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Abstract

Let x be a real number in [0, 1], Fn be the Farey sequence of order n and ρn(x)
be the distance between x and Fn. The first result concerns the average rate of
approximation:

∫ 1

0
ρn(x)dx =

3
π2

log n

n2
+ O

(
1
n2

)
, n →∞ .

The second result states that any badly approximable number is better approx-
imable by rationals than all numbers in average. Namely, we show that if x ∈ [0, 1]
is a badly approximable number then c1 ≤ n2ρn(x) ≤ c2 for all integers n ≥ 1 and
some constants c1 > 0, c2 > 0. The last two theorems can be considered as analogues
of Khinchin’s metric theorem regarding the behaviour of inferior and superior limits
of n2ρn(x)f(log n), when n → ∞, for almost all x ∈ [0, 1] and suitable functions
f(·).

Key words: Farey sequence, rational approximation, badly approximable numbers,
diophantine approximation, Khinchin’s metric theorem.

1 Introduction: Statement of the problem and for-

mulation of the main results

Let x be a real number in [0, 1] and Fn be the Farey sequence of order n, that is, the
collection of all rationals p/q with p ≤ q, (p, q) = 1 and denominators q ≤ n. Let

ρn(x) = min
p
q
∈Fn

∣∣∣∣∣x−
p

q

∣∣∣∣∣ (1)

be the distance between x and Fn. For fixed n and x, ρn(x) is the inaccuracy of approxi-
mation of a real x by the rationals with denominators bounded by n. We are interested
in the asymptotic behaviour, when n → ∞, of ρn(x). Specifically, we are interested in
the asymptotics of the average inaccuracy

En =
∫ 1

0
ρn(x)dx (2)
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as well as in the inferior and superior limits

lim inf
n→∞ n2ρn(x)f(log n), lim sup

n→∞
n2ρn(x)/f(log n)

for suitable functions f(·), for almost all (a.a.) x with respect to the Lebesgue measure
on [0,1] and for x in the class of badly approximable numbers.

The first result of the paper is

Theorem 1 The average inaccuracy (2) asymptotically equals

En =
3

π2

log n

n2
+ O

(
1

n2

)
, n →∞ . (3)

The number of different terms in the Farey sequence Fn is

|Fn| =
n∑

k=1

ϕ(k) + 1 =
3n2

π2
+ O(n log n), n →∞ , (4)

where ϕ(·) is the Euler function. (The asymptotic expression (4) is a well-known formula
in number theory, see [2].) If we take |Fn| equidistant points in [0,1], including both
endpoints, then the average inaccuracy of the resulting approximation is

1

4(|Fn| − 1)
∼ π2

12n2
, n →∞

which is of better order. Therefore the Farey sequences do not provide the best order
of approximation of real numbers in [0,1], in average. The next natural question about
precision of the approximation by rationals concerns the asymptotic behaviour of ρn(x)
for x in different classes of irrational numbers. As an example we consider the class of
the so called badly approximable numbers which, as it is well known, has the cardinality
of the continuum and contains all second order irrationals.

Theorem 2 Assume that x ∈ [0, 1] is a badly approximable number; that is, there exists
a constant c > 0 such that

∣∣∣∣∣x−
p

q

∣∣∣∣∣ ≥
c

q2
(5)

for all integers q ≥ 1. Then there exist constants c1 > 0, c2 > 0 such that

c1

n2
≤ ρn(x) ≤ c2

n2
(6)

for all integers n ≥ 1.

Comparison of Theorem 1 and Theorem 2 implies that in fact the badly approximable
numbers are better approximable by rationals than all numbers in average.

The following statement is a simple consequence of the classical Khinchin’s metric
theorem.
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Theorem 3 Let f(·) be an increasing function on [1,∞) and f(1) > 0. Then
(i) if the integral

∫ ∞

1

dt

f(t)
(7)

diverges then for a.a. x ∈ [0, 1] the inequality

ρn(x) ≤ 1

n2f(log n)
(8)

holds for infinitely many integers n;
(ii) if the integral (7) converges then for a.a. x ∈ [0, 1] the inequality (8) holds only for
finitely many integers n.

