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Abstract

Let Fn be the set of fractions p/q ∈ [0, 1] such that the sum of partial
quotients in their continued fraction representation is not greater
than n. We consider the sum σβ(Fn) =

∑
(qq′)−β taken over the

denominators of neighbouring fractions in Fn and prove that for all
β > 1

σβ(Fn) =
2
nβ

ζ(2β − 1)
ζ(2β)

+O

(
log n

n(β+1)(2β−1)/(2β)

)
as n→∞ ,

where ζ(·) is the Riemann zeta-function.

Key words: Farey tree, continued fractions, transfer operator, Farey
map, partition of the interval.
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1 Introduction

The Farey tree F is an infinite binary tree whose nodes are labeled by
rationals in [0, 1]; it can be defined inductively as follows.

Consider the two-point set F1 = {0, 1} with 0 and 1 written as 0
1

and
1
1

respectively. Let n ≥ 1 and 0 = x0,n < x1,n < . . . < xN(n),n = 1 be the
fractions in Fn arranged in order of increase and written in lowest terms;
here N(n) = 2n−1. Then

Fn+1 = Fn
⋃Qn+1 with Qn+1 = {xi−1,n ⊕ xi,n, i = 1, . . . , 2n−1} ,
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where
p

q
⊕ p′

q′
=
p+ p′

q + q′

is the mediant of the fractions p
q

and p′
q′ . For example,

F2 = {0, 1
2
, 1}, F3 = {0, 1

3
, 1

2
, 2

3
, 1} and F4 = {0, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 1} .

Fn is sometimes called Brocot sequence of order n. Elements of Qn are
known as Farey fractions of level n; for n ≥ 2 they are the nodes in the
Farey tree at level n− 1. The first (root) node of the tree is 1

2
.

It is well known (see e.g. Schroeder (1991), p. 337) and straightforward
to check that for the Farey fractions of level n the sum of partial quotients
in their continued fraction representation is exactly n; that is,

Qn = {p
q

= 1/(a1+1/(a2+...+1/at)...) with at≥2 and a1+. . .+at=n} .

Fractions xi,n ∈ Fn considered as points in the interval [0, 1] make a
partition of this interval into 2n−1 subintervals of different length varying
from 1/(FnFn+1) to 1/n, where Fk is the k-th Fibonacci number. This
partition is obviously non-uniform; in this paper we study the asymptotic
behaviour of a natural characteristic that measures this non-uniformity and
is defined as follows.

Let 0 = x0,n < x1,n < . . . < xN(n),n = 1 be some points in [0, 1] and
pi,n = xi,n − xi−1,n (i = 1, . . . , N(n)) be the lengths of the subintervals
[xi−1,n, xi,n). For a fixed β we set

σ
(n)
β = σ(x0,n, . . . , xN(n),n) =

N(n)∑

i=1

pβi,n .(1)

σ
(n)
β is one of the most widely used characteristics of the uniformity of the

partition of [0, 1] generated be the points xi,n, see e.g. Drobot (1981). The

value 1
1−β log σ

(n)
β is the Rényi entropy of order β 6= 1 of this partition (as

β → 1 the Rényi entropies tend to the Shannon entropy of the partition). If
the partition is defined by a dynamical system, then the properly normalised
sequence of σ

(n)
β converges to the maximum eigenvalue of the transfer op-

erator (3), see e.g. Vallée B. (2001). In an important special case β = 2
the quantity (1) can be interpreted as the average length of the interval
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[xi−1,n, xi,n) which a random uniformly distributed point in [0, 1] falls in; see
Section 4.2 in Pronzato et al (1999) for details.

In a number of papers including Hall (1970) and Kanemitsu et al (1982),

the limiting behaviour of σ
(n)
β is studied in the case when {xi,n} is the

Farey sequence of order n; that is, the set of all fractions p/q in [0, 1] with
gcd(p, q) = 1 and q ≤ n. In the present paper we study the limiting be-

haviour of σ
(n)
β when xi,n are the elements of Fn; in this case we will write

σ
(n)
β = σβ(Fn).

