Entropies of the partitions of the unit
interval generated by the Farey tree
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Abstract

Let F,, be the set of fractions p/q € [0, 1] such that the sum of partial
quotients in their continued fraction representation is not greater
than n. We consider the sum o3(F,) = >.(qq¢')™? taken over the
denominators of neighbouring fractions in F,, and prove that for all
g>1

C2¢28-1) logn
)= 55 g +© (omasae

) as n — o0,

where ((-) is the Riemann zeta-function.
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1 Introduction

The Farey tree F is an infinite binary tree whose nodes are labeled by
rationals in [0, 1]; it can be defined inductively as follows.

Consider the two-point set F; = {0,1} with 0 and 1 written as ¥ and
% respectively. Let n > 1 and 0 = xp,, < 21, < ... < Tyn)n = 1 be the
fractions in F,, arranged in order of increase and written in lowest terms;

here N(n) = 2""1. Then

fn-q-l = fn U Qn+1 with Qn+1 = {xi—l,n D Tin, 1= 1, RN 2n_1} ,
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is the mediant of the fractions g and f]ij. For example,
:’r2:{07%71}a f3:{0a%7%7%71} and f4:{07i7%7%7%7%7§7%a1}-

F, is sometimes called Brocot sequence of order n. Elements of O, are
known as Farey fractions of level n; for n > 2 they are the nodes in the
Farey tree at level n — 1. The first (root) node of the tree is 3.

It is well known (see e.g. Schroeder (1991), p. 337) and straightforward
to check that for the Farey fractions of level n the sum of partial quotients
in their continued fraction representation is exactly n; that is,

Q, ={2=1/(m1+1/(a2+...4+1/ar)...) with a;>2 and a1+...+a;=n}.

Fractions x;, € F, considered as points in the interval [0,1] make a
partition of this interval into 2"~! subintervals of different length varying
from 1/(F,F,41) to 1/n, where Fj is the k-th Fibonacci number. This
partition is obviously non-uniform; in this paper we study the asymptotic
behaviour of a natural characteristic that measures this non-uniformity and
is defined as follows.

Let 0 = 2o < 1 < ... < TN@)n = 1 be some points in [0, 1] and
Pin = Tin — Ti—1n (0 = 1,...,N(n)) be the lengths of the subintervals
[Zi—1n,%in). For a fixed B we set

N(n)
(1) aén) = 0(Top, - TNm)n) = Z pfn )
i=1

agb) is one of the most widely used characteristics of the uniformity of the

partition of [0, 1] generated be the points x;,, see e.g. Drobot (1981). The
ﬁ log o™ is the Rényi entropy of order § # 1 of this partition (as
# — 1 the Rényi entropies tend to the Shannon entropy of the partition). If
the partition is defined by a dynamical system, then the properly normalised
sequence of aén) converges to the maximum eigenvalue of the transfer op-
erator (3), see e.g. Vallée B. (2001). In an important special case f = 2

the quantity (1) can be interpreted as the average length of the interval

value
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[%i—1n, %i,) which a random uniformly distributed point in [0, 1] falls in; see
Section 4.2 in Pronzato et al (1999) for details.

In a number of papers including Hall (1970) and Kanemitsu et al (1982),
the limiting behaviour of aén) is studied in the case when {z;,} is the
Farey sequence of order n; that is, the set of all fractions p/q in [0, 1] with
ged(p,q) = 1 and ¢ < n. In the present paper we study the limiting be-

haviour of aén)

J(Bn) = 05(Fn).
The expression for o3(F,) can be simplified using the fact that if £ and

when z;,, are the elements of F,,; in this case we will write

~

are two neighbours in F,, such that g < f]l:, then the length of the interval
p—:) isp'/¢ —p/q=1/(qq"). This yields

' q

ars =

o(F)= Y

@) (00)°

where the sum is taken over the set of pairs of denominators of all the
neighbours in F,.
The following theorem contains the main result of this paper.
Theorem 1. For any B > 1 we have

2 ((26 1) log(n)
)= @y ¢ (n(ﬁ FErmneE

Proof of the theorem is given in Section 3.

Note that for small # > 1 the rate of convergence in (2) is slow. However,
the fact that for all § > 1 the main term for o4(F,) is indeed 2 ¢ f(g ﬁ)l) agrees
with numerical experiments that the authors have been carried out. As an
example, Table 1 illustrates the rate of convergence in (2) for § = 2, where
the main term in the asymptotical formula (2) is %(43)) n"? 2 22125n_2.

