
Kronecker Sequences: Asymptotic Distributions of
the Partition Lengths

Anatoly Zhigljavsky (Cardiff) Iskander Aliev (St.Petresburg)

1 Introduction: Statement of the Problem and

Formulation of the Main Results

1.1 Kronecker sequences

Let θ be an irrational number in [0, 1), xk = kθ (mod 1) for k = 1, 2, . . . and let
Wn(θ) = {x1, . . . , xn} be the Kronecker sequence of order n.

In the present work we derive asymptotic distributions of different characteristics
associated with the interval lenghts of the partitions of [0,1] generated by Wn(θ). The
main result establishes the two-dimensional asymptotic distribution of

(n min{x1, . . . , xn}, n(1−max{x1, . . . , xn}))

when n → ∞. It then yields a number of results concerning the asymptotic distribu-
tions of one-dimensional characteristics.

Assume that y0,n = 0, yn+1,n = 1 and yk,n (k = 1, . . . , n) be the members of Wn(θ)
arranged in the order of increase. Define

δn(θ) = y1,n = min
k=1,...,n

xk , ∆n(θ) = 1− yn,n = 1− max
k=1,...,n

xk (1)

and consider the partition of [0, 1) generated by Wn(θ):

Pn(θ) = ∪n
k=0Ik,n , where Ik,n = [yk,n, yk+1,n) .

It is a well known property of the Kronecker sequence, see e.g. [3],[4], that for any
n ≥ 1 the partition Pn(θ) of [0, 1) contains the intervals Ik,n which lengths |Ik,n| can
only get two or three different values, namely, δn(θ), ∆n(θ) and perhaps δn(θ)+∆n(θ) .

Denote

αn(θ)= min
k=1,...,n

|Ik,n|=min{δn(θ), ∆n(θ)}, An(θ)= max
k=1,...,n

|Ik,n| ,
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βn(θ)=max{δn(θ), ∆n(θ)} , γn(θ)=δn(θ) + ∆n(θ) , ξn(θ) =
αn(θ)

βn(θ)
.

All these quantities, namely δn(θ), ∆n(θ), αn(θ), An(θ), βn(θ), γn(θ) and ξn(θ), give a
rather complete description of the partition Pn(θ) . We are interested in their asymp-
totic behaviour, when n →∞. The main result of the paper is formulated in Theorem 1
below and presents the joint asymptotic distribution for (nδn(θ), n∆n(θ)) . In Corol-
laries 1–4 and Theorem 2 we derive the one-dimensional asymptotic distributions for
all charactersitics introduced above.

As demonstrated in Section 2, there is a close relation between the Kronecker
and Farey sequences, and the quantities introduced above also characterize certain
properties of the Farey sequences. (For example, αn(θ), which asymptotic distribution
has been derived in [2], characterizes the error in approximation of θ by the Farey
sequence of order n, see (11).) The present paper thus also studies some distributional
properties of the Farey sequences.

In what follows ’meas’ stands for the Lebesgue measure on [0, 1), {·} and b·c denote
the fractional and integer part operations correspondingly, ϕ(·) is the Euler function
and dilog (·) is the dilogarithm function: dilog(t) =

∫ t
1 log s/(1 − s)ds . Also, we shall

say that a sequence of functions ψn(θ), θ ∈ [0, 1), converges in distribution, when
n →∞, to a probability measure with a density q(·) if for any t > 0

lim
n→∞meas{θ ∈ [0, 1) : ψn(θ) ≤ t} =

∫ t

0
q(s)ds .

The rest of the paper is organized as follows: the main results are formulated in
Section 1.2, a relation between the Kronecker and Farey sequences is discussed in
Section 2, all proofs are given in Section 3.

1.2 Formulation of the Main Results

For 0 ≤ s, t < ∞ define

Φn(s, t) = meas{θ ∈ [0, 1) : nδn(θ) ≤ s, n∆n(θ) ≤ t} .

One can interpret Φn(·, ·) as the two–dimensional cumulative distribution function
(c.d.f.) of the random variables nδn(θ) and n∆n(θ), assuming that θ is uniformly
distributed on [0, 1) .