The expression for σβ(Fn) can be simplified using the fact that if p
q

and
p′
q′ are two neighbours in Fn such that p

q
< p′

q′ , then the length of the interval

[p
q
, p
′
q′ ) is p′/q′ − p/q = 1/(qq′). This yields

σβ(Fn) =
∑

(q,q′)

1

(qq′)β
,

where the sum is taken over the set of pairs of denominators of all the
neighbours in Fn.

The following theorem contains the main result of this paper.
Theorem 1. For any β > 1 we have

σβ(Fn) =
2

nβ
ζ(2β − 1)

ζ(2β)
+O

(
log(n)

n(β+1)(2β−1)/(2β)

)
as n→∞ .(2)

Proof of the theorem is given in Section 3.
Note that for small β > 1 the rate of convergence in (2) is slow. However,

the fact that for all β > 1 the main term for σβ(Fn) is indeed 2
nβ

ζ(2β−1)
ζ(2β)

agrees
with numerical experiments that the authors have been carried out. As an
example, Table 1 illustrates the rate of convergence in (2) for β = 2, where

the main term in the asymptotical formula (2) is 2ζ(3)
ζ(4)

n−2 ∼= 2.22125n−2.

The order of decrease for σβ(Fn) as n → ∞ is different from n−β for
β ≤ 1. Thus, σ0(Fn) = 2n−1 (it is the number of intervals in the n-th level
partition) and σ1(Fn) = 1, see Lemma 2.
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n σ̃n n σ̃n n σ̃n n σ̃n
2 1 12 2.225125138 22 2.198914837 32 2.199080361
3 1.666666667 13 2.218892938 23 2.198552286 33 2.199321142
4 2.013333333 14 2.213886731 24 2.198328443 34 2.199573834
5 2.172902494 15 2.209932920 25 2.198214857 35 2.199835181
6 2.237347594 16 2.206846310 26 2.198188931 36 2.200102532
7 2.257088762 17 2.204459272 27 2.198232662 37 2.200373722
8 2.257418374 18 2.202630388 28 2.198331652 38 2.200646994
9 2.250363055 19 2.201244461 29 2.198474352 39 2.200920916
10 2.241355171 20 2.200209351 30 2.198651468 40 2.201194325
11 2.232670354 21 2.199452029 31 2.198855495 41 2.201466280

Table 1: Numerically computed values of σ̃n = n(n− 1)σ2(Fn) for n =
2, . . . , 41.

2 Reformulation of the problem in terms of

dynamical systems and continued fractions

2.1 Reformulation in terms of dynamical systems

The Farey map T : [0, 1]→ [0, 1] is defined by

T (x) =

{
x/(1− x) if 0 ≤ x < 1/2
(1− x)/x if 1/2 ≤ x ≤ 1 .

The map is shown in Figure 1.
There is a simple relation between the Farey fractions of level n and the

Farey map:

Qn = T−n+1(1) = {x ∈ [0, 1] such that T n−1(x) = 1} ∀n ≥ 2

implying Fn = T−n(0) for all n ≥ 1.
The Farey map belongs to a class of the so-called almost expanding maps.

It has the absolutely continuous invariant density p(x) = 1/x (0 < x < 1)
and it is ergodic with respect to this density; the density p(x) has infinite
mass implying that the metric entropy of T (·) is zero (for details see e.g.
Lagarias (1992)). Moreover, the topological pressure Pβ of the Farey map
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Figure 1: The Farey map

is zero for β ≥ 1, see Prellberg and Slawny (1992). The pressure can be
defined as Pβ = log λβ, where λβ is the maximal eigenvalue of the transfer
operator Lβ : C[0, 1]→ C[0, 1] defined for f ∈ C[0, 1] by

Lβf(x) =
∑

y:T (y)=x

f(y)

|T ′(y)|β .(3)

For the Farey map the pressure is

Pβ = lim
n→∞

1

n
log

∑

(q,q′)

1

(qq′)β
,(4)

where for fixed n the sum is taken over the set of pairs of denominators of
all the neighbours in Fn.