The order of decrease for o3(F,) as n — oo is different from n=" for
B < 1. Thus, oo(F,) = 2! (it is the number of intervals in the n-th level

partition) and o1(F,,) = 1, see Lemma 2.

> as n — 0.




On n On, n On, n On

1 12 | 2.225125138 || 22 | 2.198914837 || 32 | 2.199080361
1.666666667 || 13 | 2.218892938 || 23 | 2.198552286 || 33 | 2.199321142
2.013333333 || 14 | 2.213886731 || 24 | 2.198328443 || 34 | 2.199573834
2.172902494 || 15 | 2.209932920 || 25 | 2.198214857 || 35 | 2.199835181
2.237347594 || 16 | 2.206846310 || 26 | 2.198188931 || 36 | 2.200102532
2.257088762 || 17 | 2.204459272 || 27 | 2.198232662 || 37 | 2.200373722
2.257418374 || 18 | 2.202630388 || 28 | 2.198331652 || 38 | 2.200646994
2.250363055 || 19 | 2.201244461 | 29 | 2.198474352 || 39 | 2.200920916
2.241355171 || 20 | 2.200209351 || 30 | 2.198651468 | 40 | 2.201194325
2.232670354 || 21 | 2.199452029 || 31 | 2.198855495 | 41 | 2.201466280

— =
P 5 ©w-1o ok wiofs

Table 1: Numerically computed values of 6, = n(n—1)oy(F,) for n =
92.... 41,

2 Reformulation of the problem in terms of
dynamical systems and continued fractions

2.1 Reformulation in terms of dynamical systems
The Farey map 7 : [0,1] — [0, 1] is defined by

rz/(1—2z) if0<z<1/2
T(m):{ (1-2)/z if1/2<z<1.

The map is shown in Figure 1.
There is a simple relation between the Farey fractions of level n and the
Farey map:

Q, =T""(1) = {x € [0,1] such that T" ! (z) = 1} ¥n >2

implying F,, = T-"(0) for all n > 1.

The Farey map belongs to a class of the so-called almost expanding maps.
It has the absolutely continuous invariant density p(xz) =1/ (0 <z < 1)
and it is ergodic with respect to this density; the density p(x) has infinite
mass implying that the metric entropy of 7'(-) is zero (for details see e.g.
Lagarias (1992)). Moreover, the topological pressure Ps of the Farey map
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Figure 1: The Farey map

is zero for B > 1, see Prellberg and Slawny (1992). The pressure can be
defined as P3 = log \g, where A\ is the maximal eigenvalue of the transfer
operator Lg : C[0,1] — C|0, 1] defined for f € C[0,1] by

3) Lof(e)= Y W

y:T(y)=x |T/ (y) |B .

For the Farey map the pressure is

1 1
(4) Pp = lim —log (Z @)P
')
where for fixed n the sum is taken over the set of pairs of denominators of
all the neighbours in F,.

Prellberg and Slawny (1992) studied the behaviour of the pressure Pg
for a class of almost expanding maps (including the Farey map) as 3 1 1;
we consider a version of the pressure for § > 1. Theorem 1 shows that to
obtain non-trivial limits, the normalisation of the sum in (4) with 8 > 1
must be different from %log; this normalization is n®. Similar phenomena
seems to hold for some other almost expanding maps; this phenomena is
related to the non-exponential divergence of the trajectories z,11 = T(z,,)
for these maps.



2.2 Reformulation in terms of continued fractions

Let A be the set of all integer vectors a = (ay,...,a;) with t > 1, a; > 1
(j=1,...,t—1) and a; > 1. Let also

A, ={a=(ai,...,a;) € Asuch that a; + ...+ a; =n}.

With each a = (ay, ..., a;) € A we associate the continued fraction 1/(a;+
1/(ag+...4+1/as)...) and the corresponding continuant (the denominator of
the fraction), which we write as [aq, ..., a;]; empty continuant is equal to 1.

By construction, for all n > 1, each fraction in F,, \ (F1 U @,) has two
neighbours which belong to the set Q,,. Also, every fraction p/q € Q,, has
two neighbours, say p_/q_ and p; /qy, in F, \ Q,. Explicit formulae for the
continuants of these neighbours are given below.