Theorem 1 The sequence of functions Φn(·, ·) point-wisely converges, when n → ∞,
to the c.d.f. Φ(·, ·) with the density

φ(s, t) =
d2Φ(s, t)

dsdt
=

6

π2st





s + t− 1 for 0 ≤ s, t ≤ 1, s + t ≥ 1
s(1− s)/(t− s) for 0 ≤ s ≤ 1 ≤ t
t(1− t)/(s− t) for 0 ≤ t ≤ 1 ≤ s
0 otherwise.

(2)
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This means that for all A, measurable sets in R2,

lim
n→∞meas{θ ∈ [0, 1) : (nδn(θ), n∆n(θ)) ∈ A} =

∫

A
φ(s, t)dsdt .

Corollary 1 The sequences of functions nδn(θ) and n∆n(θ) converge in distribution,
when n →∞, to the probability measure with the density

φβ(t) =
6

π2





0 for t < 0
1 for 0 ≤ t < 1
t−1

t
log t−1

t
+ 1

t
for t ≥ 1 .

(3)

Proof of Corollary 1 consists in computation of the integral
∫∞
0 φ(s, t)ds where φ(·, ·)

is defined in (2).

Corollary 2 The sequence of functions nαn(θ) converges in distribution, when n →∞,
to the probability measure with the density

φα(t) =
12

π2





1 for 0 ≤ t < 1
2

1−t
t

(
1− log 1−t

t

)
for 1

2
≤ t < 1

0 otherwise.

(4)

(Note again that the result of Corollary 2 has been proved in [2], by different argu-
ments.)

Corollary 3 The sequence of functions nβn(θ) converges in distribution, when n →∞,
to the probability measure with the density

φβ(t) =
12

π2





0 for t < 1
2

1−t
t

log 1−t
t
− 1

t
+ 2 for 1

2
≤ t < 1

t−1
t

log t−1
t

+ 1
t

for t ≥ 1 .
(5)

Corollary 4 The sequences of functions nγn(θ) and nAn(θ) converge in distribution,
when n →∞, to the probability measure with the density

φγ(t) =
12

π2

{
0 for t < 1
t−2
2t

log |t− 2| − t−1
t

log(t− 1) + 1
2
log t for t ≥ 1 .

(6)

To make the difference between the asymptotic behaviour of δn, βn and γn trans-
parent, we provide Figure 1 which depicts the densities φδ, φβ and φγ.
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φβ
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Figure 1: Asymptotic densities for nδn(θ), nβn(θ) and nγn(θ) .

Theorem 2 The sequence of functions ξn(θ) converges in distribution, when n →∞,
to the probability measure with the density

φξ(t) = −12

π2

(
log t

1− t
+

log(1 + t)

t

)
, t ∈ [0, 1) . (7)

Theorem 2 can certainly be deduced from Theorem 1. This however would require
evaluation of an unpleasant integral, in Section 3 we instead give a straightforward
proof.

2 Relation with Farey Sequences and Continued

Fractions

2.1 Relation with the Farey Sequences

The Farey sequence of order n, denoted by Fn, is the collection of all rationals p/q with
p ≤ q, gcd(p, q) = 1 and the denominators 1 ≤ q ≤ n . The numbers in Fn are arranged
in the order of increase, 0 and 1 are included in Fn as 0/1 and 1/1 correspondingly.
There are |Fn| = N(n) + 1 points in Fn where

N(n) =
n∑

q=1

ϕ(q) =
3

π2
n2 + O(n log(n)) , n →∞ . (8)

The following well–known statement establishes an important relation between the
Kronecker and Farey sequences.

4



Lemma 1 (e.g. [3]) Let θ be an irrational number in [0, 1) and Wn(θ) be the Kronecker
sequence of order n . Let {qθ} and {q′θ} correspond respectively to the smallest and
largest members of Wn(θ):

y1 = δn(θ) = {qθ} , yn = 1−∆n(θ) = {q′θ} .

Define p = bqθc and p′ = 1 + bq′θc . Then p/q and p′/q′ are the consecutive fractions
in the Farey sequence Fn such that p/q < θ < p′/q′ .

