
Existence theorems for some group testing strategies

A. Zhigljavsky
Dept. of Mathematics, St.Petersburg University, Bibliotechnaya sq. 2,
198904, Russia. Fax +7(812)4286649, e-mail zh@stat.math.lgu.spb.su

L. Zabalkanskaya,
Transport Research Institute, Russian Academy of Sciences,

St.Petersburg, Russia

Abstract. Group testing problems are considered as examples of discrete search prob-
lems. Existence theorems for optimal nonsequential designs developed for the general dis-
crete search problems in [1] are applied for construction of upper bounds for the length
of optimal group testing strategies in the case of additive model. The key point in the
study is derivation of analytic expressions for the so-called Renyi coefficients. In addition,
some asymptotic results are obtained and an asymptotic design problem is considered. The
results particularly imply that if the number of significant factors is relatively small com-
paring with the total number of factors then the choice of the test collections all containing
a half of the total number of factors is asymptotically optimal in a proper sense.
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1 Introduction

Group testing, known also as factor screening and search for significant factors, is a vast area
with many papers developing both theoretical and applied aspects. A general statement
of the group testing problem that covers many particular statements is as follows. Assume
that n factors (elements, items, variables, etc.) x1, . . . , xn are given and some of them
are defective (significant, important, etc.). The problem is to determine which factors are
defective by testing several factor groups, that is subsets of the set X = {x1, . . . , xn}. The
problems differ in

(i) prior information concerning the number of defective factors,

(ii) constraints on the test groups, and

(iii) information we are getting by inspecting the groups.
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This work is concerned with the problems determined by

(i) the number of defective factors is either equal to or not greater than t where t is a
given number, 1 ≤ t ≤ n,

(ii) there is either no constraints on the test groups or the groups contain exactly s
elements or the groups contain s elements or less, 1 ≤ s ≤ n, and

(iii) by inspecting a group Z, Z ⊂ X we receive a number of defective factors in Z (
additive, or quantitative model).

Also, we only consider the nonsequential strategies (called also static, nonadaptive, passive,
etc.) when all tests have to be specified without knowing the outcomes of other tests.

The paper by R.Dorfman [2], devoted to sequential procedures of blood testing for
detection of syphilitic men, is usually considered as the first work on the theory of group
testing. The blood testing and many other practical problems are described by the binary
model where by inspecting a group Z one receives 1 if there is at least one defective in
Z and 0 otherwise. This model is perhaps the most important and well studied. During
more than 50 years of the history of the group testing many other mathematical models
have been also developed and advanced results have been achieved. Among many classical
papers in the field of group testing we mention only several dealing with statistical and
probabilistic aspects: [3, 4, 5, 6]. A recent monograph [7] covers the major part of the main
achievements in the group testing theory. The readers mainly interested in applications
may also find very useful the collection of papers [8].

In the present work we apply the probabilistic method of [1] to prove the existence of
nonsequential designs that detect all defective factors by performing N tests where N is
called the length of the design and small values of N are preferable. The probabilistic
method for proving existence theorems for nonsequential search designs was proposed by
A.Renyi in a classical paper [6] and since then it was applied to different search problems,
examples can be found in [7] and the forthcoming monograph [9].

Section 2 formulates the problem of group testing as an example of a general search
problem and provides general existence theorems. In Section 3 upper bound for the length
of optimal strategies are established in some particular cases. Section 3 can be regarded as
an introduction to Section 4 where the general case is solved. In Section 5 a problem of an
asymptotically optimal experimental design is considered where a design set rather than
design points is to be chosen in an optimal way.

We do not consider the important problem of finding strategies with small length N .
We refer to [10] for construction of sequential algorithms in the case when the number
of defective factors is either known or bounded and to [11, 12] for design construction in
particular cases. In this respect we also mention a well–known paper [5] which not only
considers some schemes of design construction but also demonstrates a lot of interesting
properties of design matrices for a group testing problem being more general than the
problem considered in the present work.

In asymptotic considerations we only consider the case when the number of defective
factors is small compared to the total number of factors n. This is the main point which
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makes the difference between the asymptotic results of the present paper and the results
obtained in a series of papers [13, 14, 15] where the nonsequential group testing problem for
the additive model is considered with no constraints on both the test groups and the number
of defective factors. The above papers yield the result Nmin ∼ 2n

log2 n
, n →∞, for the minimal

length of a nonsequential strategy which guarantees detection of all defectives. We show
that if the number of defective factors is small compared to n then typically Nmin ≤ clog n
for some constant c which does not depend on n but may depend on information concerning
the number of defectives, constraints on the test groups and required probability of correct
decision.

2 Group testing as a search problem, general exis-

tence theorems

2.1 General discrete search problems

Our approach is to consider group testing problems from a general view of discrete search.
To do this let us start with a rather general formulation of discrete search problems which
is borrowed from [1].

Definition 2.1. A discrete search problem is a triple (T ,X , f) where T = {T} is a
target field, that is a collection of all possible target combinations T , X = {X} is a test
field, that is a collection of all possible test combinations, and f : X × T → Y is a search
function mapping X × T to some space Y .

A value f(X,T ) for fixed X ∈ X and T ∈ T is called a test result at a test combination
X when the unknown target combination is T .

Definition 2.2. A target T ∈ T is achievable if for any other T
′ ∈ T there exist X ∈ X

such that f(X,T ) 6= f(X, T
′
). A search problem {T ,X , f} is solvable if every T ∈ T is

achievable.
If a search problem is not solvable then there exist targets which are impossible to find.

We shall only consider the search problems that are solvable.
For the group testing problems both X and T are certain collections of factor groups.