Lemma 1. For each a € A,, the fraction p/q € Q, with continuant
q = q(a) = [ay, ..., as] has two neighbours in JF,, with continuants

(5) q- =q-(a) =la1,...,a,1] and g+ = q4(a) = [a1,...,a; — 1].
Similarly, any fraction p/q € Fn—1\F1 with continuant ¢ = q(a) = |ay, ..., a;
has two neighbours in F, with continuants

(@1, ...,ae,m — (a1 + ... + a¢)] and [ay,....,a; —1,1,n— (a; + ... + a;)] .

The proof is a simple induction with respect to n. O

Note that the two neighbours of the fraction p/q with continuants q_
and ¢, are not simply left and right: the larger denominator ¢, can be on
either side of q.

The first part of Lemma 1 implies that we can rewrite og(F,), the char-
acteristic of interest, as

) o F) = 3 (s + )

acAn, (qQ-i-)ﬁ

where ¢ = q(a) = [a1, ...,a:] and ¢_ = q_(a), ¢+ = ¢+ (a) are defined (5).
For any # > 1 we can easily establish a lower bound for o4(F,,) in the
following way:

os(Fa) = 3 ((q;)ﬁ* 1 )z >

a€An (qur)ﬁ a€An,

1 1 1
>
(qq-)P — nP g (q-)%
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! ! 25 2 e 1
=B - = —7+0 < > as n — oo.
n’ aeAg <n (Q—)m - nb l2ﬂ n28-1

In deriving the lower bound we have neglected the terms with large de-
nominators ¢_(a), used the inequality ¢ < ng_, see (10), and used the fact
that in the partition generated by F,, there are exactly 2¢(l) intervals with
q—(a) =1 < n as one of their end-points.

Theorem 1 states that the just derived lower bound

hmlnfn os(Fn) > 22 122 = 2<(§£ﬁ_) D

is in reality the exact limit of n’os(F,) as n — oo. Thus, the main contri-
bution to the sum o3(F,) is made by a few terms with small denominators
¢ (‘major arcs’).

3 Proof of Theorem 1

3.1 DMore notation and the main steps in the proof

We assume throughout this section that g > 1 is a fixed number. Set
30 —2
B 1(9) = 55—
The value of r is chosen to satisfy (3—1)(2r—1) = 28—1, see Lemma 3;
w = w(n, ) will minimize the error term. Note that since 5 > 1 we have
w = o(n) as n — oc.
For a subset Af{ 2 of A, denote

; 1 1

e \(9a-)7 (g4y)

and w = w(n, B) = min{n/2, n P/ ogn } .

where a = (aq,...,a;), ¢=q(a) =laq,...,a;); g =q_(a) and ¢, =q,(a) are
defined in (5).

The proof of Theorem 1 is based on a few lemmas and uses the splitting
of the sum o3(F,), which is the sum over A,,, into the sums 27(1]2 over smaller
subsets of indices a. The first split of A,, is into the following two subsets:

.Afll)l ={a=(ai,...,a;) € A, such that [ay,...,a) <n"} and

7



AN = AN AY = {a= (ar,...,a,) € A, such that [ay,...,a] >n"}.

We then split the index set Aﬁl”l into two subsets as follows:

A512)1 = {a € AS}{ such that max a; > n — w},
’ ’ 1<5<t

)

AP = .,47(11)1 \Aﬁf{ ={ac€ AS)I such that max a; <n— w}.
S

Thus, all a € .Aff)l have at least one very large partial quotient a;; on the
other hand, all a;’s for a € Ag% are relatively small.

Next we split the set Aﬁf{ into the set where the largest partial quotient
is the last one and where it is not:

An?:)l = {G = (ah cee 7at) S A’El%)l such that ay > max{al, Y atil}} and

AS’)Q = Af)l\AS’)l = {a =(a,...,ay) € .Aff)l such that a; < max{ay, ..., at,l}} .
The split of the set A,, into subsets is shown in Figure 2.

@ 2) 3)
A,, An,l An,l ~.| An,l

) (2) 3)
An,2 An,2 ,2

Figure 2: Split of the index set A,.

Additionally, we split the sum 27(13)1 as

— 1 B

Zng)l = Z;3i++2£13)1 with ZS’){F = — and ©®- — Z
) ) ) ’ 3 (qq+) aeA(d)
n,1

n

As a result, we have the following split of the sum o3(F,,) defined in (7):

9) a5(F) =20 + 22 + 3% + 2O 1 20

n,2 ;

8



In Lemma 3 we consider the sum ES% (which accounts for all the terms

with very large denominators) and establish that 2511)2 < n~ =Y for all n.