In terms of the inferior limit the statement of Theorem 3 can be written as

lim inf
n→∞ ρn(x)n2f(log n) =

{
0 in case (i)
+∞ in case (ii)

for a.a. x ∈ [0, 1]. This particularly implies

lim
n→∞ ρn(x)n2 log1+ε n = +∞, lim inf

n→∞ ρn(x)n2 log n = 0 (9)

for a.a. x ∈ [0, 1] and any ε > 0.
The authors have met the biggest technical difficulties while proving the following

theorem which is an analogue of Theorem 3 in the case of the superior limit of ρn(x).

Theorem 4 Let, analogously to the statement of Theorem 3, f(·) be an increasing func-
tion on [1,∞) and f(1) > 0. Then
(i) if the integral (7) diverges and

lim sup
t→∞

log f(t)

t
< 1 (10)

then for a.a. x ∈ [0, 1] the inequality

ρn(x) ≥ f(log n)

n2
(11)

holds for infinitely many integers n;
(ii) if the integral (7) converges then for a.a. x ∈ [0, 1] the inequality (11) holds only for
finitely many integers n.

In terms of the inferior limit the statement of Theorem 4 can be written as

lim sup
n→∞

ρn(x)n2

f(log n)
=

{
+∞ in case (i)
0 in case (ii)
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for a.a. x ∈ [0, 1]. This particularly implies

lim sup
n→∞

ρn(x)n2

log n
= +∞, lim

n→∞
ρn(x)n2

log1+ε n
= 0 (12)

for a.a. x ∈ [0, 1] and any ε > 0.
It is worthwhile to mention that the regularity condition (10) is rather weak. Note

that in view of ρn(x) ≥ 1/n, the inequality (11) yields f(log n) ≤ n, hence log f(t) ≤ t
with t = log n.

It is interesting to note that comparison of (3), (9) and (12) leads to an observation that
the asymptotic behaviour of the average inaccuracy

∫
ρn(x)dx resembles the behaviour of

the superior limit of ρn(x) more than that of the inferior limit.
The main results of the present work can be regarded as metric theorems in the theory

of diophantine approximations. Roughly speaking, the difference between classical results
and our results is that we are interested in answering ”How well are irrationals x ∈ [0, 1]
approximated by the rationals with denominators bounded by some number n ?” and
the classical results on diophantine approximations typically answer the questions like:
“How often can x be approximated by rationals p/q with a precision bounded by a given
function of q?”
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2 Some properties of Farey sequences and proofs of

Theorems 1,2

2.1 Farey sequences and their properties

Let n be a fixed integer. The Farey sequence Fn of order n is the increasing sequence
of irreducible fractions between 0 and 1 whose denominators do not exceed n. Thus p/q
belongs to Fn if 0 ≤ p ≤ q ≤ n and (p, q) = 1, that is, the numbers p and q have no
common factors bigger than 1. The numbers 0 and 1 are included into Fn in the form
0/1 and 1/1. We refer to [2, 6] for proofs of the formulated below properties of Farey
sequences and further discussions on their properties.

Write

N(n) =
n∑

k=1

ϕ(k) . (13)

where ϕ(·) is the Euler function: ϕ(k) is the number of positive integers relatively prime
with k. Then the number of terms in Fn is |Fn| = N(n) + 1.

The mediant of two fractions a/b and e/f is defined as (a + e)/(b + f) and it al-
ways lies within the interval (a/b, e/f). Each non-integer term in a Farey sequence
{. . . , a/b, c/d, e/f, . . .} is the mediant of its two neighbours: c/d = (a + e)/(b + f).