We mainly consider the problems when T is either Gt or G≤t and analogously X is either
Gs or G≤s. Here 1 ≤ t < n, 1 ≤ s ≤ n, n is the total number of factors,

Gk = {{xi1 , . . . , xik}, 1 ≤ i1 < . . . ik ≤ n} (1)

is the collection of all factor groups containing exactly k factors,

G≤k =
k⋃

j=0

Gj (2)

is the collection of the groups containing k factors or less. As for the test function, we only
consider the function f(X, T ) = |X ∩T | where |A| denotes the number of elements in a set
A. This corresponds to the so-called ”additive group testing” model.
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2.2 Strongly separating designs

Definition 2.3. A nonsequential design XN of a length N is a collection of test combina-
tions XN = {X1, . . . , XN} which are chosen before the observations start.

If we apply a nonsequential design then for any i > 0 the test results f(X1, T ), . . . ,
f(Xi−1, T ) can not be used to select Xi. We shall not consider other types of designs and
will usually omit the word ”nonsequential” while referring to a nonsequential design.

To ensure that a design XN finds an unknown target T whatever the target T ∈ T is,
the design should separate all T ∈ T , that is to say to be strongly separating.

Definition 2.4. A design XN = {X1, . . . , XN} separates T in T if for any T ′ ∈ T , T ′ 6=
T there exist a test group X ∈ XN which separates the pair (T, T ′) that is f(X,T ) 6=
f(X, T ′). A design XN is strongly separating if it separates all T in T .

The following basic result of [1] will be used to establish the existence of the group
testing strategies.

Theorem 2.1. Let (T ,X , f) be a solvable search problem, |T | = M ≥ 4, |X | = R, and
for a fixed Ti, Tj ∈ T (1 ≤ j < i ≤ M) let kij = k(Ti, Tj) be the number of X ∈ X such
that f(X,Ti) = f(X,Tj), that is

kij = |X ∈ X : f(X, Ti) = f(X, Tj)| for Ti, Tj ∈ T . (3)

Then there exists a nonsequential strongly separating search design with the sample size

N ≤ N∗ = min

{
k = 1, 2, . . . such that

M∑

i=1

i−1∑

j=1

(
kij

R

)k

≤ 1

}
. (4)

The proof can be found in [1, 9]. However, for the sake of completeness we outline the
proof of the theorem.

Proof. Let us consider the test groups Xi ∈ XN (i = 1, . . . , N) as uniformly distributed
on X mutually independent random elements and estimate the probability qN that at least
one N -collection of these random elements constitutes a strongly separating design XN .
Let Aij be the event that Ti and Tj are not separated by all Xi ∈ XN . By independence,

Prob(Aij) =
(

kij

R

)N
. Then 1 − qN = Prob(∪i<jAij) is the probability of that the random

design XN is not strongly separating. But

Prob(∪i<jAij) <
∑

i<j

Prob(Aij) =
∑

i<j

(
kij

R

)N

where the fact that the inequality is strict follows from dependence of random events Aij

for M ≥ 4. The first value of N , such that the right hand side of this inequality is smaller
than or equal to 1, gives (4). 2

The sampling procedure above for Xi ∈ X corresponds to the random sampling from
X with replacement. If to use the random sampling from X without replacement then the
same arguments lead to the upper bound for the length of the optimal design

N ≤ N+ = min

{
k = 1, 2, . . . :

M∑

i=1

i−1∑

j=1

kij(kij − 1) . . . (kij − k + 1)

R(R− 1) . . . (R− k + 1)
< 1

}
(5)
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where we use the assumption 0
0

= 0. This upper bound is always smaller than or equal to
(4) but it is a little more complex to compute. For large enough values of R = |X | we do
not know cases when the estimates (4) and (5) are different. Therefore, we shall always
compute (4) and use (4) in asymptotic considerations. Computation of (5) is analogous
and all asymptotic conclusions are the same for (4) and (5).

Computation of (4) and (5) for a particular search problem corresponds to an existence
proof of a strongly separating design XN of the length N ≤ N∗ or N ≤ N+. Derivation
of formulas for the coefficients (3) implies the derivation of the upper bounds (4), (5) and
constitutes the main objective of the present work. A general case will be considered in
Section 4.

2.3 Weakly separating designs

Strongly separating can be weakened to say that the problem is solved for most targets in
T .

Definition 2.5. Let a search problem (T ,X , f) be solvable and γ be a fixed number,
0 ≤ γ ≤ 1. A design XN is called γ-separating design if

| {T ∈ T : design XN separates T in T } |
| T | ≥ 1− γ . (6)

Note that the definition of γ-separating designs can be generalized to the case when
there is a nonuniform prior measure on T and that in the present notation 0-separating
designs are exactly the same as strongly separating designs.

The difference between the concepts of strongly separating and γ-separating designs is
as follows. If one has to construct a design which separates all the targets then he should
use a strongly separating design. However if one has got a search problem and he would be
satisfied with a design that solves his problem in a majority of cases then it is worthwhile to
use a γ-separating design. As we shall see later one can typically guarantee the existence of
γ-separating designs with a much smaller length than for the strongly separating designs.

The following theorem is a generalization of Theorem 2.1 for the case of γ-separating
designs.

Theorem 2.2. Let (T ,X , f) be a solvable search problem, |T | = M ≥ 2 and |X | = R,
0 < γ < 1 be a fixed number and kij be defined by (3). Then there exists a non-sequential
γ-separating design with sample size

N ≤ Nγ = min

{
k = 1, 2, . . . :

M∑

i=1

∑

j 6=i

(
kij

R

)k

< Mγ,

}
, (7)

Proof. The proof is analogous to the proof of Theorem 2.1, the difference is that we do
not need to separate all pairs of different Ti, Tj ∈ T : for fixed Ti ∈ T the probability of
that Ti is not separated from at least one Tj ∈ T after N random tests is less than or equal

to
∑

j 6=i

(
kij

R

)N
and we have 1−∑

j 6=i

(
kij

R

)N
as a lower bound for the probability of that Ti

is separated from all others Tj ∈ T . Summation over i and the use of (6) implies (7). 2
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Note that the values of γ < 2
M

are meaningless and the asymptotic formula (4) for
the case of strongly separating designs almost coincides with (7) for γ = 2

M
. (The only

difference is that we have strict inequality inside the curly brackets in (7).) Note also that
analogously to derivation of (5) one can use random sampling without replacement in X as
a randomization scheme and get formulas analogous to (5).