Prellberg and Slawny (1992) studied the behaviour of the pressure Pβ
for a class of almost expanding maps (including the Farey map) as β ↑ 1;
we consider a version of the pressure for β > 1. Theorem 1 shows that to
obtain non-trivial limits, the normalisation of the sum in (4) with β > 1
must be different from 1

n
log; this normalization is nβ. Similar phenomena

seems to hold for some other almost expanding maps; this phenomena is
related to the non-exponential divergence of the trajectories xn+1 = T (xn)
for these maps.
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2.2 Reformulation in terms of continued fractions

Let A be the set of all integer vectors a = (a1, ..., at) with t ≥ 1, aj ≥ 1
(j = 1, . . . , t− 1) and at > 1. Let also

An = {a = (a1, . . . , at) ∈ A such that a1 + . . .+ at = n} .
With each a = (a1, ..., at) ∈ A we associate the continued fraction 1/(a1+

1/(a2 + ...+ 1/at)...) and the corresponding continuant (the denominator of
the fraction), which we write as [a1, . . . , at]; empty continuant is equal to 1.

By construction, for all n > 1, each fraction in Fn \ (F1 ∪ Qn) has two
neighbours which belong to the set Qn. Also, every fraction p/q ∈ Qn has
two neighbours, say p−/q− and p+/q+, in Fn \Qn. Explicit formulae for the
continuants of these neighbours are given below.

Lemma 1. For each a ∈ An, the fraction p/q ∈ Qn with continuant
q = q(a) = [a1, ..., at] has two neighbours in Fn with continuants

q− = q−(a) = [a1, ..., at−1] and q+ = q+(a) = [a1, ..., at − 1] .(5)

Similarly, any fraction p/q ∈ Fn−1\F1 with continuant q = q(a) = [a1, ..., at]
has two neighbours in Fn with continuants

[a1, ..., at, n− (a1 + ...+ at)] and [a1, ..., at − 1, 1, n− (a1 + ...+ at)] .(6)

The proof is a simple induction with respect to n. 2

Note that the two neighbours of the fraction p/q with continuants q−
and q+ are not simply left and right: the larger denominator q+ can be on
either side of q.

The first part of Lemma 1 implies that we can rewrite σβ(Fn), the char-
acteristic of interest, as

σβ(Fn) =
∑

a∈An

(
1

(qq−)β
+

1

(qq+)β

)
,(7)

where q = q(a) = [a1, ..., at] and q− = q−(a), q+ = q+(a) are defined (5).
For any β > 1 we can easily establish a lower bound for σβ(Fn) in the

following way:

σβ(Fn) =
∑

a∈An

(
1

(qq−)β
+

1

(qq+)β

)
≥ ∑

a∈An

1

(qq−)β
≥ 1

nβ
∑

a∈An

1

(q−)2β
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≥ 1

nβ
∑

a∈An: q−<n

1

(q−)2β
=

2

nβ

n−1∑

q−=1

ϕ(q−)

(q−)2β
=

2

nβ

∞∑

l=1

ϕ(l)

l2β
+O

(
1

n2β−1

)
as n→∞ .

In deriving the lower bound we have neglected the terms with large de-
nominators q−(a), used the inequality q ≤ nq−, see (10), and used the fact
that in the partition generated by Fn there are exactly 2ϕ(l) intervals with
q−(a) = l < n as one of their end-points.

Theorem 1 states that the just derived lower bound

lim inf
n→∞ nβσβ(Fn) ≥ 2

∞∑

l=1

ϕ(l)

l2β
=

2ζ(2β − 1)

ζ(2β)

is in reality the exact limit of nβσβ(Fn) as n→∞. Thus, the main contri-
bution to the sum σβ(Fn) is made by a few terms with small denominators
q− (‘major arcs’).

3 Proof of Theorem 1

3.1 More notation and the main steps in the proof

We assume throughout this section that β > 1 is a fixed number. Set

r = r(β) =
3β − 2

2(β − 1)
and w = w(n, β) = min{n/2, n(β+1)/(2β) log n } .(8)

The value of r is chosen to satisfy (β−1)(2r−1) = 2β−1, see Lemma 3;
w = w(n, β) will minimize the error term. Note that since β > 1 we have
w = o(n) as n→∞.

For a subset A(j)
n,i of A, denote

Σ
(j)
n,i =

∑

a∈A(j)
n,i

(
1

(qq−)β
+

1

(qq+)β

)
,

where a= (a1, ..., at), q = q(a) = [a1, ..., at]; q− = q−(a) and q+ = q+(a) are
defined in (5).