Other important properties of Farey sequences relate two succesive terms: if a/b and
c/d are two succesive terms in Fn then

bc− ad = 1, b + d > n, b 6= d . (14)

In the literature on diophantine approximations it is often stated that Farey sequences
provide good approximations to real numbers in [0,1] with a reference to the following
two properties: for any x ∈ (0, 1)

Dirichlet (1842) [1]: there exists a fraction p/q ∈ Fn such that
∣∣∣∣∣x−

p

q

∣∣∣∣∣ <
1

q(n + 1)
, (15)

Hurwitz (1891) [3]: there exist infinitely many integers p, q such that
∣∣∣∣∣x−

p

q

∣∣∣∣∣ <
1√
5q2

. (16)

References to the property (15) are sometimes accompained with the words that “Farey
sequences have certain uniformity which explains their importance”. However (15) and
(16) do not directly characterise uniformity of Farey sequences and the approach of the
present work is an attempt to rigorously measure the “uniformity” of Farey sequences
and their properties as approximation sequences.
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Denote by

0 = x1,n < x2,n < . . . xN(n),n < xN(n)+1,n = 1

the elements of Fn. We shall call the partition Pn of [0,1), generated by Fn, the Farey
partition of order n:

Pn : [0, 1) =
N(n)⋃

i=1

[xi,n, xi+1,n) .

In addition to the partition Pn, consisting of N(n) subintervals, we will also need the
partition of [0,1) onto 2N(n) intervals generated by xi,n, the elements of Fn, and the
midpoints 1

2
(xi,n + xi+1,n) for i = 1, . . . , N(n):

Rn : [0, 1) =
N(n)⋃

i=1

([
xi,n,

xi,n + xi+1,n

2

) ⋃ [
xi,n + xi+1,n

2
, xi+1,n

))

2.2 Proof of Theorem 1.

The lengths of the intervals [xi,n, xi+1,n) of the partition Pn equal pi,n = xi+1,n − xi,n for
i = 1, . . . , N(n) and satisfy

pi,n > 0,
N(n)∑

i=1

pi,n = 1 .

Rewrite the average inaccuracy (2) as follows

En =
∫ 1

0
ρn(x)dx =

∫ 1

0
min

xi,n∈Fn

|x− xi,n|dx =

=
N(n)∑

i=1

∫ 1
2
(xi,n+xi+1,n)

xi,n

(x− xi,n)dx +
N(n)∑

i=1

∫ xi+1,n

1
2
(xi,n+xi+1,n)

(xi+1,n − x)dx =

= 2
N(n)∑

i=1

∫ 1
2
(xi,n+xi+1,n)

xi,n

(x− xi,n)dx = 2
N(n)∑

i=1

∫ 1
2
pi,n

0
xdx =

1

4

N(n)∑

i=1

p2
i,n .

Consider the Farey partition Pn. The property (14) of Fn implies that if the endpoints
of [xi,n, xi+1,n), that is, xi,n and xi+1,n, have denominators q and q′ and q ≤ q′ then q′ > n/2
and the length

pi,n = xi+1,n − xi,n = 1/(qq′)
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of [xi,n, xi+1,n) can always be bounded as

1

qn
≤ pi,n ≤ 1

q(n− q)
. (17)

We shall use these bounds when one of the endpoints of [xi,n, xi+1,n) has a denominator
q ≤ n/2. The total number of intervals in Pn with this property equals

N
′
n =

m∑

q=1

2ϕ(q) =
3n2

2π2
+ O(n log n), n →∞ , (18)

where we have introduced the notation m = bn/2c.
An upper bound for the length of the intervals [xi,n, xi+1,n), when both endpoints have

denominators > n/2, follows from pi,n = 1/(qq′) :

pi,n ≤ 4

n2
. (19)

The bounds (17), (19) for pi,n give the following lower and upper bounds for En:

4En ≥ A =
m∑

q=1

2ϕ(q)
1

q2n2
(20)

4En ≤ B =
m∑

q=1

2ϕ(q)
1

q2(n− q)2
+

16

n4

n∑

q=m+1

2ϕ(q) (21)

Applying (4) we obtain

B =
m∑

q=1

2ϕ(q)
1

q2(n− q)2
+ O

(
1

n2

)
, n →∞.

