈
0.368, it holds that

Nγ ≤ N0 ≤ (Nγ + 1) χ(γ, R) (12)

where
χ(γ, R) = 1 − [log R + 1 − log(1− 1/ log γ)] / γ

The proof is omitted (see the Bibliography).

13. Root-finding and optimization.

Optimization and the solutions of equations, root-finding, present a rich class of
search problems. They are often formulated with continuous rather than discrete
sets. In this section we briefly consider them and also point to some differences
between discrete and continuous search problems.

First consider search for solution of equations of the type

ψ(x) = 0, x ∈ X

where ψ is a continuous function from some functional class Ψ, and X is a subset of
IRn, n ≥ 1. Our considerations include the case where ψ is a vector-valued function
and so ψ(x) = 0 is a system of non-linear equations.

The search problem J = (X, T ,X , f) can be defined variously. The straightfor-
ward way is to define the test field as the family of all one-point sets {x}, i.e.

X =
{
{x}, x ∈ X

}
.

for target field T = B(X), target T as a set of all solutions x∗ of the equation
ψ(x) = 0, i.e.

T = {x∗ ∈ X : ψ(x∗) = 0}.

32

The test function f is naturally defined as

f(X,T) = ψ(x) for X = {x}, T ∈ T .

Note that this test function f depends implicitly on T .
Usually the problem is formulated so that there is no need to find the whole

target set T , but only one point from it, i.e. only one solution of the equation
ψ(x) = 0. Sometimes the functional class Ψ is defined in such a way that each
function ψ ∈ Ψ has only one root in X and so search for

T = {x∗ ∈ X : ψ(x∗) = 0}
is just the same as search for a subset of T . In this case the target field T coincides
with X being the family of one-point sets. There is another, probably more natural,
way of defining the target and target field. This method uses the fact that a computer
solves numerical problems with some inaccuracy. Thus fix δ ≥ 0 and define

Tδ = {x ∈ X : ‖ψ(x)‖ ≤ δ}
as a target set, T = B(X), and formulate the search problem as the problem of
finding some point x from Tδ. Note that this problem can be considered as a
subtarget one (see Section 12) since for each test set X = {x} we can conclude
whether X ⊂ Tδ or not immediately after testing X.

Sometimes an alternative formulation of the same search problem is more in-
strictive: J = (X, T ,X , f) where X, X and f are as above, X ⊂ IRn, X = {X =
{x}, x ∈ X}, f(X, T) = ψ(x), and T is the family of one point sets like X , i.e.

T = {T = {t}, t ∈ X}.
There are many targets in T . Every T = {t} corresponding to a point t from Tδ is
a target but the problem is to search for these targets.

Direct application of entropy or Bayes considerations for construction of op-
timal or at least “good” algorithms often leads to very complicated intermedi-
ate calculations so that some where X⊂ IRn, X = {x}, f(X, T) = ψ(x) for
X = {x}, T = {t} target T = {t} is the one-point set corresponding to any
point t from Tδ = {x ∈ X : ‖ψ(x)‖ ≤ δ}.

First suppouse that the function ψ can be evaluated without error. Let t itera-
tions of a sequential algorithm be performed, Xi = {x}, 1 ≤ i ≤ t, be the test sets
(and xi be the points where function ψ was evaluated),

δi = ‖ψ(xi)‖, δ∗t = min
1≤i≤t

δi.

If δ∗t ≤ δ then the problem is solved since at least one of the points x1, . . . , xt belongs
to Tδ. Suppose δt > δ and consider

T ∗
t = Tδ∗t = {T = {t} ∈ T : ‖ψ(t)‖ ≤ δ∗t }.

33

As above, T ∗
t is the set of all T ∈ T which are consistent with the previous data

(i.e. for every T ∈ T ∗
t the supposition that T is a target does not contradict the

previous test results).
In the (t + 1)th iteration, the test set Xt+1 is selected from X depending on all

previous test results or some of them:

Xt+1 = Φt+1(X1, . . . , Xt, f(X1, T), . . . , f(Xt, T)) (13)

where Φ is some selection rule. (In some search algorithms several test sets are
selected simultaneously, all of them except one are usually considered as auxillary)
Naturally, Xt+1 = {xt+1} is selected from T ∗

t . Such choice of Xt+1 has two aims.
First, there is a possibility that xt+1 ∈ Tδ and so Xt+1 is a target. Secondly, this
choice necessarily reduces T ∗

t in the sence that T ∗
t+1 ⊂ T ∗

t , T ∗
t+1 6= T ∗

t .
If Xt+1 /∈ T ∗

t then the new observation f(Xt+1, T) should not reduce T ∗
t (in this

case T ∗
t+1 = T ∗

t) and it is useless from the one-step optimality point of view. This is
precisely the nonpredictable case of Section 3. However, there are a lot of algorithms
where such a choice of Xt+1 is impossible. For example, sometimes it is very difficult
to describe T ∗

t and other principles are used for numerical solution of the equations
(in particular, if equation ψ(x) = 0 is rewritten in the form x = ψ̃(x) where ψ̃ is
some other function then the algorithm Xt+1 = {xt+1 = ψ̃(xt)} often converges to
x∗ and can be applied regardless of whether Xt+1 ∈ T ∗

t for each t).
The condition Xt+1 ∈ T ∗

t , namely consistency for each t, is equivalent to the
monotonicity of iterations

‖ψ(x1)‖ ≥ . . . ‖ψ(xt)‖ ≥ . . .

This monotonicity property is highly desirable for algorithms of type (13) and holds
for most of them. Assuming Xt+1 ∈ T ∗

t , we can try to choose Xt+1 optimally
according to the above optimality criteria. This is sometimes possible when T ∗

t can
be described explicity.

As an example, consider one-dimensional algorithms for searching for the root
x∗ of a real valued continuous function ψ defined on an interval and having only one
root. On each t-th (t ≥ 2) iteration of the algorithms one has values ψ(at) ψ(bt) of
the function at the boundary points of the interval T ∗

t = [at, bt] which is known to
contain x∗. Also, it holds that ψ(at) ψ(bt) ≤ 0. Suppose this inequality is strict,
since otherwise the problem is solved. The decision rule in the t-th iteration either
terminates calculations, if at or bt belongs to Tδ, or selects a new point xt+1 ∈ (at, bt)
and sets

at+1 = xt+1, bt + 1 = bt

if ψ(xt+1) ψ(bt) ≤ 0 and
at+1 = at, bt+1 = bt

otherwise. The problem now is how to choose xt+1 optimally. The solution to this
problem depends on prior information concerning ψ, i.e. on the functional class Ψ.

34

If the only information about ψ is that it is continuous and has exactly one root in
[at, bt] then the middle point xt+1 = (at + bt)/2 divides T ∗

t = [at, bt] by have and
this division reduces the entropy of T ∗

t optimally for the worst function ψ ∈ Ψ.
If in the interval [at, bt] the function ψ is well approximated by a linear function,
i.e. ψ(z) ≈ c + dz for all z ∈ [at, bt] where c and d are some constants then the
choice xt+1 as the intersection of the x-coordinate axis and the line passing through
the points (ak, ψ(ak)) and (bk, ψ(bk)) is more natural. It can be shown that such
a choice reduced the entropy of T ∗

t optimally for the case where ψ is a trajectory
of a differentiable random process intersecting the x-coordinate axis only once (in
this case Ψ is a set of trajectories of a random process). Analogously a choice of
xk+1 being the intersection of the x-axis and a quadratic function passing through
(ak, ψ(ak)), (bk, ψ(bk)) can be interpreted for the case when ψ is well approximated
by a second-order polynomial derivatives of ψ are evaluated simultaneously with
values of ψ.

Consider briefly how the search methodology is modified for the case where
evaluations of the function ψ are subjected to random errors (this case is the subject
matter of stochastic approximation theory). The idea of selecting xt+1 among points
corresponding to consistent one-point sets now gives nothing in its pure form because
all subsets of T are consistent with probability one (for finite t any point of X may
be the root of ψ because results are random variables). Nevertheless, the degree
of consistency measured by the belief function µy is different for various test sets.
So, a Bayes algorithm can be used or xt+1 can be chosen as the point for which
µt{{x}} is maximal over x ∈ X. In other words the test set is chosen which is the
“most consistent” with the data. Morever, in each step consistency transforms in
this case to consistency as an asymptotic property of the sequence {xt}, t →∞, i.e.
for suitable chosen decision rule for selecting xt the convergence (say, in probability)
xt → x∗ ∈ Tδ should hold as t → ∞. The Bayesian transformation of µt into µt+1

is usually too complicated to be realised and simpler algorithms are often used in
practice.