Another interpretation can be given to the value Nγ determined via (7). Indeed, assume
that the target T is uniformly distributed in T and we are interested in the probability
of separation of T by independent randomly selected test groups Xi, i = 1, . . . , N, in X .
Then the proof of Theorem 2.2 shows that for N ≥ Nγ the probability that a random design
{X1, . . . , XN} separates an unknown target T ∈ T is ≥ 1− γ.

3 Examples

This section provides some simple examples where straightforward computation provides
the desired result and gives an insight into the general case. All results of this section can
be obtained as consequences of general results of Section 4.

3.1 One defective element

The assumption of this subsection is that the number of defective elements t = 1. This
means that T = G1, i.e. the target set T = {T1, . . . , Tn} consists of n one-element sets
Ti = {xi}, i = 1, . . . , n. In the case t = 1 the test function f(X, T ) = |X ∩ T | assumes
values on the two-point set {0, 1}. This problem was considered in a number of papers
[6, 16, 17]

The main reason to the simplicity of this case is that the coefficients kij defined by (3)
do not depend on i, j for all sets X we are considering. According to [6] the case when kij

do not depend on i, j is known as homogeneous of order 2 and the existence theorems of
the group testing designs have been established mostly for this case. The method used to
prove the existence is a particular case of the method of the present paper and is known
as the method of random design. Essentially all results of this section can be found in [6].
Better upper bounds for the case T = G1, X = G≤s have been obtained in [16] and [17].

Different situations arise depending on the assumption on the collection of test sets X .
Consider first the case when there are no restrictions on the test sets, that is X = G≤n.

Theorem 3.1. Let n ≥ 4, T = G1 and X = G≤n. Then kij = 2n−1 for any Ti, Tj ∈ T
(Ti 6= Tj), and

N∗ = min

{
k :

(
n
2

) (
1

2

)k

≤ 1

}
= dlog2 n(n− 1)− 1e, Nγ = dlog2(n− 1)− log2 γe (8)

where dae denotes the smallest integer larger than or equal to a.
Proof. Note first that R = |X | = 2n. To compute kij let us fix two different sets

Ti, Tj ∈ T , note the form Ti = {xi} for them and represent kij = |X0|+ |X1| where

Xk = {X ∈ X : f(X,Ti) = f(X, Tj) = k}. (9)
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The set X0 consists of all non-empty subsets of the (n − 2)-element set X \ {xi, xj} and
therefore the number of elements in it equals

|X0| =
n−2∑

k=0

(
n− 2

k

)
= 2n−2.

The number of elements in X1 also equals |X1| = 2n−2 since X1 contains the factor groups
consisting of either xi or xj and any other factors, i.e. any elements from the set X\{xi, xj}.
Formulas (8) follow now from (4) and (7) . 2

Corollary 3.1 Under the assumptions of Theorem 3.1 there exists a strongly separating
design of the length

N ≤ d2 log2 n− 1e. (10)

The formula (10) in its asymptotic form N ∼ 2 log2 n, as n → ∞, is well known [6]
in the theory of group testing as an upper bound for the length of the optimal strongly
separating design obtained by the method of random design. Note also that the optimal
design, which uses orthogonal arrays to construct optimal designs, is also well known and
achieves a better order N ∼ log2 n, n →∞.

Theorem 3.2. Assume that n ≥ 4, T = G1, X = Gs, 2 ≤ s ≤ n− 2. Then

kij =

(
n− 2

s

)
+

(
n− 2
s− 2

)
=

(
1− 2

s(n− s)

n(n− 1)

) (
n
s

)
.

for any Ti, Tj ∈ T (Ti 6= Tj) and

N∗ = dCn,s(log2 n(n− 1)− 1)e , Nγ = dCn,s(log2(n− 1)− log2 γ)e (11)

where Cn,s = −1/ log2(1− 2s(n−s)
n(n−1)

).
Proof. The proof is similar to the proof of Theorem 3.1. The difference is in that

R = |X | =
(

n
s

)
and for |X0| and |X1|:

|X0| =
(

n− 2
s

)
, |X1| =

(
n− 2
s− 2

)
.

These formulas follow from that X0 contains all groups of s factors taken from the factor
collection X \ {xi, xj} and X1 consists of the factor groups which include either xi or xj

and any s− 2 factors from the set X \ {xi, xj}. 2

When n →∞ one can easily get the asymptotic form of N∗ in (11):

N∗ ∼ 2 log2 n

− log2(1− 2s(n−s)
n(n−1)

)
, n →∞, (12)

and, if there is a freedom in selection of s, one can consider the problem of an asymptotically
optimal choice of s minimizing the right-hand side of (12). This is a kind of experimental
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design problem since a choice of s determines the choice of the set X where we perform
observations.

Assume that n → ∞, s = s(n) → ∞, s
n
→ λ where λ, 0 < λ < 1, is a number to be

chosen. Under this assumption, (12) can be rewritten as

N∗ ∼ 2 log2 n

− log2(λ
2 + (1− λ)2)

, n →∞, (13)

Obviously, the minimal value of the right-hand side of (13) is achieved for λ = 1
2

and
equals 2 log2 n (which coincides with the asymptotic formula for N∗ in the case above when
X = G≤n). It is also easy to see that if λ = 0 or 1 then we do not get the logarithmic order
of the rate of N∗ = N∗(n), n →∞.

In Section 4 we will show that the asymptotic considerations in the general case lead to
basically the same conclusions concerning the choice of s.

3.2 Two defectives

Assume first that there are exactly two defectives, i.e. T = G2, and there are no restrictions
on the test sets X.