Therefore

0 ≤ B − A ≤ 2
m∑

q=1

ϕ(q)
n2 − (n− q)2

q2n2(n− q)2
+ O

(
1

n2

)
≤ 16

n3

m∑

q=1

ϕ(q)

q
+ O

(
1

n2

)
= O

(
1

n2

)

when n →∞.
Using Abel transformation, represent A in the form

A =
2

n2

m∑

q=1

ϕ(q)

q2
=

2

n2




m−1∑

q=1

N(q)

(
1

q2
− 1

(q + 1)2

)
+ N(m)

1

m2


 .

Again using (4) represent N(q) in the form

N(q) =
6

π2

q(q + 1)

2
+ O(q(log q + 1)), q →∞.

This implies

A =
12

πn2




m−1∑

q=1

q(q + 1)

2

(
1

q2
− 1

(q + 1)2

)
+

m(m + 1)

2

1

m2


 + O

(
1

n2

)
=

=
12

πn2

m∑

q=1

1

q
+ O

(
1

n2

)
=

12 log n

πn2
+ O

(
1

n2

)
, n →∞.

This yields (3). 2
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2.3 Proof of Theorem 2

Proof. Let x ∈ [0, 1] be badly approximable and let p1/q1, p2/q2, . . . be the convergents
of its continued fraction expansion. Since x is badly approximable, qk+1 ≤ Kqk for
k = 1, 2, . . . with K ≤ 1/c, where c is defined in (5). Given n > 1, let k = k(n) be such
that qk ≤ n < qk+1. We have

ρn(x) ≤
∣∣∣∣∣x−

pk

qk

∣∣∣∣∣ <
1

q2
k

≤ K2

n2
,

i.e., the right–hand side of (6) with c2 = K2. The left–hand side of (6) with c1 = c follows
immediately from (5). 2

3 Khinchin’s theorem and proof of Theorem 3

3.1 Khinchin’s metric theorem

Before starting the proof of Theorem 3 let us formulate Khinchin’s metric theorem in the
following standard form (see for instance [4, 5, 7]).

Khinchin’s metric theorem [5]. Let F (·) be a positive function on [1,∞) such that
the function xF (x) is decreasing. Then
(i) the inequality

∣∣∣∣∣x−
p

q

∣∣∣∣∣ <
F (q)

q
(22)

has an infinite number of solutions in positive integers p, q for a.a. x ∈ [0, 1] if the integral
∫ ∞

1
F (t)dt (23)

diverges;
(ii) the inequality (22) has only a finite number of solutions in positive integers p, q for
a.a. x ∈ [0, 1] if the integral (23) converges.

Set f(t) = e−t/F (et) for t ≥ 0. Then the function F in Khinchin’s metric theorem can
be represented in the form F (x) = 1/(xf(log x)) and therefore

∫ ∞

e
F (t)dt =

∫ ∞

1

1

f(t)
dt

The assumption for xF (x) to be a decreasing function is equivalent to the assumption
that the function f(x) is increasing. Thus the assumptions in Khinchin’s metric theorem
agree with the conditions of Theorem 3.
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3.2 Proof of Theorem 3

(i). Let the integral (7) diverge. Then according to Khinchin’s metric theorem the
inequality (22) holds for infinitely many q for a.a. x ∈ [0, 1]. Setting n = q we get

ρn(x) ≤
∣∣∣∣x−

p

n

∣∣∣∣ ≤
1

n2f(log n)

and therefore for a.a. x ∈ [0, 1] the inequality (8) holds for infinitely many integers n.

(ii). Let the integral (7) converge and

ρn(x) <
1

n2f(log n)
(24)

and let p/q be the fraction in Fn such that

ρn(x) =

∣∣∣∣∣x−
p

q

∣∣∣∣∣ .