The proof of Theorem 1 is based on a few lemmas and uses the splitting
of the sum σβ(Fn), which is the sum over An, into the sums Σ

(j)
n,i over smaller

subsets of indices a. The first split of An is into the following two subsets:

A(1)
n,1 = {a = (a1, . . . , at) ∈ An such that [a1, . . . , at] < nr} and
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A(1)
n,2 = An \ A(1)

n,1 = {a = (a1, . . . , at) ∈ An such that [a1, . . . , at] ≥ nr} .
We then split the index set A(1)

n,1 into two subsets as follows:

A(2)
n,1 = {a ∈ A(1)

n,1 such that max
1≤j≤t

aj > n− w} ,

A(2)
n,2 = A(1)

n,1 \ A(2)
n,1 = {a ∈ A(1)

n,1 such that max
1≤j≤t

aj ≤ n− w} .

Thus, all a ∈ A(2)
n,1 have at least one very large partial quotient aj; on the

other hand, all aj’s for a ∈ A(2)
n,2 are relatively small.

Next we split the set A(2)
n,1 into the set where the largest partial quotient

is the last one and where it is not:

A(3)
n,1 =

{
a = (a1, . . . , at) ∈ A(2)

n,1 such that at > max{a1, ..., at−1}
}

and

A(3)
n,2 = A(2)

n,1\A(3)
n,1 =

{
a = (a1, ..., at) ∈ A(2)

n,1 such that at ≤ max{a1, ..., at−1}
}
.

The split of the set An into subsets is shown in Figure 2.

Figure 2: Split of the index set An.

Additionally, we split the sum Σ
(3)
n,1 as

Σ
(3)
n,1 = Σ

(3)+
n,1 +Σ

(3)−
n,1 with Σ

(3)+
n,1 =

∑

a∈A(3)
n,1

1

(qq+)β
and Σ

(3)−
n,1 =

∑

a∈A(3)
n,1

1

(qq−)β
.

As a result, we have the following split of the sum σβ(Fn) defined in (7):

σβ(Fn) = Σ
(1)
n,2 + Σ

(2)
n,2 + Σ

(3)
n,2 + Σ

(3)+
n,1 + Σ

(3)−
n,1 .(9)
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In Lemma 3 we consider the sum Σ
(1)
n,2 (which accounts for all the terms

with very large denominators) and establish that Σ
(1)
n,2 ≤ n−(2β−1) for all n.

In Lemma 5 we prove that Σ
(2)
n,2 + Σ

(3)
n,2 � (log n)2β/w2β−1 as n→∞.

In Lemma 6 we demonstrate that Σ
(3)+
n,1 � n−2β as n → ∞; this sum is

obviously asymptotically dominated by the cumulative effect of the others.
Finally, in Lemma 7 we prove that

Σ
(3)−
n,1 =

1

nβ
· 2ζ(2β − 1)

ζ(2β)
+O

(
1

n2β−1
+

w

nβ+1
+

1

nβw2(β−1)

)
as n→∞.

Therefore, the decomposition (9) and Lemmas 3, 5, 6 and 7 imply the
following asymptotic expansion for the sum σβ(Fn) :

σβ(Fn) =
2ζ(2β−1)

nβζ(2β)
+O

(
1

n2β−1
+

(log n)2β

w2β−1
+

w

nβ+1
+

1

nβw2(β−1)

)
as n→∞.

The choice of w = w(n, β) in accordance with (8) provides the minimum

error term which is O
(
n−(β+1)(2β−1)/(2β) log(n)

)
, as stated in (2). This result

is an easy consequence of the fact that the sum of the second and the
third terms in O(·) dominates the first and the forth terms. Note also that
(β+ 1)(2β−1)/(2β) > β for all β > 1 so that the error term is smaller than
the main term in this range of β.

3.2 Lemmas

Lemma 2. Let n ≥ 2, a = (a1, ..., at) ∈ An, q = q(a) = [a1, ..., at], and q−,
q+ be as defined in (5). We have:

q = q− + q+ ≤ nq− ,(10)

q− ≤ q+ ≤ atq− ,(11)

∑

a∈An

(
1

qq−
+

1

qq+

)
= 1(12)

and

1

(qq−)β
+

1

(qq+)β
≤ nβ−1

q2(β−1)

(
1

qq−
+

1

qq+

)
.(13)
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Proof. The equality in (10) follows from the definition of Qn. For
n = 2 the inequalities in (10) and (11) can be easily checked directly. For
n > 2 these inequalities follow from (5) and the standard recurrence for the
continuants of successive continued fraction convergents. The formula (12)
expresses the fact that the total length of all the intervals in the partition
generated by the points in Fn is 1.