Consider now optimization search problems which can be formulated as problems
of minimisation of a real-valued objective function ψ given on X and belonging to a
functional class Ψ. Denote by x∗ any point in X such that ψ(x) = minx∈X ψ(x∗) =
ψ∗. Denote

Tδ = {x ∈ X : |ψ(x) − ψ∗| ≤ δ },

T ′
ε(x

∗) = {x ∈ X : ‖x− x∗‖ ≤ ε },
for any x∗ such that ψ(x∗) = ψ∗ and δ > 0, ε > 0. Parameters δ and ε correspond to
an acceptable inaccuracy of the final decision with respect to function and argument
values, respectively. Analogously to the root finding problems, optimization can be
formulated as the search problem J = (X, T ,X , f) where T = X = {X = {x}, x ∈
X}, f(X,T) = ψ(x) for any X = {x} ∈ X, T ∈ T , and the target is any one-point

35

set T = {z} corresponding to z ∈ Tδ or z ∈ T ′
ε(x

∗) for some x∗ such that ψ(x∗) = ψ∗.
The minimal value ψ∗ of a function ψ plays the same role as zero played in

root-finding problems. If the value of ψ∗ is known a-priori then these two classes of
problem are very similar. But usually ψ∗ is unknown which yields that for a given
x ∈ X we cannot conclude whether x belongs to Tδ or not. For some functional
classes Ψ like Lipschiz or convex ones it is possible to estimate accuracy of a current
approximation to x∗. In these cases the precision of the final approximation of x∗ is
under control. In other cases we cannot say whether the problem has been solved
with a given accuracy or not. Beliefs that the problem is solved precisely enough
are based in these cases mainly on asymptotic properties of the algorithms or on
estimates of the accuracy.

Consider briefly some principles which lie at the heart of optimization search
algorithms. One of these is consistency: try to choose points at which to evaluate
the objective function in those regions where values of this function are not greater
than those we obtained earlier. In other words previous evaluations of the objective
function do not contradict the supposition that any one of then is x∗. To formalize
the consistency principle we should describe T ∗

t , the set of all consistent sets which
contains all one-point sets T = {z} that correspond to points z from the level set

{z ∈ X : ψ(z) ≤ min
1≤i≤t

ψ(xi)}. (14)

As for the solution of equations case, consistency in optimization is the selection of
the next test points is equivalent to the monotonicity of iterations, i.e. ψ(x1) ≥
ψ(x2) ≥ . . . ≥ ψ(xt) ≥ This is easily achieved in the “local” optimization
theory where the objective function is supposed to be uniextremal and the majority
of algorithms are monotonic. The consistency principle is also realised for many
global optimization methods: In particular all methods that can be regarded to
the branch and bound methods use consistency ideas. Even some global random
search algorithms are constructed so as to use the consistency principle. In these
cases, consistency of subsets of X are tested statisticaly and so the inferences are
statistical, i.e. valid with some probabilistic reliability.

Another basic principle in the construction of search algorithms is entropy or
uncertainty reduction, i.e. those search algorithms are better which reduce the
size of the level sets (14) faster. The well known Kiefer algorithm using Fibonnaci
numbers presents an example of an optimal algorithm. It is optimal for the one-
dimensional case when the sample size N is fixed, the functional class Ψ consist of
all uniextremal functions given on an interval, and the criteria of optimality is the
size of the level-set (14) for the worst case ψ ∈ Ψ, after N steps of the algorithm. If
N is not fixed and one-step reduction of the entropy for the worst one-dimensional
function is used as the optimality criterion then the famous “golden section” is
asymptotically optimal in a class of symmetric algorithms (symmetric algorithms
choose the next point at intervals symmetrically placed with respect to the internal
point of the interval where the previous observation was placed).

36

In multidimensional local optimization, fast reduction of the size of level sets is
also the essense of a good algorithm. The problem of construction of N -step optimal
(in entropy or risk function sense) algorithms is much more complicated than in the
one-dimensional case. However, a lot of algorithms are known which asymptotically
reduce the size of the level sets with a high speed.