In Lemma 5 we prove that E,(f)g + ZS’% < (logn)? /w?P~1 as n — oc.
In Lemma 6 we demonstrate that ES:)J < n~2% as n — oo; this sum is
obviously asymptotically dominated by the cumulative effect of the others.
Finally, in Lemma 7 we prove that
3)__i.2§(25—1) 1 w 1
Zn1 = n?  ((206) O e B S T RSY
Therefore, the decomposition (9) and Lemmas 3, 5, 6 and 7 imply the
following asymptotic expansion for the sum og(F,) :

_20¢(26-1) O( 1 (logn)?° w 1
n2

o5(Fn) = wic@h) T TS S Y, R Oy T Y. (M)

The choice of w = w(n, ) in accordance with (8) provides the minimum
error term which is O (n~(#+1)(28-1)/(25) log(n)) , as stated in (2). This result
is an easy consequence of the fact that the sum of the second and the
third terms in O(-) dominates the first and the forth terms. Note also that
(B+1)(28—1)/(28) > B for all > 1 so that the error term is smaller than
the main term in this range of j.

) as 1 — OQ.

) as 1n — OQ.

3.2 Lemmas

Lemma 2. Letn > 2, a = (ay,...,a;) € Apn, ¢ = q(a) = [ay, ..., as], and q_,
q+ be as defined in (5). We have:

(10) q=q-+qs+ <ng_,

(11) q- < g+ < aeq—

(12) > <1+1>:1

Zo\a- qqr
and
1 1 nf1 /1 1
(13) + < ( + ) :
(qq-)° = (qg+)® — ¢*PY \qq-  qqy

9



Proof. The equality in (10) follows from the definition of Q,. For
n = 2 the inequalities in (10) and (11) can be easily checked directly. For
n > 2 these inequalities follow from (5) and the standard recurrence for the
continuants of successive continued fraction convergents. The formula (12)
expresses the fact that the total length of all the intervals in the partition
generated by the points in F,, is 1.

Let us now prove (13). Using the inequalities ¢, > ¢_ and ¢_ > ¢/n,
see (10) and (11), for all a € A,, we have:

! + ! << ! + ! >max{ L 1 }:
(ag-)% * (qa+)® = \aa-  qas (ag-)""" (qg4)"~"

1 (1 N 1><n5—1 (1 N 1)
(qq-)%" \qq—  qq+) — PPV \qq-  qq+)

Lemma 3. For all n > 1 we have 1) < n—(26-1).

n,

Proof. As ¢ > n" for a € AW e obtain using the equality (12), the

n,2)

a

inequality (13) and the definition of r:
o1 11 o1 o1 1 1
(1) n n n . .
ZH’Q = qQ(ﬁfl) Z(l> (qq_ + qq+> = qz(ﬁfl) = n2r(B-1) — pB-1)@2r-1)  p26-1"
a€A, 5

|

Lemma 4. For all a = (a1,...,ay) € AS}{ with n > 2 we have t <
Clogn, where C' = C(B) = rlog((v/5 +1)/2).

Proof follows from the fact that for all a = (ay,...,a) € Av(ll)l we have
t
5+1
<\/—2+ > S [a’lv "'7at] S n".

Lemma 5. Asn — oo, we have

268
@ | @ _ (logn)
Yot 2,5 K e

10



Proof. Lemma 4 states that for all a € A;l)l (that is, when g(a) < n")
we have t < Clogn. Asn=a; + ...+ a; < tmaxa,, this implies maxa; >
n/C'logn.

Let a = (ay,...,a;) € Af% and j be such that a; = max{ay,...,a;}.
Since a; < n — w, for the sum of remaining a;’s we have 3>, .;a; > w and
similarly to the above, the second largest value of a;’s is larger than or equal
to w/C'logn. This implies that for any a = (a1, ...,a:) € An27 there exist
two indices 1 < k # | < t such that ay > w/C'logn and a¢; > w/C'logn and
therefore for at least one index j <t — 1 we have a; > w/C'logn.