Let us now prove (13). Using the inequalities q+ ≥ q− and q− ≥ q/n,
see (10) and (11), for all a ∈ An we have:

1

(qq−)β
+

1

(qq+)β
≤
(

1

qq−
+

1

qq+

)
max

{
1

(qq−)β−1
,

1

(qq+)β−1

}
=

1

(qq−)β−1

(
1

qq−
+

1

qq+

)
≤ nβ−1

q2(β−1)

(
1

qq−
+

1

qq+

)
.

2

Lemma 3. For all n ≥ 1 we have Σ
(1)
n,2 ≤ n−(2β−1).

Proof. As q ≥ nr for a ∈ A(1)
n,2, we obtain using the equality (12), the

inequality (13) and the definition of r:

Σ
(1)
n,2 ≤

nβ−1

q2(β−1)

∑

a∈A(1)
n,2

(
1

qq−
+

1

qq+

)
≤ nβ−1

q2(β−1)
≤ nβ−1

n2r(β−1)
=

1

n(β−1)(2r−1)
=

1

n2β−1
.

2

Lemma 4. For all a = (a1, . . . , at) ∈ A(1)
n,1 with n ≥ 2 we have t ≤

C log n, where C = C(β) = r log((
√

5 + 1)/2).

Proof follows from the fact that for all a = (a1, . . . , at) ∈ A(1)
n,1 we have

(√
5 + 1

2

)t
≤ [a1, ..., at] ≤ nr .

2

Lemma 5. As n→∞, we have

Σ
(2)
n,2 + Σ

(3)
n,2 �

(log n)2β

w2β−1
.
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Proof. Lemma 4 states that for all a ∈ A(1)
n,1 (that is, when q(a) ≤ nr)

we have t ≤ C log n. As n = a1 + . . .+ at ≤ tmax aj, this implies max aj ≥
n/C log n.

Let a = (a1, ..., at) ∈ A(2)
n,2 and j be such that aj = max{a1, ..., at}.

Since aj ≤ n − w, for the sum of remaining ai’s we have
∑
i6=j ai > w and

similarly to the above, the second largest value of ai’s is larger than or equal
to w/C log n. This implies that for any a = (a1, ..., at) ∈ A(2)

n,2, there exist
two indices 1 ≤ k 6= l ≤ t such that ak ≥ w/C log n and al ≥ w/C log n and
therefore for at least one index j ≤ t− 1 we have aj ≥ w/C log n.

If a = (a1, ..., at) ∈ A(3)
n,2 there is j < t such that aj = max{a1, ..., at}.

Since A(3)
n,2 ⊆ A(2)

n,1, for this aj we have aj > n− w > w/ log n for all n ≥ 3.
Set c = max{1, 1/C} and let n ≥ 3. Then for all a = (a1, ..., at) ∈

A(2)
n,2

⋃A(3)
n,2 for at least one index j ≤ t− 1 we have aj ≥ cw/ log n.

Therefore,

Σ
(2)
n,2+Σ

(3)
n,2 ≤ 2

∑

a1 + ...+ at−1 ≤ n,
∃j : aj ≥ cw/ logn

(
1

(qq−)β
+

1

(qq+)β

)
≤ 4

∑

a1 + ...+ at−1 ≤ n,
∃j : aj ≥ cw/ logn

1

(qq−)β

(Here we have also used the fact that q+ ≥ q−). Clearly,

q > ajat · [a1, ..., aj−1] · [aj+1, ..., at−1] and

q+ ≥ q− > aj · [a1, ..., aj−1] · [aj+1, ..., at−1] .

