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Abstract

We derive an asymptotic formula for the number of pairs of con-
secutive fractions a′/q′ and a/q in the Farey sequence of order Q such
that a/q, q/Q, and (Q − q′)/q) lie each in prescribed subintervals of
the interval [0, 1]. We deduce the leading term in the asymptotic for-
mula for ’the hyperbolic lattice point problem’ for the modular group
PSL(2,Z), the number of images of a given point under the action of
the group in a given circle in the hyperbolic plane.
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1 Introduction

The Farey sequence of FQ of order Q is the finite set of rational numbers a/q
with 1 ≤ q ≤ Q, 0 ≤ a ≤ q − 1 and the highest common factor (a, q) = 1.
The extended Farey sequence of order Q is defined by dropping the condition
0 ≤ a ≤ q − 1. It consists of all translates of the Farey sequence by integers.
In both cases the Farey sequence is ordered by the relation x < y on real
numbers. However to calculate one uses the lexicographic ordering, firstly by
q, and secondly by a. Some well-known properties are that if a′/q′ and a/q
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are consecutive in FQ, then

aq′ − a′q = 1,

(
a a′

q q′

)
∈ SL(2,Z) (1)

where SL(2,Z) is the group of integer matrices of determinant one. In FQ

the fraction a′/q′ determines its successor a/q uniquely through (1) and the
restrictions q′ ≤ Q, q + q′ > Q. Each pair of denominators q, q′ with high-
est common factor (q, q′) = 1 and with q + q′ > Q occurs exactly once as
denominators of consecutive fractions a′/q′ and a/q in FQ.

So a pair of consecutive denominators in FQ corresponds to a primitive
integer vector in the plane. Proposition 1 follows immediately by Möbius
inversion.

Proposition 1. Let γ1, γ2, δ1, δ2 be real numbers with

0 ≤ γ1 < γ2 ≤ 1, 0 ≤ δ1 < δ2 ≤ 1

and let Q ≥ 2. Then the number of pairs of consecutive fractions a′/q′, a/q
in FQ with

δ1 <
q

Q
≤ δ2, γ1 <

Q− q′

q
≤ γ2 (2)

is
3

π2
(γ2 − γ1)(δ

2
2 − δ2

1)Q
2 + O(Q log Q) (3)

uniformly in γ1, γ2, δ1, δ2.

Proposition 1, or results of the same type, has been applied in questions
of uniform distribution, see Kargaev and Zhigljavsky [4], Zhigljavsky and
Aliev [11]. It is natural to consider also the position of a/q in the interval
[0, 1).

Theorem 1. Let β1, β2; γ1, γ2; δ1, δ2 be real numbers with

0 ≤ β1 < β2 ≤ 1, 0 ≤ γ1 < γ2 ≤ 1, 0 ≤ δ1 < δ2 ≤ 1,

and let Q ≥ 2. Then the number of pairs of consecutive fractions a′/q′, a/q
in FQ with

β1 <
a

q
≤ β2, δ1 <

q

Q
≤ δ2, γ1 <

Q− q′

q
≤ γ2 (4)
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is
3

π2
(β2 − β1)(γ2 − γ1)(δ

2
2 − δ2

1)Q
2 + O(Q3/2 log Q) . (5)

The matrix group SL(2,Z) acts as rigid motions in hyperbolic geometry.
The action is faithful when we factor out ±I, where I is the identity matrix.
The quotient is called the modular group PSL(2,Z).

Theorem 2. Let z and z′ be points in the hyperbolic plane, realised
as the complex upper half-plane, with the modular group Γ acting by z −→
(az + b)/(cz + d). Then the number of images of z under Γ in a circle with
centre z′, radius r, in the hyperbolic metric, counted according to multiplicity,
is asymptotically

3er + O
(
e

(3+θ)r
4

+εr
)

as r →∞, for any ε > 0, where θ is an exponent such that the Kloosterman
sums K(a, b; q) with highest common factor (a, b, q) = 1 satisfy

K(a, b; q) = O(qθ+ε) (6)

for any ε > 0, as q →∞.