Then using the fact that f is increasing we obtain

1

q2f(log q)
≥ 1

n2f(log n)
≥

∣∣∣∣∣x−
p

q

∣∣∣∣∣ = ρn(x) .

The proof is completed by showing that the inequality (24) holds for finitely many n for
almost all irrationals x ∈ [0, 1). Indeed, the assumption that for a given x (24) holds for
infinitely many n implies that the inequality

1

q2f(log q)
≥

∣∣∣∣∣x−
p

q

∣∣∣∣∣

has an infinite number of solutions in positive integers p, q and application of Khinchin’s
metric theorem leads to the required conclusion. 2

4 Proof of Theorem 4

4.1 Auxiliary statements

The proof of Theorem 4 will use some tools developed in [7] in the course of proving
Khinchin’s metric theorem. We shall use two statements formulated in the form of lemmas.

Lemma 1 [7, Lemma 5, Ch. 1].
Let (Ω, Ξ, µ) be a measure space and let Aq be a sequence of sets in Ξ. Then if

∞∑

q=1

µ(Aq) = ∞
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then the set A of the points in Ω, which belong to an infinite number of sets Aq, has the
measure

µ(A) ≥ lim sup
m→∞

(∑m
q=1 µ(Aq)

)2

∑m
p=1

∑m
q=1 µ(Ap

⋂
Aq)

. (25)

Proof is given in [7]. In what follows Ω = [0, 1] and µ is the Lebesgue measure on [0, 1].
For n ≥ k ≥ 1 introduce the sets

Ak,n =
⋃

p:p<k,(p,k)=1

(
p

k
− 1

2nk
,
p

k
+

1

2nk

)
(26)

and note the obvious fact that the intervals in the union are not intersecting for fixed k
and n.

The next lemma is not exactly the result of [7] although it is principally contained in
the proof of Theorem 7, Ch. 1. We shall give a proof for the sake of completeness.

Lemma 2 Let 1 ≤ k ≤ n, 1 ≤ l ≤ m and k 6= l. Then

|Ak,n ∩ Al,m| ≤ 4

nm
. (27)

Proof. Obviously, |Ak,n| = ϕ(k)/(kn) and

|Ak,n ∩ Al,m| ≤ min
{

1

kn
,

1

ml

}
N(k, l, n, m) (28)

where N(k, l, n, m) is the number of pairs of positive integers p, p′ such that
∣∣∣∣∣
p

k
− p′

l

∣∣∣∣∣ <
1

2kn
+

1

2ml
, (p, k) = 1, (p′, l) = 1, 0 < p < k, 0 < p′ < l . (29)

Let us derive an upper bound for N(k, l, n,m).
Assume

pl − p′k = t (30)

for some integer t. Then d = (k, l) is a divisor of t and then setting

k = dk̃, l = dl̃, t = dt̃

we get pl̃ − p′k̃ = t̃, (l̃, k̃) = 1 . If p̃, p̃′ is another pair satisfying (30) then

p = p̃ + sk̃, p̃ = p̃′ + sl̃ (31)

where s is some integer. Assume l < k. Then we are interested in counting the number
of pairs of integers p, p̃ falling into the interval (0, k). Thus it should hold

|p− p̃| = |s|k̃ < k = dk̃
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which implies |s| < d. Therefore for fixed t and p the number of p̃ satisfying (30) is upper
bounded by 2d − 1 and using (31) we get that 2d − 1 is also an upper bound for the
number of pairs of integers p, p̃ for a fixed t. Finally, (29) gives

0 6= |t| < l

2n
+

k

2m

and we can take only t such that d divides t. Altogether, this gives

N(k, l, n, m) ≤ 2

⌊
l

2n
+ k

2m

d

⌋
(2d− 1) < 4

(
l

2n
+

k

2m

)
.

The required inequality (27) follows now from (28). 2

4.2 Proof of Theorem 4

Let us start with prooving (ii). Mention first that the statement of the theorem is equiv-
alent to the analogous statement with the logarithm on the base 2 substituted for the
natural logarithm. We shall prove (ii) for this reformulation of the theorem.