In global optimization, the entropy or uncertainty reduction principle says that
it is advantageous to select new test points in those subsets of X where either the
reduction of size of the level set (14) can be expected or uncertainty concerning
the objective function behavior is high. Immediate reduction of the level set sizes
corresponds to local strategy and reduction of uncertainty about behavior of the
objective function correspond to global strategy. Efficient global optimization al-
gorithms combine both strategies. Applying a local strategy we can usually only
find one or few local minimizers but not the global one. On the other hand, if local
strategy is ignored then inefficient algorithms of the grid type would be generated.

Finally, likelihood is also fruitful in optimization techniques. In the construction
of local optimization algorithms, it appears for instance in a Newton method when
one logically approximates the objective function by a second order polynomial and
the next point is selected in the direction of the minimizer of this polynomial. Note
that asymptotic study of the Newton method and the some of its approximations
(namely methods of conjugate directions and variable metrics) is one of the main
points of local optimization theory.

There is a class of global random search methods known as generation methods
which is popular in both theory and practice. Their essense is that in each t-th
iteration a number of points are generated according to a probability distribution
Pt which is constructed from the previous data in the same way as measures µt are
constructed: they assign bigger measure to those subsets which are more consistent
with the previous data. The reason for adding several observations taken from this
distribution, rather than a single modal point is that there is uncertainty in the
construction of Pt, and this distribution is multimodal and it is unnatural to prefer
one point to all others based only on this distribution.

Bibliography.

There are several thousand papers in the area of search in a wide variety of pub-
lications. In the non-stochastical literature these divide broadly into discrete search
with foundation in logic and combinatorial theory and continuos search stemming
originally from military applications. A recent book on the combinatorial theory is
Ahlswede and Wegener (1987). This covers some classical Renyi theory, bifurcation,
weighting and simple ideas in screening. Aigner (1988) has a similar coverge with
additional sections on graph-theoretic techniques and coding theory. Classical re-
sults on computer search can be found in Knuth (1973,Vol. 3). Continuous problems
are covered by Stone (1975) and the recent edition of Naval Research Logistics (Vol.

37

38, No. 3,1991) with an introduction by L.D.Stone.
The ideas in Section 3 are not found elsewhere with exactly the same results or

in the same style. Similar ideas are, however, emerging in control theory, see Caines
and Wong (1990) and in information and complexity, see Traub, Wasilkowski and
Wozniakowski (1988).

The tree representation of Section 5 occurs throughout the combinatorial theory
of search. The proof of the optimality of tree search is taken from Hu and Tucker
(1971) and stems from earlier work of Huffman (1952).

The use of belief measures and Bayes (Section 6 and 9) is drawn from stan-
dard decision theoretic statistics. Within AI there are sequential methods which
are referred to variously as discrete decision processes, dynamic decision processes,
heuristic search etc. A recent collections are Kanal and Kumar (1988).

Entropy is perhaps the most widely used portmanteau probabilistic tool. Martin
and England (1981) is comprehensive. Maximum entropy methods are used in spa-
tial sampling (Shewry and Wynn,1987, Sacks et al.,1990) and in screening and group
testing (Sobel and Groll, 1959, Mitchell and Scott, 1987). The first definitive state-
ments of the group-testing are Dorfman (1943) and Watson (1961). The solution
of the optimum binary group-testing problem using alphabetic trees is by Hwang
(1976). Additive procedures were introduced by Pfeifer and Enis (1978) and the op-
timum hierarchical procedure was given by Hwang, Pfeifer and Enis (1981). Proof
that the power-of-two rule gives the optimum tree for solving recursive equations of
the form (4) was obtained by Glassey and Karp (1976).

The original papers by Renyi are Renyi (1965,1969). This work has been exten-
sively developed by M. Maljutov and other Russian scientists. Some of it appears in
Ermakov (1983,ed) and is extended in the papers by the present authors (O’Geran,
Wynn and Zhigljavsky,1991 b,c). These paper continue the use of Mastermind as
a test case. References to this game appear also in books on computer games e.g.
Arsac (1985).

Zhigljavsky (1991) contains many different algorithms for global optimization of
which Sections 12 and 13 are a synthesis drawing on the style of other sections of
the present paper. There are numerous works on “local” optimization for example
Dennis and Schnabel (1983) and Fletcher (1980). The proof of Proposition 6 follows
the lines of Zhigljavsky (1991, Section 6.2.4).

Acknowledgement.