Theorem 3.3. Let T = G2, X = G≤n, n ≥ 4. Then

N∗ = min

{
k = 1, 2, . . . : 3

(
n
4

) (
3

8

)k

+ 3

(
n
3

) (
1

2

)k

≤ 1

}
. (14)

Proof. Fix a pair of different sets Ti, Tj ∈ T , and note that they both contain two
elements with at least one element different. Consider first the case (i) when |Ti ∩ Tj| = 0,

i.e. when the sets Ti, Tj consist of different elements. Note that there are 3

(
n
4

)
different

pairs {Ti, Tj} consisting of different elements.
Since the test function f(X, T ) = |X ∩ T | can get one of three values 0, 1, 2 we can

represent

kij =
2∑

j=0

|Xj| (15)

where Xj are defined by (9).
The set X0 contains all factor groups containing factors from the set X \ (Ti∪Tj) which

contains n− 4 factors. Therefore

|X0| =
n−4∑

k=0

(
n− 4

k

)
= 2n−4

The set X1 consists of the factor groups which contain one factor from Ti, another factor
from Tj, there are 4 different ways to select these two factors, and any combination of the
factors from the set X \ (Ti ∪ Tj). This gives

|X1| = 4
n−4∑

k=0

(
n− 4

k

)
= 2n−2
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The set X2 includes the factor groups with all four factors from Ti and Tj and any combi-
nation of factors from the set X \ (Ti ∪ Tj). This gives

|X2| =
n−4∑

k=0

(
n− 4

k

)
= 2n−4

Altogether the above formulas give kij = 3 2n−3 for the case (i).
Consider now the case (ii) when the two-element factor groups Ti and Tj have one

common element. There are 3

(
n
3

)
different combinations of these factor groups.

In case (ii) we again have three possible values for f and the representation (15). The
set X \ (Ti ∪ Tj) contains now n − 3 elements rather than n − 4. This analogously with
(i) gives |X0| = 2n−3 and |X2| = 2n−3. The set X1 contains the groups of two kinds: they
either contain the factor which is common for the pair (Ti, Tj), and there are 2n−3 of such
groups, or they do not contain the common factor but contain the two other from the set
Ti ∪ Tj, and again there are 2n−3 of such groups. In total this gives kij = 2n−1 for the case
(ii). Bearing in mind R = 2n we now apply (4) and get (14). 2

Consider now the case when the number of defective factors is either 1 or 2, that is
T = G1 ∪ G2 and there are no restrictions on the test sets.

Theorem 3.4. Let T = G1 ∪ G2, X = G≤n, n ≥ 4. Then

N∗ = min

{
k = 1, 2, . . . : 3

(
n + 1

4

) (
3

8

)k

+ 3

(
n + 1

3

) (
1

2

)k

≤ 1

}
.

Proof. We use the arguments to the proof to Theorem 3.3 and add three more cases
to what has been considered there.

Case (iii). Both Ti and Tj consist of one factor. This case was considered in the proof

of Theorem 3.1. There are

(
n
2

)
different pairs (Ti, Tj) of that kind and kij = 2n−1.

Case (iv). Ti and Tj consist of different number of factors and do not intersect. There are

3

(
n
3

)
different ways to choose such combination. Since only 0 and 1 are possible values

of f we have the representation (0) where |X0| and |X1| can be computed analogously to
the above: |X0| = 2n−3, |X1| = 2n−2. This gives kij = 3 2n−3 for the case (iv).

Case (v). Ti and Tj consist of different number of factors and intersect. There are

2

(
n
2

)
different pairs of this type. Again, 0 and 1 are the values that the test function

f can get. As before X0 contains all nonempty factor groups with the factors from the
set X \ (Ti ∪ Tj) which gives in the present case |X0| = 2n−2. The set X1 contains the
factor groups that include the factor common for Ti and Tj and any combination of factors
from X \ (Ti ∪ Tj). This gives |X1| = 2n−2. Combining we get kij = 2n−1 for the case (v).
Application of (4) gives the required. 2

We omit here the asymptotic considerations referring to Section 5 for a general case.
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4 General Case

4.1 Branching of the target field

The result of this section allows one to compute the number of elements in the subsets of
the target field of the form (1) and (2) where, as will be shown below, the coefficients kij

are equal.
Let 0 ≤ p ≤ m ≤ l ≤ n, p < l. Denote

T (n, l, m, p) = {(Ti, Tj) ∈ G≤n × G≤n : Ti 6= Tj, |Ti| = l, |Tj| = m, |Ti ∩ Tj| = p} (16)

Theorem 4.1. The number of different non-ordered pairs in T (n, l, m, p) equals

Q(n, l, m, p) =





(
n

p m−p l−p n−l−m+p

)
if m < l

1
2

(
n

p m−p m−p n−2m+p

)
if m = l

(17)

where (
n

n1 n2 . . . nk

)
=

n!

n1! n2! . . . nk!
(nr ≥ 0,

k∑

r=1

nr = n )

is the multinomial coefficient.

Proof. Consider first the case m < l. There are

(
n

l + m− p

)
possibilities to select

l+m−p elements that belong to at least one of two groups Ti, Tj, the number of possibilities

to select l elements belonging to Ti from l + m− p is

(
l + m− p

l

)
, and one can select p

elements that belong to Ti ∩ Tj from these l elements by

(
l
p

)
variants. Multiplying we

have

Q(n, l, m, p) =

(
n

l+m−p

) (
l+m−p

l

) (
l
p

)
=

(
n

p m−p l−p n−l−m+p

)

The case m = l differs from the case m < l in that the symmetry in selection of Ti and Tj

reduces by half the number of possibilities. 2

4.2 Existence theorems for balanced test fields

This section introduces a concept of a a-balanced test field, where a stands for ”additive”,
and provides a formula for an upper bound of optimal group testing designs in the cases
when the target field is of the form (1) or (2) and the test field is a-balanced. Examples of
the a-balanced test fields X will be given in the next subsection.
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Let (T, T ′) ∈ T (n, l, m, p), where the set T (n, l, m, p) is defined through (16) and X ∈
Xqr(T, T ′) where

Xqr(T, T ′) = {X ∈ X : |X ∩ T | = |X ∩ T ′| = q ≥ 0, |X ∩ (T ∩ T ′)| = r ≥ 0} (18)

where q and r are some integers.
Definition 4.1. Let

0 ≤ p ≤ m ≤ l ≤ n, p < l; 0 ≤ r ≤ q ≤ m.