The asymptotic formula of Theorem 2, with a better error term O
(
exp(3

4
r)

)
,

is a well-known consequence of the Selberg trace formula, see Patterson [5],
and the proof of the trace formula is based on the image-counting function,
see Hejhal [2]. A technical difficulty is to construct the spectral Eisenstein
series. For the modular group the Eisenstein series is essentially an Epstein
zeta function, corresponding to counting primitive lattice points inside el-
lipses on the Euclidean plane. We sketch the proof of Theorem 2, which
shows that the hyperbolic lattice point counting can also be done number
theoretically. For the exponent θ in Theorem 2, we note that the estimate (6)
with θ = 2

3
can be proved quite simply, see Davenport [1] and Salie [6, 7]. Of

course Weil’s bound [10] with θ = 1
2

is more difficult than the Selberg trace
formula; the exponent θ = 1

2
can also be obtained by Stepanov’s method, see

Schmidt [8], akin to transcendence theory.

2 Proof of Theorem 1.

We recall standard number-theoretical notation. We use (m,n) for the high-
est common factor of m and n, d(n), ω(n), φ(n), µ(n) for the number of di-
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visors of n, the number of distinct prime factors of n, the number of residue
classes a mod n with (a, n) = 1 (Euler’s function), and the Möbius function.
For real t, e(t) = exp(2πit) is the complex exponential function, [t] is the
integer part of t and ρ(t) = [t]− t + 1

2
is the row-of-teeth function. In sums∑∗ modulo q, ∗ means that the variable (a say) has (a, q) = 1, and ā denotes

the residue class d mod q with ad ≡ 1, which exists when (a, q) = 1. The
Kloosterman sum is

K(g, h; q) =
∑

a mod q

∗
e

(
ga + hā

q

)
.

We note that if a′/q′, a/q are consecutive in FQ, then by (1) q′ ≡ ā (mod
q). For fixed q, the number of solutions of

β1 <
a

q
≤ β2, γ1 <

Q− ā

q
≤ γ2 (7)

is ∑

a mod q

∗
([

β2 − a

q

]
−

[
β1 − a

q

])([
γ2 − Q− ā

q

]
−

[
γ1 − Q− ā

q

])
. (8)

We have
[
β2 − a

q

]
−

[
β1 − a

q

]
= β2 − β1 + ρ

(
β2 − a

q

)
− ρ

(
β1 − a

q

)
(9)

and similarly for the second factor.
The main term is

(β2 − β1)(γ2 − γ1)φ(q) .

Since

∑

δ1Q<q≤δ2Q

φ(q) =
∑

d,e:
δ1Q<de≤δ2Q

µ(d)e

=
∑

d≤Q

µ(d)

(
δ2
2Q

2

2d2
− δ2

1Q
2

2d2
+ O

(
Q

d

))

=
1

2
(δ2

2 − δ2
1)Q

2

(
6

π2
+ O

(
1

Q

))
+ O(Q log Q)

=
3

π2
(δ2

2 − δ2
1)Q

2 + O(Q log Q) (10)
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we obtain the main term in Theorem 1.
When we substitute (9) and its analogue involving γ1 and γ2 into (8), one

cross-product term is
(

γ2 − γ1

) ∑

a mod q

∗
(

ρ

(
β2 − a

q

)
− ρ

(
β1 − a

q

))

=

(
γ2 − γ1

) ∑

d|q
µ(d)

∑

a mod q
a≡0 (mod d)

(
ρ

(
β2 − a

q

)
− ρ

(
β1 − a

q

))

=

(
γ2 − γ1

) ∑

d|q
µ(d)

∑

b mod q/d

(
ρ

(
β2 − b

q/d

)
− ρ

(
β1 − b

q/d

))

=

(
γ2 − γ1

) ∑

d|q
µ(d)

(
ρ

(
qβ2

d

)
− ρ

(
qβ1

d

))
= O(d(q)) ,

where we have used the functional equations for µ(d),

∑

d|n
µ(d) =

{
1 if d = 1,
0 if d ≥ 2,

and for ρ(t), ∑

b mod n

ρ

(
t +

b

n

)
= ρ(nt) .