Let us rewrite the quantities (1) in terms of the Farey fractions p/q and p′/q′

introduced in Lemma 1:

δn(θ) = {qθ} = qθ − bqθc = qθ − p , (9)

∆n(θ) = 1− {q′θ} = 1 + bq′θc − q′θ = p′ − q′θ . (10)

This particularly implies

αn(θ) = min
p/q∈Fn

|qθ − p| . (11)

2.2 An Asymptotic Property of the Farey Sequences

In the sequel we shall use an asymptotic property of the Farey sequences formulated
as Lemma 2.

If p/q and p′/q′ are two consequtive Farey fractions in Fn then we call (q, q′) a
neighbouring pair of denominators. It is easy to verify that for a fixed n the set of all
neighbouring pairs of denominators is

Qn = {(q, q′) : q, q′ ∈ {1, 2, . . . , n} , gcd(q, q′) = 1 , q + q′ > n}
and these pairs, properly normalised, share the asymptotic two-dimensional uniformity.
Specifically, the following result holds.

Lemma 2 [1] Let νn be the two-variate probability measure, assigning equal masses
1/N(n) to pairs (q/n, q′/n), where (q, q′) take all possible values in Qn . Then the
sequence of probability measures {νn} weakly converges, when n → ∞, to the uniform
probability measure on the triangle T = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≥ 1}, that is, for
any continuous function f on R2

1

N(n)

∑

(q,q′)∈Qn

f(q/n, q′/n) → 2
∫ ∫

T
f(x, y)dxdy , n →∞ .
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2.3 Associations with Continued Fractions

Let us now indicate an interesting analogy between the quantity ξn(θ) and the residuals
in the continued fraction expansions.

Let θ be an irrational number in [0, 1) . We denote by θ = [a1, a2, . . .] its continued
fraction expansion and by pn/qn = [a1, a2, . . . , an] its n-th convergent.

Let also
r0 = θ, rn = {1/rn−1} for n = 1, 2, . . .

be the associated dynamic system. As it is well-known, the asymptotic density of {rn}
is

p(t) =
1

log 2

1

1 + t
.

For every n ≥ 0, rn = rn(θ) allows the following continued fraction expansion:
rn(θ) = [an+1, an+2, . . .] . It is not difficult to check, see e.g. [4], that

rn(θ) =
|qnθ − pn|

|qn−1θ − pn−1| , n > 1 .

This can be rewritten as

rn(θ) =
min(|qθ − p|, |q′θ − p′|)
max(|qθ − p|, |q′θ − p′|) ,

where [p/q, p′/q′) is the current interval which θ belongs to, that is, either [pn/qn, pn−1/qn−1)
or [pn−1/qn−1, pn/qn) . From this point of view, the role of rn(θ) for Fn is played by

ξn(θ) =
min(|qθ − p|, |q′θ − p′|)
max(|qθ − p|, |q′θ − p′|) =

αn(θ)

βn(θ)
,

where p/q, p′/q′ are neighbouring to θ members of Fn . Figure 2 compares the asymp-
totic densities for rn(θ) and ξn(θ) .

3 Proofs

3.1 Proof of Theorem 1

Consider the two-variate function

Φ̃n(s, t) = meas{θ ∈ [0, 1) : nδn(θ) > s , n∆n(θ) > t} ,

where 0 ≤ s, t < ∞ . The c.d.f. Φ(s, t) is related to Φ̃(s, t) throught the inclusion–
exclusion formula

Φ(s, t) = 1− Φ̃(s, 0)− Φ̃(0, t) + Φ̃(s, t) . (12)
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φξ(t)

p(t)

Figure 2: Asymptotic densities for sequences rn(θ) and ξn(θ) .

Let p/q and p′/q′ be the consecutive fractions in Fn . Define points θ1, θ2 in [p/q, p′/q′]
such that, see Fig. 3,

nδn(θ1) = s , n∆n(θ2) = t .

It is easily seen from Fig. 3 that

meas {θ ∈ [p/q, p′/q′] : nδn(θ) > s , n∆n(θ) > t} =

{
θ2 − θ1 for θ2 − θ1 > 0

0 for θ2 − θ1 ≤ 0 .

We shall now try to find a simple expression for the difference θ2− θ1 . First, formulas
(9) and (10) yield

θ1 =
s/n + p

q
, θ2 =

p′ − t/n

q′
,

and therefore

θ2 − θ1 =
p′ − t/n

q′
− s/n + p

q
=

1

qq′

(
1− tq

n
− sq′

n

)
.