We shall call the test field X a-balanced if the number |Xqr(T, T ′)| does not depend on
a choice of the pair (T, T ′) ∈ T (n, l, m, p). For a-balanced test fields X the number
|Xqr(T, T ′)| for (T, T ′) ∈ T (n, l, m, p) will be denoted R(n, l, m, p, q, r).

Theorem 4.2. Let 0 ≤ p ≤ m ≤ l ≤ n, p < l, X be a a-balanced test field, in the sense
of Definition 4.1, and Ti, Tj ∈ T (n, l, m, p) be a fixed pair of target groups. Then

kij =
p∑

r=0

m−p+r∑
q=r

R(n, l, m, p, q, r) (19)

and the value of kij is the same for all pairs (Ti, Tj) ∈ T (n, l, m, p).
Proof. Suppose Ti, Tj ∈ T (n, l, m, p) and X ∈ Xqr(Ti, Tj). One can easily see that the

sets Xqr(Ti, Tj) defined by (18) may be non-empty only if

0 ≤ r ≤ p, 0 ≤ q − r ≤ m− p . (20)

Recall that kij = |{X ∈ X : |X ∩ Ti| = |X ∩ Tj|}|. Using the notation (9) and (18) we can
write

kij =
∑
q

|Xq| =
∑
q

∑
r

|Xqr| =
∑
q

∑
r

R(n, l, m, p, q, r) (21)

where we have used the fact that (Ti, Tj) ∈ T (n, l, m, p).
Now we use (20) to establish bounds for q and r in (21) such that the sets Xqr are

non-empty:

kij =
p∑

r=0

m−p∑

u=0

R(n, l, m, p, u + r, r) =
p∑

r=0

m−p+r∑
q=r

R(n, l, m, p, q, r)

where we have used the variable u = q − r. 2

If the test field X is a-balanced in the sense of Definition 4.1 and one has analytic
expressions for the coefficients R(n, l, m, p, q, r) then the upper bound N∗ can be expressed
in a closed form by separating the set of all pairs {(Ti, Tj), i < j} into a union of disjoint
sets T (n, l, m, p) and computing the coefficients kij for the pairs in these sets. Theorem
4.1 gives formulas for computing the number of different pairs in the sets T (n, l, m, p) and
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Theorem 4.2 guarantees that kij are the same for all pairs in T (n, l,m, p) and provides
explicit formulas for the values of kij. This gives the following formula for N∗:

N∗ = min

{
k :

∑

l,m

∑

p:p≤m,p<l

Q(n, l, m, p)

(
1

R

p∑

r=0

m−p+r∑
q=r

R(n, l,m, p, q, r)

)k

≤ 1

}
(22)

where R = |X |, and the first summation is over 0 ≤ m ≤ l ≤ t for the case T = G≤t and
l = m = t, that is the first summation disappears in (22), for the case T = Gt. Analogous
formula for γ-separating designs is

Nγ = min

{
k :

∑

l,m

∑

p:p≤m,p<l

Q(n, l, m, p)

(
1

R

p∑

r=0

m−p+r∑
q=r

R(n, l,m, p, q, r)

)k

<
γ|T |

2

}
(23)

4.3 Examples of balanced test fields

Let us consider some examples of a-balanced test fields and derive explicit formulas for
R(n, l, m, p, q, r). The following statement is basic in this respect.

Theorem 4.3. Let X = {x1, . . . , xn} be a collection of n ≥ 2 factors and integers
n,m, l, p, q, r be such that

0 ≤ p ≤ m ≤ l ≤ n, p < l, 0 ≤ r ≤ p, 0 ≤ q − r ≤ m− p.

Then the test field

X = Gs = {X = {xi1 , . . . , xis}, 1 ≤ i1 < . . . is ≤ n} , (24)

1 ≤ s ≤ n, is a-balanced and

R(n, l,m, p, q, r) =

(
p
r

) (
l − p
q − r

) (
m− p
q − r

) (
n− l −m + p

s + r − 2q

)
(25)

where we assume (
b
a

)
= 0 for a < 0 and a > b. (26)

Proof. Assume that (Ti, Tj) be any pair in T (n, l, m, p) and integers n,m, l, p, q, r be
as in the statement of the theorem. By definition R(n, l, m, p, q, r) is the number of the
test groups X ∈ Xqr. In the case (24) this number can be computed as follows. To

construct a factor group X ∈ Xqr select first r factors from the set Ti ∩Tj (there are

(
p
r

)

possibilities to do this); then, for fixed r ≤ p, for two sets Ti \ Tj and Tj \ Ti, we select
u = q − r (0 ≤ u ≤ m− r) factors from both, we can do this by

(
m− p

u

) (
l − p

u

)
=

(
m− p
q − r

) (
l − p
q − r

)

12



choices; finally we include s− r− 2u = s + r− 2q factors into X from the set X \ (Ti ∪ Tj)

containing n− l −m + p factors (obviously, we have

(
n− l −m + p

s + r − 2q

)
possibilities to do

this).
Note that if s is either rather small, i.e. s < 2m − p, or large, s > n − l − m + p,

then some variants among those considered above are impossible but the corresponding
summands are excluded from the sum due to the convention (26).

To finish the proof we only mention that the above calculation of R(n, l, m, p, q, r) does
not depend on the choice of a pair (Ti, Tj) ∈ T (n, l, m, p). 2

Let us show how to compute values R(n, l, m, p, q, r) in the cases when the test field X
can be represented as

X = XJ = ∪j∈JGj (27)

where J ⊂ {0, 1, . . . , n} and Gj is defined in (1). Note that in particular cases J = {s} and
J = {0, 1, . . . , s} one has XJ = Gs and XJ = G≤s, respectively.