Hence Σ
(2)
n,2 + Σ

(3)
n,2 ≤

4
∑

j<C logn

∑

cw/ logn<aj≤n

∑

a = (a1, ..., at) ∈ A(1)
n,1 :

aj fixed; j ≤ t− 1

1

a2β
j [a1, ..., aj−1]2β · [aj+1, ..., at−1]2β · aβt

≤ 4C log n

(cw/ log n)2β−1

∑

u+v≤w

∑

a1+...+ar=u

1

[a1, ..., ar]2β
· ∑

b1 + ...+ bh = v

1

[b1, ..., bh−1]2βbβh

≤ 4C(log n)2β

(cw)2β−1
· ∑

a1+...+ar≤w

1

[a1, ..., ar]2β
· ∑

b1 + ...+ bh−1 ≤ w

1

[b1, ..., bh−1]2β

∞∑

bh=1

1

bβh

=
4Cζ(β)

c2β−1

(log n)2β

w2β−1
·

 ∑

a1+...+ar≤w

1

[a1, ..., ar]2β




2
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Since ∑

a1+...+ar≤w

1

[a1, ..., ar]2β
≤
∞∑

q=1

ϕ(q)

q2β
=
ζ(2β − 1)

ζ(2β)

we obtain

Σ
(2)
n,2 + Σ

(3)
n,2 ≤

4Cζ(β)

c2β−1

(
ζ(2β − 1)

ζ(2β)

)2
(log n)2β

w2β−1

and lemma follows. 2

Lemma 6. As n→∞, we have Σ
(3)+
n,1 � n−2β.

Proof. Since q+ < q ≤ nq− = n [a1, ..., at−1] for all a = (a1, ..., at) ∈ A,
we have

Σ
(3)+
n,1 =

∑

a1 + ...+ at = n,
at > n− w, q < nr

1

(qq+)β
≤ ∑

n−w<at≤n

∑

a1+...+at−1=n−at

1

(qq+)β

≤ 1

(n− w)2β

∑

a1+...+at−1≤w

1

[a1, ..., at−1]2β
≤ 2

(n− w)2β

∞∑

q=1

ϕ(q)

q2β
� n−2β .

2

Lemma 7. As n→∞, we have

Σ
(3)−
n,1 =

1

nβ
· 2ζ(2β−1)

ζ(2β)
+O

(
1

n2β−1
+

w

nβ+1
+

1

nβw2(β−1)

)
.

Proof.

Σ
(3)−
n,1 =

∑

a = (a1, . . . , at) ∈ An,
q(a)<nr, at>n−w

1

(q(a)q−(a))β

=
∑

a = (a1, . . . , at) ∈ An,
at>n−w

1

(q(a)q−(a))β
− ∑

a = (a1, . . . , at) ∈ An,
q(a)≥nr, at>n−w

1

(q(a)q−(a))β

The second sum is

∑

a1 + ...+ at = n,
q(a)≥nr, at>n−w

1

(q(a)q−(a))β
= O

(
n−(2β−1)

)
as n→∞
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and for the first sum we have

∑

a = (a1, . . . , at) ∈ An,
at>n−w

1

(q(a)q−(a))β
=

∑

a = (a1, . . . , at) ∈ An,
a1 + . . .+ at−1 ≤ w

1

(q(a)q−(a))β
.

In the Farey tree Fn, each Farey fraction with denominator q−(a) = [a1, ..., at−1]
such that a1 + ...+ at−1 < n is a neighbour to two Farey fractions with de-
nominators q(a) = [a1, ..., at] with a1 + ... + at = n, see (6). Additionally,
since

q = atq− + (q−)− = q−(n+O(w)) as n→∞ ,

we have
1

(q(a)q−(a))β
=

1

nβq2β
−

(
1 +O

(
w

n

))
.

In view of these two facts we obtain

Σ
(3)−
n,1 =

2

nβ
· ∑

a1 + ...+ at−1 ≤ w,
at−1 > 1 for t > 2

1

[a1, ..., at−1]2β
+O

(
n−(2β−1) +

w

nβ+1

)

=
2

nβ

∞∑

q=1

ϕ(q)

q2β
+O


 1

n2β−1
+

w

nβ+1
+ n−β · ∑

a1+...+at−1≥w

1

[a1, ..., at−1]2β


 .

As ∞∑

q=1

ϕ(q)

q2β
=
ζ(2β − 1)

ζ(2β)
and

∑

a1+...+ai≥w

1

[a1, ..., ai]2β
� ∑

q≥w

1

q2β−1
� w−2(β−1) ,

lemma follows. 2
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