We thus get

Φ̃n(s, t) =
∑

(q,q′)∈Q(n,s,t)

1

qq′

(
1− tq

n
− sq′

n

)
,

where

Q(n, s, t) = {(q, q′) ∈ Qn : 1− tq

n
− sq′

n
> 0} .
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p/q p′/q′θ1 θ2

1/q

1/q′

t/n

s/n

∆n(θ)

δn(θ)

q q

q

q

Figure 3: Functions δn(θ) and ∆n(θ) in the interval [p/q, p′/q′].

Using formula (8) we have

Φ̃n(s, t) =
3

π2N(n)

∑

(q,q′)∈Q(n,s,t)

n2

qq′

(
1− tq

n
− sq′

n

)
+ O(n−1 log n) , n →∞ .

Appling Lemma 2 we get

Φ̃n(s, t) → Φ̃(s, t) =
6

π2

∫ ∫

Q(s,t)

(
1− tx− sy

xy

)
dxdy , (13)

where
Q(s, t) = {x, y : 0 ≤ x, y ≤ 1 , x + y ≥ 1 , 1− tx− sy > 0} .

The formula for the integral in the right-hand side of (13) can be rewritten differently
in 5 different regions:

1. For s + t ≤ 1:

Φ̃(s, t) =
6

π2

∫ 1

0

∫ 1

1−y

(
1− tx− sy

xy

)
dxdy = 1− 6

π2
(s + t) .

2. For 0 ≤ s, t ≤ 1, s + t > 1:

Φ̃(s, t) =
6

π2

∫ (1−s)/t

0

∫ 1

1−y

(
1− tx− sy

xy

)
dxdy
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+
6

π2

∫ 1

(1−s)/t

∫ (1−yt)/s

1−y

(
1− tx− sy

xy

)
dxdy

= −12

π2
+

6

π2

(
s + t + (1 + log s− s) log

1− s

t
+ (1 + log t− t) log

1− t

s

+ log s log t + dilog s + dilog t) .

3. For s > 1, t ≤ 1:

Φ̃(s, t) =
6

π2

∫ 1

(s−1)/(s−t)

∫ (1−yt)/s

1−y

(
1− tx− sy

xy

)
dxdy

= 1− 6

π2
+

6

π2

(
t + (s− log s− t) log

s− t

s− 1
+ (1− t) log

s− 1

s

−dilog (1− t) + dilog
s(1− t)

s− t
− dilog

1− t

s− t

)
.

4. For s ≤ 1, t > 1 : Analogously to the previous case with the replacement s ↔ t .

5. For s > 1, t > 1: Φ̃(s, t) = 0.

Using formula (12) we can find the density

φ(s, t) =
dΦ(s, t)

dsdt
=

dΦ̃(s, t)

dsdt
.

of the joint asymptotic distribution. Calculation then gives (2).
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3.2 Proof of Corollary 2

The function αn(θ) = min{δn(θ), ∆n(θ)} is measurable with respect to B, the σ-algebra
of the Borel subsets of [0, 1), and it can be associated with the probability measure
dΦα

n(t), 0 ≤ t < ∞, where

Φα
n(t) = meas{θ ∈ [0, 1) : nαn(θ) ≤ t} = 1−meas{θ ∈ [0, 1) : n min(δn(θ), ∆n(θ)) > t}

= 1−meas{θ ∈ [0, 1) : nδn(θ) > t , n∆n(θ) > t} .

Therefore, for all 0 ≤ t < ∞
Φα

n(t) → Φα(t) = 1− Φ̃(t, t) , n →∞ .

Calculation gives

Φα(t) =





12
π2 t for 0 ≤ t < 1

2
12
π2 (−t + log 1−t

t
(t− log t− 1) + dilog 1

t
) + 12

π2 + 1 for 1
2
≤ t < 1

1 for t ≥ 1 .

Differentiation gives the expression (4) for the density φα(t) = dΦα(t)/dt .

3.3 Proof of Corollary 3

The function βn(θ) = max{δn(θ), ∆n(θ)} is B-measurable. We then have for all
0 ≤ t < ∞

Φβ
n(t) = meas{θ ∈ [0, 1) : nβn(θ) ≤ t} = meas{θ ∈ [0, 1) : nδn(θ) ≤ t , n∆n(θ) ≤ t} .