Lemma 4.1. Let the test field T be fixed, X = X ′ ∪X ′′
where X ′ ∩X ′′

= ∅, R
′
= |X ′ |,

R
′′

= |X ′′|, and {k′ij; Ti, Tj ∈ T }, {k′′ij; Ti, Tj ∈ T } be two sets of the coefficients (3) for

the test fields X ′
and X ′′

, respectively. Then R = |X | = R
′
+ R

′′
and

kij = |{X ∈ X such that |X ∩ Ti| = |X ∩ Tj|}| = k
′
ij + k

′′
ij (28)

for any pair Ti, Tj ∈ T .
Lemma 4.1 implies that if X ′ ∩X ′′

= ∅ and both X ′
and X ′′

are a-balanced in the sense
of Definition 4.1 with families of R-values {R′

(n, l, m, p, q, r)}l,m,p,q,r and
{R′′

(n, l, m, p, q, r)}l,m,p,q,r then the set X = X ′ ∪ X ′′
is also a-balanced and

R(n, l, m, p, q, r) = R
′
(n, l, m, p, q, r) + R

′′
(n, l, m, p, q, r) (29)

for any l, m, p, q, r. Application of (22) and (23) give expressions for N∗ and Nγ in the case
when the test field is X = X ′ ∪ X ′′

.

4.4 Existence theorems

We provide in this section several existence theorems for the group testing designs. These
theorems are corollaries of previous results of Section 4.

Combining (22), (25) and the results of Theorems 4.1 and 4.2 we get the following two
statements.

Corollary 4.1. Let T = Gt and X = Gs where n ≥ 4, 1 ≤ t < n, 1 ≤ s < n. Then
there exists a nonsequential group testing design with the sample size
N ≤ N∗ = N∗(n, t, s) where

N∗(n, t, s) = min

{
k = 1, 2, . . . :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

×



p∑

r=0

t−p+r∑
q=r

(
p
r

) (
t− p
q − r

)2 (
n− 2t + p
s + r − 2q

)


k

≤
(

n
s

)k}
(30)

13



and there exists a nonsequential γ-separating design with the sample size N ≤ N∗ =
Nγ(n, t, s) where

Nγ(n, t, s) = min

{
k = 1, 2, . . . :

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

×



p∑

r=0

t−p+r∑
q=r

(
p
r

) (
t− p
q − r

)2 (
n− 2t + p
s + r − 2q

)


k

< γ

(
n
t

) (
n
s

)k}
(31)

Corollary 4.2. Let T = G≤t and X = Gs where n ≥ 4, 1 ≤ t < n, 1 ≤ s < n. Then
there exists a nonsequential group testing design with the sample size
N ≤ N∗ = N∗(n,≤ t, s) where

N∗(n,≤ t, s) = min

{
k = 1, 2, . . . :

1

2

t∑

m=0

m−1∑

p=0

(
n

p m−p m−p n−2m+p

)

×



p∑

r=0

m−p+r∑
q=r

(
p
r

) (
m−p
q−r

)2 (
n−2m+p
s+r−2q

)


k

+
t∑

l=1

l−1∑

m=1

m∑

p=0

(
n

p l−p m−p n−l−m+p

)

×
( p∑

r=0

m−p+r∑
q=r

(
p
r

) (
l−p
q−r

) (
m−p
q−r

) (
n−l−m+p
s+r−2q

))k

≤
(

n
s

)k}

The additivity property (29) implies the following statements.
Corollary 4.3. Let T = Gt and X = G≤s where n ≥ 4, 1 ≤ t < n, 1 ≤ s ≤ n. Then

there exists a nonsequential group testing design with the sample size
N ≤ N∗ = N∗(n, t,≤ s) where

N∗(n, t,≤ s) = min

{
k = 1, 2, . . . such that

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)

×



s∑

v=0

p∑

r=0

t−p+r∑
q=r

(
p
r

) (
t− p
q − r

)2 (
n− 2t + p
v + r − 2q

)
/

s∑

v=0

(
n
v

)


k

≤ 1

}

Corollary 4.4. Let n ≥ 4, 1 ≤ t < n, T = Gt and X = G≤n be the collection of 2n

subsets of X. Then there exists a nonsequential group testing design with the sample size
N ≤ N∗ = N∗(n, t,≤ n) where

N∗(n, t,≤ n) = min

{
k :

1

2

t−1∑

p=0

(
n

p t−p t−p n−2t+p

) 
22p−2t

t−p∑

u=0

(
t− p

u

)2



k

≤ 1

}
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and there exists a nonsequential γ-separating design with the sample size N ≤ N∗ =
Nγ(n, t,≤ n) where

Nγ(n, t,≤ n) = min

{
k :

t−1∑

p=0

(
n

p t−p t−p n−2t+p

) 
22p−2t

t−p∑

u=0

(
t−p
u

)2



k

< γ

(
n
t

)}

Corollary 4.5. Let n ≥ 4, 1 ≤ t < n, T = G≤t and X = G≤n be the collection of 2n

subsets of X. Then there exists a nonsequential group testing design with the sample size
N ≤ N∗ = N∗(n,≤ t,≤ n) where

N∗(n,≤ t,≤ n) = min

{
k = 1, 2, . . . :

1

2

t∑

m=0

m−1∑

p=0

(
n

p m−p m−p n−2m+p

)

×

2−2m+2p

m−p∑

u=0

(
m−p

u

)2



k

+
t∑

l=1

l−1∑

m=0

m∑

p=0

(
n

p l−p m−p n−l−m+p

)

×
(

2−l−m+2p
m−p∑

u=0

(
l−p
u

) (
m−p

u

))k

≤ 1

}

Corollaries 4.4 and 4.5 give expressions for N∗ in the case when X is the collection of
all non-empty subsets of X which is certainly one of the most important cases. We shall
not provide formulas for N∗ and Nγ in other particular cases, they can be derived in the
same manner.

5 Asymptotic bounds

In this section we consider the asymptotic behavior of N∗ and Nγ computed above when
the number of factors n is large. Using the fact that whatever the target set T ⊆ G≤n is
the test made with the test group X = X reduces the problem to the case T = Gt for some
t, we only consider this assumption for T .