If a = (ag,...,a;) € AS’% there is j < ¢ such that a; = max{ay,...,a;}.
Since As’; C Ag)l, for this a; we have a; > n —w > w/logn for all n > 3.
Set ¢ = max{1,1/C} and let n > 3. Then for all a = (ay,...,a;) €

A,(f)Q UAfE)Q for at least one index j <t — 1 we have a; > cw/logn.
Therefore,

1 1
2@ 4n®) <9 ( + ) <4
’ 7 ar+ ... -i-za:t—l <n, (qqf)ﬁ (QQ+)ﬁ a1+ ... -i-za:t_l <mn, (qqi)ﬁ
Jj:a; > cw/logn 3j:aj; > cw/logn

(Here we have also used the fact that ¢, > ¢_). Clearly,
q> a;ag [al, ceey aj,l] . [(IjJrl, ceny at,l] and

Gy > q- > aj-lay, .., a;1] - [aji, ., a0].

Hence 25?5 + E,(f’; <

4 X 2 7

26 2 2
j<Clogn cw/logn<a;<n , _ (a1, ., a1) € A£Ll)1 : a; [ala e Cljfl} B . [aj+1, ceey atfl] B . Gy
aj fixed; j <t—1

1

4C'logn 1 1
< - - .
(CU)/ log n 25 ! u—&;w a1+. z—i-:ar—u [ab e ar]Qﬁ b1 + ..%:bh =v [bl’ e bh*l]zﬁbﬁ
4C (log n)?8 1 5 1 i 1
(Cw)Qﬁ_l ar+...+ar<w [al’ Tt GT]QB b1+ ...+bp_1 S w [bl’ o bh_l]zﬁ bp=1 bg

2
~4C¢(B) (logn)*” 1
T 281 281 T a1, ..., a,]?°
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Since

1 Zoplg)  ¢(268-1)
aﬁ.%:axw lay, ..., a,]%8 < ; ¢ ((20)
we obtain 8) (28 ) 2 a )25
@ | w3 _ 40¢(5 26—1 ogn
e < G0 () S
and lemma follows. O

Lemma 6. As n — oo, we have ij)fr <n 2,

Proof. Since ¢; < ¢ <ng_ =nlay,...,a;_41] for all a = (aq,...,a;) € A,
we have

A DD >
1 — >
a; + ...+ at =n, (qq+>ﬁ n—w<atr<n ai+t...tat_1=n—aq (QQ+>ﬂ

ar>n—w, g<n”

1 1 2 = (q)
-t <
= (n—w)?¥ Z (a1, ...;a;1]?% = (n —w)?P qzzjl q%0

a1+...4ai—1<w

< n %,

Lemma 7. Asn — oo, we have

~ 1 2€(268-1) 1 w 1
- _ 1 20(26-1)
Sl = @ T 0 (nzﬁ_l + ot nﬁwz(ﬂ_1)> .

Proof.

a=(ai,..., at) € An,

Tl @@ = G@e@p

a=(a,..., at
at>n—w q(a)>n", at>n—w

The second sum is

a1 + ..%—:at =n, ((](a)(]_ (a,))ﬁ B
gla)>n", at>n—w

12



and for the first sum we have

a= (al,-;at) € An (q(a)qf (CL))/B N a= (017-;%) € An (q<a>q7 (a))ﬁ
at>n—w a1 +...+a—1 <w

In the Farey tree F,,, each Farey fraction with denominator ¢_(a) = [ay, ..., a;—1]
such that a; + ... + a;_1 < n is a neighbour to two Farey fractions with de-
nominators ¢(a) = lay, ..., a;] with a; + ... + a; = n, see (6). Additionally,
since

¢ =aq-+(¢-)- = ¢-(n+O(w)) asn — oo,

<q<a>q1_<a>>ﬁ - nﬁlqzﬁ (vo(3))-

In view of these two facts we obtain

we have

_ 2 1 w
v@)-_ 2 - O( ~(20-1) )
" nﬁ a1+‘..§—1 < w, [ah "'7at—1]26 * " + n5+1
ai—1 > lfort;Q
2 X plg) 1 w _ 1
== +0 +——+n’. .
nb = q28 n26-1 = pB+1 a1+m+2%12w [a1, » atq]%
As )
> —1
o) -y
q=1 q C(26)
1 1 ,
—2(8-1)
< <w )
a1+.§i2w [(Il, ey G,i]Qﬁ qzz’w q2ﬁ*1
lemma follows. O
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