Let the integral (7) converge and x ∈ [0, 1]. For any positive integer n define k =
k(n) = blog2 nc, i.e., k is such that 2k ≤ n < 2k+1. If

ρn(x) ≥ f(log2 n)

n2
, (32)

that is, the inequality (11), with log replaced by log2, holds then due to monotonicity of
f

ρ2k(x) ≥ ρn(x) ≥ 1

4

f(log2 2k)

(2k)2
=

1

4

f(k)

(2k)2
.

Therefore if the inequality (32) holds for infinitely many n then the inequality

ρn(x) ≥ 1

4

f(k)

n2
with n = 2k (33)

holds for infinitely many k. This means that it is enough to prove (ii) only for the case
when n goes through the sequence n = 2k, k = 1, 2, . . ..

Set

Bk = {x ∈ [0, 1] such that the inequality (33) holds} .

Let us derive an upper bound for |Bk|, the Lebesgue measure of Bk, in order to apply the
Borell–Cantelli lemma.

Consider the set S of all intervals I from the Farey partition Pn with n = 2k such that
their length

|I| ≥ 1

2

f(k)

n2
. (34)
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The union of these intervals contains Bk and therefore

|Bk| ≤ S =
∑

I∈S
|I| .

Compute an upper bound for S.
Let

I =

[
p

q
,

p′

q′

)
∈ Pn

and a = min{q, q′}, b = max{q, q′}. Then b ≥ n/2 and thus |I| = 1/(ab) ≤ 2/(an).
Therefore for I ∈ S

f(k)

2n2
≤ |I| ≤ 2

an

which particularly implies

a = min{q, q′} ≤ 4n

f(k)
.

We thus have

|Bk| ≤
∑

I∈S
|I| ≤ 2

b 4n
f(k)

c∑

q=1

ϕ(q)
2

qn
≤ 4

n

b 4n
f(k)

c∑

q=1

1 ≤ 16

f(k)

where the factor 2 is due to that ≤ 2 intervals in S correspond to a fixed p/q with q > 1.
We have also used here that for a given q > 1, ϕ(q) is the number of fractions p/q ∈ Fn

and that ϕ(q) ≤ q.
This leads to the inequality

∞∑

q=1

|Bk| ≤ 16
∫ ∞

1

dt

f(t)
+

16

f(1)
< ∞ .

Applying the Borel–Cantelli arguments, we obtain (ii).

Turn to the proof of (i). Let for some β > 0

lim sup
t→∞

log f(t)

t
<

β

1 + β

where the existence of β is guaranteed by the assumption (10).
For all integers k ≥ 1 define nk = b6kf((1 + β) log k)c+ 1 and

Bk =
⋃

p:p<k,(p,k)=1

(
p

k
+

1

6knk

,
p

k
+

1

3knk

)
(35)

Introduce also the set

B = {x ∈ [0, 1] such that the inequality (11) holds infinitely often} .
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Regularity condition (10) implies there exists k′ such that for k ≥ k′

(1 + β) log k ≥ log 7 + log k + log f((1 + β) log k)

and thus

(1 + β) log k ≥ log(6kf((1 + β) log k) + 1) .

Since f is increasing we deduce

f((1 + β) log k) ≥ f(log nk) .

Finally for x ∈ Bk

ρnk
(x) ≥ 1

6knk

=
nk

6kn2
k

≥ 6kf((1 + β) log k)

6kn2
k

≥ f(log nk)

n2
k

.

Thus every x ∈ Bk satisfies (11) for k ≥ k′.
Hence it will suffice to prove that |B| = 1.
Applying Lemma 1 we get

|B| ≥ lim sup
m→∞

(
∑m

k=1 |Bk|)2

∑m
k=1

∑m
l=1 µ(Bk ∩Bl)

. (36)

Let us first construct a lower bound for the numerator in (36):

|Bk| = 1

6
|Ak,nk

| = ϕ(k)

6knk

where the sets Ak,nk
are defined in (26), and therefore

m∑

k=1

|Bk| ≥ 1

6

m∑

k=1

ϕ(k)

knk

.