This research was conducted within the Engineering Design and Quality Cen-
tre at City University. The authours acknowledge the support of the Science and
Engineering Research Council, UK.

38

References

[1] Ahlswede R., Wegener I. (1987). Search Problems. Wiley, New York.

[2] Aigner M. (1988). Combinatorial Search. Wiley, New York.

[3] Arsac J.D. (1985). Jeux et Casse-tête. A Programmer. Bordas, Paris.

[4] Caines P., Wang S. (1989). Classical and logic-based regulator design and its
complexity for partially observed automata. Proc. 28-th IEEE Conf. Dec. and
Control. Tampa, Florida, 132-137.

[5] Dennis J.E., Schnabel R.B. (1983). Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey.

[6] Dorfman R. (1943). The detection of defective members of large populations.
Annals of Mathematical Statistics, 14, 436-440.

[7] Ermakov S.M., ed. (1983). Mathematical Theory of Experimental Design.
Nauka, Moscow. (in Russian)

[8] Fletcher R. (1980). Practical Methods of optimization. Wiley, New York.

[9] Glassey C.R. and Karp R.M. (1976). On the optimality of Huffman trees. Siam
Journal on Applied Mathematics, 31, 368-378.

[10] Hu T.C., Tucker A.C. (1971). Optimum computer search trees and variable-
length alphabetic codes. SIAM Journal on Applied Mathematics, 21, 514-532.

[11] Huffman D.A. (1952). A method for the construction of minimum redundancy
codes. Proc I.R.E., 40, 1098-1101.

[12] Hwang F.K. (1976). An optimum nested procedure in binomial group testing.
Biometrics, 32, 939-942.

[13] Hwang F.K., Pfiefer C.G., Enis P. (1981). An optimal hierarchical procedure for
a modified binomial group-testing problem. Journal of the American Statistical
Association, 76, 947-949.

[14] Kanal L., Kumar V. (1988). Search in Artificial Intelligence. Springer-Verlag,
New York.

[15] Knuth D. (1973). The Art of Computer Programming,vol 3. Addison-Wesley,
London.

[16] Martin N.F.G., England J.W. (1981). Mathematical Theory of Entropy.
Addison-Wesley, London.

39

[17] Mitchell T.J., Scott D.S. (1987). A computer program for the design of group
testing experiments. Communications in Statistics. Theory and Methods, 16,
2943-2955.

[18] O’Geran J.H., Wynn H.P., Zhigljavsky A.A. (1991a). Renyi-type randomiza-
tion theory for search length upper bounds. Stochastic Optimization & Design
(submitted).

[19] O’Geran J.H., Wynn H.P., Zhigljavsky A.A. (1991b). Mastermind as a test-bed
for search algorithms. American Mathematical Monthly (submitted).

[20] Pfiefer C.G. and Enis P. (1978). Dorfman-type group testing for a modified
binomial model. Journal of the American Statistical Association. 73, 588-592.

[21] Pierce C.P. (1901). In Charles Hartshorne, Paul Weiss and Arthur Banks (eds).
The collected Papers of Charles Saunders Peirce, 8 vols. Harvard University
Press, Cambridge, Mass.

[22] Renyi a. (1965). On the theory of random search. Bulletin of the American
Mathematical Society, 71, 809-828.

[23] Renyi A. (1969). Lectures on the Theory of Search. University of North Cali-
fornia, Mimeo Series.

[24] Sacks J., Welch W.J., Mitchell T.J., and Wynn H.P. (1989). Design and analysis
of computer experiments. Statistical Science, 4, 409-435.

[25] Shewry M.C., and Wynn H.P. (1987). Maximum entropy sampling. Journal of
Applied Statistics, 14, 165-170.

[26] Sobel M., and Groll P.A. (1959). Group testing to eliminate efficiently all de-
fectives in a binomial sample. Bell System Technical Journal, 38, 1179-1252.

[27] Stone L.D. (1975). Theory of Optimal Search. Academic Press, N.Y.e.a.

[28] Traub J.F., Wasilkovski G.W., and Wozniakowski H. (1988). Information-Based
Complexity. Academic Press, New York.

[29] Watson G.S. (1961). A study of the group screening method. Technometrics, 3,
371-388.

[30] Zhigljavsky A.A. (1991), Theory of Global Random Search. Kluwer Academic
Publishers, Dordrecht.

40