We have

∑
γ1Q<q≤γ2Q

d(q) ≤
Q∑

q=1

∑

d|q
1 ≤

∑

d≤Q

Q

d
≤ Q(log Q + 1) ≤ 3Q log Q ,

so the cross-product term gives an error term of the same size as in (10).
Similarly, the other cross-product term is

(β2 − β1)
∑

d|q
µ(d)

(
ρ

(
qγ2 −Q

d

))
− ρ

(
qγ1 −Q

d

))
= O (Q log Q) .

The main error terms are four terms of the type

±
∑

a mod q

∗
ρ

(
β − a

q

)
ρ

(
α− ā

q

)
(11)
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where β = β1 or β2 and α = γ1 −Q/q or γ2 −Q/q.
For each integer H ≥ 2 there are approximations

H∑

h=−H

b(h)e(ht) ≤ ρ(t) ≤
H∑

h=−H

B(h)e(ht) (12)

(see Vaaler [9], section 8 or Huxley [3], section 5.3), with

b(0), B(0) = O

(
1

H

)
,

and for h 6= 0

b(h), B(h) = O

(
1

|h|
)

.

We use these to estimate the sum (11) from above and below. So we estimate

∑

a mod q

∗ H∑
g=−H

c(g)e

(
gβ − ag

q

) H∑

h=−H

C(h)e

(
hα− āh

q

)

=
H∑

g=−H

c(g)e(gβ)
H∑

h=−H

C(h)e(hα)K(−g,−h; q) , (13)

where c(n), C(n) are each either the set of coefficients b(n) or B(n), and
K(−g,−h; q) is a Kloosterman sum, equal to K(g, h; q) by symmetry.

Let e = (g, h, q) be the highest common factor of g, h, and q. The well-
known bound

|K(g, h; q)| ≤ 2ω(q/e)√eq ≤ d(q)
√

eq,

incorporates the theorem of Weil [10] and earlier work of Salie [6] . Using
this, we estimate (13) as follows:

O




q

H2
+

1

H

∑

e|q
d(q)

√
eq

H∑

h=1
h≡0 (mod e)

1

h
+

∑

e|q
d(q)

√
eq

H∑
g=1

g≡0 (mod e)

1

g

H∑

h=1
h≡0 (mod e)

1

h




= O




q

H2
+

1

H

∑

e|q
e≤H

d(q)

√
q

e
log H +

∑

e|q
e≤H

d(q)
√

eq

e2
log2 H


 = O

(
d(q)

√
q log2 Q

)
,
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when we pick H = Q. Finally we have

Q∑
q=1

d(q)
√

q log2 Q ≤
√

Q log2 Q

Q∑
q=1

d(q) = O
(
Q3/2 log3 Q

)

which completes the proof of Theorem 1.

3 Theorem 2: Sketch of the Proof

Each element of the modular group is represented by a pair of matrices(
a b
c d

)
and

( −a −b
−c −d

)
. We choose the sign so that c > 0 if |c| ≥ |d|,

d > 0 if |d| > |c|. The two columns correspond to two fractions in the Farey
sequence FQ with Q = max(|c|, |d|).

The point u + iv in the upper half plane goes, under the transformation
z −→ (az + b)/(cz + d), to (H + iv)/G where

G(c, d) = (cu + d)2 + c2v2, H(a, b, c, d) = ac(u2 + v2) + (ad + bc)u + bd .