Applying Abel transformation we get

m∑

k=1

ϕ(k)

knk

=
m∑

k=1

(N(k)−N(k − 1))
1

knk

=

=
m−1∑

k=1

N(k)

(
1

knk

− 1

(k + 1)nk+1

)
+ N(m)

1

mnm

≥

≥ 1

2

m−1∑

k=1

k(k + 1)

2

(
1

knk

− 1

(k + 1)nk+1

)
+

m(m + 1)

4

1

mnm

=
1

2

m∑

k=1

1

nk

where

N(0) = 0, N(k) =
k∑

l=1

ϕ(l) ≥ k(k + 1)

4

13



for all k ≥ 1.
Therefore

m∑

k=1

|Bk| ≥ 1

12

m∑

k=1

1

nk

.

Let us demonstrate that

∞∑

k=1

1

nk

= +∞ . (37)

Indeed, there exists k0 > 0 such that nk ≤ 7kf((1 + β) log k) for all k ≥ k0 and therefore

∞∑

k=1

1

nk

≥ 1

7

∞∑

k=k0

1

kf((1 + β) log k)
≥ 1

7

∫ ∞

k0+1

dt

tf((1 + β) log t)
=

=
1

7

∫ ∞

log(k0+1)

dτ

f((1 + β)τ)
= ∞ .

Let us turn to the denominator in (36) and estimate |Bk ∩Bl| for k 6= l. According to
Lemma 2 for k 6= l

|Bk ∩Bl| ≤ |Ak,nk
∩ Al,nl

| ≤ 4

nknl

and therefore

m∑

k,l=1

|Bk ∩Bl| = 2
∑

1≤k<l≤m

|Bk ∩Bl|+
m∑

k=1

|Bk| ≤

≤ 8
∑

1≤k<l≤m

1

nknl

+
m∑

k=1

1

nk

≤ 4
m∑

k=1

(
m∑

k=1

1

nk

)2

+
m∑

k=1

1

nk

.

Using (37) we get

lim
m→∞

(
m∑

k=1

1

nk

)
/

(
m∑

k=1

1

nk

)2

= 0 .

Therefore

|B| ≥ lim sup
m→∞

(
1
12

∑m
k=1(1/nk) + O(1)

)2

4 (
∑m

k=1(1/nk))
2 +

∑m
k=1(1/nk)

= γ =
1

576
.

Let us now show that for all integers m ≥ 2, 0 ≤ l ≤ m− 1,
∣∣∣∣∣B

⋂ (
l

m
,
l + 1

m

)∣∣∣∣∣ ≥
γ

m
.

14



Indeed, let us construct a set B1 analogous to B and corresponding to the function
f1(·) = mf(·). Then the above yields |B1| ≥ γ. Let x ∈ B1 then it is easy to see that
x′ = (x + l)/m ∈ B. As the matter of fact, if

ρn(x′) ≤ f(log n)

n2

and ρn(x′) = |x′ − p/q| for some

p

q
∈ Fn

⋂ (
l

m
,
l + 1

m

)

then
∣∣∣∣∣x−

pm− l

q

∣∣∣∣∣ ≤
mf(log n)

n2
=

f1(log n)

n2

and 0 < pm − l < q, therefore if the inequality (11) holds for x with f1(·) = mf(·) then
it also holds for x′ with f .

To complete the proof we only need to apply Lebesgue theorem on the density points,
see for example Ch. 11 in [8], and obtain |B| = 1. 2
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[7] V.G. Sprindžuk, ”Metric Theory of Diophantine Approximations”, Nauka,
Moscow, 1977 (In Russian).

[8] E. Titchmarsh, ”The Theory of Functions”, Oxford University Press, Oxford,
1939.

16