The principal cases are the cases (30) and (31) when X = Gs and T = Gt and

n →∞, t = t(n) ≥ 2,
t(n)

log n
→ 0, s = s(n) →∞,

s(n)

n
→ λ, (32)

where t = t(n) may be fixed or t(n) → ∞ as n → ∞, λ, 0 < λ < 1, is some number.
(It is easy to demonstrate that if λ = 0 or 1 then we could not get the logarithmic order
of the rate of N∗ = N∗(n), n →∞, and therefore these cases are not interesting from the
asymptotic point of view.) The case considered in Corollary 4.4, when X = G≤n, is also
important. As we show below, see Corollary 5.1, the asymptotic upper bounds in this case
coincide with the bounds for X = Gdn/2e.
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Straightforward application of the Stirling formula

k! ∼
√

2πkkke−k, k →∞,

to the coefficients (17) implies that if (32) is valid then

lim
n→∞N∗(n, t,≤ s)/N∗(n, t, max{s}) = 1 for s ≤ n/2 (33)

lim
n→∞N∗(n, t,≤ s)/N∗(n, t, n/2) = 1 for s ≥ n/2 (34)

and particularly
lim

n→∞N∗(n, t,≤ n)/N∗(n, t, n/2) = 1 (35)

where N∗(n, t, λn) = N∗(n, t, dλne) for any λ.
The asymptotic formulas (33)–(35) show that an asymptotic expression for N∗(n, t, s)

would immediately yield analogous expressions in many other cases including the case when
X contain all 2n subsets of X. Analogous relations hold in the case of γ-separability.

Assume that X = Gs and (32) holds. Using the Stirling formula we get for (Ti, Tj) ∈
T (n, l, m, p)

kij

R
=

p∑

r=0

m−p+r∑
q=r

(
p
r

) (
l − p
q − r

) (
m− p
q − r

) (
n− l −m + p

s + r − 2q

)
/

(
n
s

)

∼ kas
ij = (1− λ)l+m−2p

m−p∑

u=0

(
λ

1− λ

)2u (
l − p

u

) (
m− p

u

)
, n →∞,

where we have used the variable u = q − r. For the case m = l = t which should only be
considered if T = Gt we have

kij

R
∼ kas

ij = (1− λ)2t−2p
t−p∑

u=0

(
λ

1− λ

)2u (
m− p

u

)2

, if n →∞.

This implies

kas
ij = (1− λ)2 + λ2 ≥ 1

2
for m = l = t, p = t− 1 (36)

where the strict inequality holds if and only if λ 6= 1
2
.

On the other hand, if λ = 1
2

then for any m, l, p

kas
ij =

(
1

2

)l+m−2p m−p∑

u=0

(
l − p

u

) (
m− p

u

)
(37)

This implies that kas
ij ≤ 1

2
where the strict inequality holds only if m = l = p− 1:

kas
ij =

1

2
if m = l = p + 1.

The above consideration leads to a suggestion that λ = 1
2

is the optimal value of λ. The
following theorem proves this suggestion for the case T = Gt and establishes an asymptotic
formulas for N∗(n, t, λn) and Nγ(n, t, n/2).
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Theorem 5.1. Assume that X = Gs, T = Gt (32) holds and let γ and λ be fixed
numbers, 0 < γ < 1, 0 < λ < 1. Then

N∗(n, t, λn) ∼ gλ(t + 1) log2 n, n →∞, (38)

Nγ(n, t, n/2) ∼ t log2 n

2t− log2(2t)! + 2 log2 t!
, n →∞, (39)

where

gλ =
1

− log2(λ
2 + (1− λ)2)

(40)

and the minimal value of the constant gλ equals 1 and is achieved for λ = 1
2
.

Proof. Note that m = l = t in the case X = Gs, T = Gt.
Consider the case of strongly separating designs. Establish first an asymptotic lower

bound L = L(n, t, λn) for N(n, t, λn) such that

lim inf
n→∞

N(n, t, λn)

L(n, t, λn)
≥ 1 . (41)

To do this, take only the term with p = t − 1 in the sum over p in (30) and apply (36).
This gives the equation

1

2

(
n

t− 1 1 1 n−t−1

) (
(1− λ)2 + λ2

)L
= 1

for L = L(n, t, λn). Using the Stirling formula and solving the asymptotic equation with
respect to L we get

1

2

nt+1

(t− 1)!

(
(1− λ)2 + λ2

)L
= 1, (42)

L(n, t, λn) ∼ gλ(t + 1) log2 n, n →∞. (43)

To prove that gλ(t+1) log2 n is indeed asymptotically equivalent to N(n, t, λn) we need
to show that the terms corresponding to p = 0, 1, . . . , t − 2 are asymptotically negligible
in the sum (30) relative to the term with p = t − 1. The proof is similar for all p and we
consider only the term corresponding to p = 0. This term is the biggest comparing with
p = 1, . . . , t− 2 which follows from

(
n

0 t t n−2t

)
/

t−1∑

p=0

(
n

p t−p t−p n−2t+p

)
→ 1 if n →∞

Denote by A(n, t, k, 0) and A(n, t, k, t−1) the terms in the sum (30) over p corresponding
to p = 0 and p = t − 1, respectively. To prove that the term corresponding to p = 0 is
asymptotically negligible means to prove that

A(n, t,N(n, t, λn), 0)

A(n, t, N(n, t, λn), t− 1)
→ 0 for n →∞. (44)
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Due to (43) and (41) this would follow from the asymptotic relation

A(n, t, gλ(t + 1) log2 n, 0)

A(n, t, gλ(t + 1) log2 n, t− 1)
→ 0 for n →∞. (45)

which we are going to prove.
For simplicity consider only the principal case λ = 1

2
and first establish the asymptotic

behavior of A(n, t, (t + 1) log2 n, t− 1) :

A(n, t, (t + 1) log2 n, t− 1) ∼ Ct, n →∞
where Ct is a constant not depending on n, it is actually Ct = 1/(2(t− 1)!).