Therefore, for all 0 ≤ t < ∞
Φβ

n(t) → Φβ(t) = Φ(t, t) , n →∞ .

Calculation gives

Φβ(t) =





0 for 0 ≤ t < 1
2

12
π2 (2t− log 1−t

t
(t− log t− 1)− dilog 1

t
)− 12

π2 − 1 for 1
2
≤ t < 1

12
π2 (log t−1

t
(t− log t− 1) + dilog 1

t
) + 12

π2 − 1 for t ≥ 1 .

Differentiation gives the expression (5) for the density φβ(t) = dΦβ(t)/dt .
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3.4 Proof of Corollary 4

Analogously to the proofs of Corollaries 2 and 3, the sequence of c.d.f

Φγ
n(t) = meas{θ ∈ [0, 1) : nγn(θ) ≤ t} , 0 ≤ t < ∞

point-wisely converges to the c.d.f

Φγ(t) =
∫ ∫

S(t)
φ(x, y)dxdy , 0 ≤ t < ∞ ,

where

S(t) = {(x, y) : 0 ≤ x, y ≤ 1 , 1 ≤ x + y ≤ t} .

Calculation yields (6).
The convergence of the sequence {nAn(θ)} to the asymptotic distribution with

the density φγ follows from the just proved convergence of the sequence {nγn(θ)} to
the same distribution and the fact that An(θ) = γn+1(θ) for all θ ∈ (0, 1) and all
n ≥ n(θ) = max{1/θ, 1/(1− θ)}.

3.5 Proof of Theorem 2

Function ξn(θ) is B-measurable. Define

Φξ
n(t) = meas{θ ∈ [0, 1) : ξn(θ) ≤ t} , 0 ≤ t ≤ 1 .

Let p/q, p′/q′ be consecutive fractions in Fn . Consider the behaviour of ξn(θ) in the
interval [p/q, p′/q′] . Define the mediant m = (p + p′)/(q + q′) . Then for θ in [p/q, m)
we have δn(θ) < ∆n(θ), for θ in (m, p/q] we have δn(θ) > ∆n(θ) and δn(m) = ∆n(m),
that is, ξn(m) = 1 .

If t ∈ [0, 1] is fixed then there is a unique point θ in [p/q,m] such that

ξn(θ) =
δn(θ)

∆n(θ)
= t . (14)

Easy observation shows (see Fig. 4) that

meas {θ ∈ [p/q,m] : ξn(θ) ≤ t} = θ − p

q
.

Formula (14) implies

qθ − p = t(p′ − q′θ) , θ =
p + tp′

q + tq′
.

Therefore,

meas {θ ∈ [p/q,m] : ξn(θ) ≤ t} =
p + tp′

q + tq′
− p

q
=

t

q(q + tq′)
.
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Figure 4: Behavior of function ξn(θ) in the interval [p/q, p′/q′].

We then get for all 0 ≤ t ≤ 1

meas{θ ∈ [0, 1) : ξn(θ) ≤ t} = 2
∑

(q,q′)∈Qn

t

q(q + tq′)
= 2

∑

(q,q′)∈Qn

∫ t

0

dτ

(q + τq′)2

= 2
∫ t

0


 ∑

(q,q′)∈Qn

1

(q + τq′)2


 dτ ,

where factor 2 is due to the cases when δn(θ) > ∆n(θ) .
Therefore, we can write for all 0 ≤ t ≤ 1

Φξ
n(t) =

∫ t

0
φξ

n(τ)dτ ,

where

φξ
n(τ) = 2

∑

(q,q′)∈Qn

1

(q + τq′)2
.

Using formula (8) write

φξ
n(τ) =

6

π2N(n)

∑

(q,q′)∈Qn

n2

(q + τq′)2
+ O(n−1 log n) , n →∞ .
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Appling Lemma 2 we get that

φξ
n(τ) → φξ(τ) =

12

π2

∫ ∫
0≤x,y≤1
x+y>1

1

(x + τy)2
dxdy , n →∞ .

Calculation of the integral gives the expression (7) for the density.
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