For points z, z′, the hyperbolic distance D from z to z′ is given by

4sh2D

2
=
|z − z′|2
Imz Imz′

Let R = 2sh(r/2) where r is the radius in Theorem 2. Let z = u + iv,
z′ = w + it. Then in Theorem 2 we want to count representative matrices
with

(H −Gw)2 + (v − tG)2 ≤ tvGR2 (14)

We can suppose by symmetry that z = u + iv, z′ = w + it are in the
fundamental domain of the modular group, with −1

2
≤ Rez ≤ 1

2
, |z| ≥ 1,

and that t ≥ v > 0. Matrices with c = d have c = d = 1, b = a − 1; there
are O(R) of these satisfying (14). Matrices with d = −c have c = 1, d = −1,
b = −1 − a. There are again O(R) of these satisfying (14). The constants
implied in these estimates O(R) and in subsequent estimates depend on t
and v.

In the case c > |d| we eliminate b using the identity

cH − aG = −cu− d
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to show that the number of solutions of (14) with c > |d| lies between the
numbers of solutions with c > |d| of two inequalities of the form

((a

c
− w

)
+ t2

)
G ≤ tvQ2 (15)

with Q taking two values Q1, Q2 of the form R + O(1). Similarly in the case
d > |c| we eliminate a using the identity

dH − bG = c(u2 + v2) + du

to show that the number of solutions of (14) with d > |c| lies between the
numbers of solutions with d > |c| of two inequalities of the form

((
b

c
− w

)
+ t2

)
G ≤ tvQ2 (16)

We can count the solutions of (15) or (16) using Theorem 1. There is
a complication that a/c in (15) and b/c in (16) lie in the extended Farey
sequence, and we use integer shifts to bring them into [0, 1). It is as simple
to argue directly. We sketch the calculation. The fraction a/c in (15), or b/c
in (16), lies in a range

α1(G) ≤ a

c
≤ α2(G) . (17)

For c, d fixed, the number of possible a ≡ d̄ in (17) is

α2(G)− α1(G) + ρ

(
α2(G)− d̄

c

)
+ ρ

(
d̄

c
− α1(G)

)

The main term now involves summing α2(G)−α1(G) over primitive inte-
ger vectors (c, d) with |d| < c and G ≤ vQ2/t from (16). This is a weighted
average of the number of primitive integer vectors in a fixed sector of an
ellipse of fixed shape but variable size. The case d > |c| similarly gives the
sums of α2(G)−α1(G) over primitive integer vectors (c, d) in a different sec-
tor. The two sectors fit together to form half the ellipse cut by a diameter.
The Eisenstein series at the point u + iv is also constructed by considering
the primitive integer vectors in the semi-ellipse as the size varies. The pow-
ers of v and t in the main term cancel. The numerical factor 3 arises as
6/π2 from the condition (c, d) = 1 as in Theorem 1, times π from the weight
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α2(G)− α1(G), times π/2 from the area of the semi-ellipse. The main term
thus simplifies to

3Q2 + O(Q3/2 log Q)

and er = Q2 + O(Q).
For the error term in the case c > |d| we have a sum

∑

|d|<c

∗
ρ

(
α(G)− d̄

c

)

where α = α1 or α2, G = G(c, d). The approximations (12) lead to sums

∑

|d|<c

∗
e

(
hα(G)− d̄h

c

)
= O

(
(V + 1) max

I

∣∣∣∣∣
∑

d∈I

∗
e

(
− d̄h

c

)∣∣∣∣∣

)
,

where V is the total variation of Re e(hα(G(c, x)) plus the total variation of
Im e(hα(G(c, x)), both taken on the interval x ∈ J = [1− c, c− 1], so that

V = O

(
|h|Q

c

√
t

v

)

and I runs through subintervals of J .
After taking out the highest common factor (c, h), we express the sum

over I as a linear combination of Kloosterman sums which we estimate using
(6). The trivial contribution of the term h = 0 in (12) is O(c/H), and that
of the terms |h| = 1, . . . , H in (12) is

O
(
Hc−1+θ+ε

)
.

Choosing H to equalise these two contributions and summing over c gives
the dominant error term in Theorem 2.
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