Consider now A(n, t, (t + 1) log2 n, 0). Using (37) in the case m = t, p = 0 we have

kas
ij (0) =

(
1

2

)2t t∑

u=0

(
t
u

)2

=
(

1

2

)2t (2t)!

(t!)2

This gives for n →∞

A(n, t, (t + 1) log2 n, 0) =
1

2

(
n

0 t t n−2t

) ((
1

2

)2t (2t)!

(t!)2

)(t+1) log2 n

∼ n2t

2((t)!)2

((
1

2

)2t (2t)!

(t!)2

)(t+1) log2 n

=
1

2((t)!)2

((
1

2

)2t2/(t+1) (2t)!

(t!)2

)(t+1) log2 n

The case t = 1 has been considered in Section 3. For t ≥ 2 the function of t

(
1

2

)2t2/(t+1) (2t)!

(t!)2

is smaller than 1 and monotonically decreases to 0 if t → ∞. This completes the proof of
(45) and (38). Proof of (39) is similar and is based on the asymptotically equivalent form
for Nγ(n, t, 1

2
n) :

Nγ(n, t, n/2) ∼ min{k = 1, 2, . . . :
n2t

((t)!)2

(
kas

ij (0)
)k

<
γnt

t!
}, n →∞ . (46)

2

Two important remarks on Theorem 5.1 are: (i) the value λ = 1
2

is asymptotically
optimal, including the case of γ-separability, and (ii) for λ = 1

2
and any fixed 0 < γ < 1

lim
n→∞

N∗(n, t, n/2)

Nγ(n, t, n/2)
= α(t) =

1

t
(t + 1)(2t− log2(2t)! + 2 log2(t)!)

with α(t) ∼ 1
2
(log2 t − log2 π) when t → ∞, t/ log n → 0 when n → ∞. This shows that

γ-separability is a weaker restriction on a design than the strong separability.
The technique applied to prove Theorem 5.1 allows to obtain more precise asymptotic

approximations for N∗(n, t, λn) and Nγ(n, t, n/2) than those given in (38) and (39).
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Corollary 5.1. Let the assumptions of Theorem 5.1 hold. Then

N∗(n, t, λn) ∼ N
(as)
0 (n, t, λ) =

⌈
(t + 1) log2 n− log2(t− 1)!− 1

− log2(λ
2 + (1− λ)2)

⌉
, n →∞, (47)

Nγ(n, t, n/2) ∼ N (as)
γ (n, t, n/2) =

⌈
t log2 n− log2(t!γ)

2t− log2(2t)! + 2 log2 t!

⌉
, n →∞, (48)

where gλ is defined in (40).
To derive the approximation (47) we need to solve asymptotic equation (42) not ne-

glecting the terms small comparing with the leading term (43). Analogously, to derive (48)
we have to rewrite (46) as an equation for Nγ and solve it neglecting neither of the terms.

6 Numerical results

In this section we present some numerical results relating to optimal choice of s = s(n) and
computation of the values N∗ = N∗(X ) by (4), (47) and Nγ by (7), (48).

Numerical results show that there is only a small range of values of s where minimum
of N∗(Gs) over s is achieved. Table 1 provides typical results. Interestingly, in the cases
T = Gt and T = G≤t when t is small compared to n, the optimal values of s depend on
n but do not depend on t. An empirical formula for optimal s is s∗ = dn+1

2
e, which is in

agreement with Theorem 5.1. Unlike in the asymptotic case where

lim
n→∞N∗(Gs∗)/N

∗(G≤n) = 1,

for small n the difference between N∗(Xs∗) and N∗(G≤n) is sometimes significant which can
be seen from Table 1. Analogous results hold for the case when Nγ is considered as the
characteristic of interest.

Table 1 contains values of N∗ for T = G≤3, X = Gs, s = λn for different values of n
and λ. In brackets values of N+ are given, if they are different from the values of N∗.

λ n = 10 n = 20 n = 50 n = 100 n = 150
0.1 ∞(10) 79 (64) 105 125 137
0.2 28 (21) 37 50 59 65
0.3 18 (16) 29 34 37 41
0.4 13 (12) 17 23 28 30
0.5 11 (10) 15 21 25 27
0.6 11 (10) 15 21 27 29
0.7 12 17 25 32 35
0.8 17 (14) 26 36 45 49
0.9 ∞(10) 50 (44) 70 86 94

X = G≤n 12 16 21 25 27

Table 1. Values of N∗ and N+ for T = G≤3, X = Gλn and different values of n and λ.
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Table 2 contains values of N (as) = N (as)(n, t, n/2) and N (as)
γ = N (as)

γ (n, t, n/2) computed
via (47) and (48), respectively, for γ = 0.05 and γ = 0.0001. Comparison of the asymptotic
values presented in Table 2 with the exact formulas (4) and (7) for N∗ and Nγ has shown
that the approximations (47) and (48) are very precise for large values of n: for values of
t and n given in Table 2 the minimal difference between asymptotic expressions and exact
values was detected only for the case t = 2, n = 100, in the other cases the results coincide.

n T2 T3 T5

N (as) N
(as)
0.05 N

(as)
0.0001 N (as) N

(as)
0.05 N

(as)
0.0001 N (as) N

(as)
0.05 N

(as)
0.0001

100 19 12 19 25 13 19 35 15 20
500 26 16 22 34 18 23 49 21 26
1000 29 17 23 38 19 25 55 24 28
2000 32 18 25 42 21 26 61 26 31
5000 36 20 27 48 24 29 69 30 34
10000 39 22 28 52 25 31 75 32 37
20000 42 23 29 56 27 32 81 35 39
30000 44 24 30 58 28 33 84 36 40

Table 2. Values of N (as) and N (as)
γ for X = Gn/2, T = Gt, t = 2, 3, 5, γ = 0.05, 0.0001 and

different values of n.
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