Asymptotic distribution of the distance function to the Farey points

Pavel Kargaev Anatoly Zhigljavsky

Abstract

Let x be a real number in $[0,1], \mathcal{F}_{n}$ be the Farey sequence of order n and $\rho_{n}(x)$ be the distance between x and \mathcal{F}_{n}. Assuming that $n \rightarrow \infty$ we derive the asymptotic distributions of the functions $n^{2} \rho_{n}(x)$ and $n \rho_{n}\left(x^{\prime} / n\right), 0 \leq x^{\prime} \leq n$. We also establish the asymptotics for $\int_{0}^{1} \rho_{n}^{\delta}(x) d x$, for all real δ.

Key words: Farey sequence, rational approximation, diophantine approximation, asymptotic distribution.

1 Introduction: Statement of the problem and formulation of the main results

Let x be a real number in $[0,1]$ and \mathcal{F}_{n} be the Farey sequence of order n, that is, the collection of all rationals p / q with $p \leq q,(p, q)=1$ and the denominators $q \leq n$. In the present work we derive two asymptotic distributions for

$$
\rho_{n}(x)=\min _{p / q \in \mathcal{F}_{n}}\left|x-\frac{p}{q}\right|,
$$

the distance function between x and \mathcal{F}_{n}, and establish the asymptotics for $\int_{0}^{1} \rho_{n}^{\delta}(x) d x$, for all real δ.

It is well-known that the elements of the Farey sequence \mathcal{F}_{n} are uniformly distributed asymptotically, when $n \rightarrow \infty$, and this has important consequences in number theory: for example, the Riemann hypothesis can be formulated in terms of the rate of convergence of \mathcal{F}_{n} to the uniform distribution, see [1, 2, 3]. However, little is known about other asymptotic properties of \mathcal{F}_{n} and the distance function $\rho_{n}(x)$.

In our previous work [4] we have established some metric theorems concerning $\rho_{n}(x)$. Specifically, we have shown that for suitable functions $f(\cdot)$ the inferior and superior limits,

$$
\liminf _{n \rightarrow \infty} n^{2} \rho_{n}(x) f(\log n) \text { and } \limsup _{n \rightarrow \infty} n^{2} \rho_{n}(x) / f(\log n),
$$

may achieve only values 0 and ∞, for almost all x with respect to the Lebesgue measure on $[0,1]$, depending on whether $\int_{1}^{\infty} d x / f(x)$ converges or diverges. In the present work we continue the study of the asymptotic behaviour of the distance function $\rho_{n}(x)$. The main results of the paper are formulated in the following four theorems.

Theorem 1.1. The sequence of functions

$$
\tilde{\rho}_{n}\left(x^{\prime}\right)= \begin{cases}n \rho_{n}\left(x^{\prime} / n\right) & \text { if } 0 \leq x^{\prime} \leq n \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

converge in distribution, when $n \rightarrow \infty$, to the measure $\tilde{p}(\tau) d \tau$ on \mathcal{B} with the density

$$
\tilde{p}(\tau)= \begin{cases}2 \sum_{k=1}^{m} \varphi(k) & \text { for } \tau \in\left(\frac{1}{2(m+1)}, \frac{1}{2 m}\right], \quad m=1,2, \ldots \tag{2}\\ 0 & \text { for } \tau \notin\left(0, \frac{1}{2}\right]\end{cases}
$$

that is, for any a, A such that $0<a<A<\infty$,

$$
n \text { meas }\left\{x \in[0,1]: a<n \rho_{n}(x) \leq A\right\} \rightarrow \int_{a}^{A} \tilde{p}(\tau) d \tau, \quad n \rightarrow \infty .
$$

Here and in what follows 'meas' stands for the Lebesgue measure on $[0,1], \mathcal{B}$ denotes the σ-algebra of the Borel subsets of $(0, \infty)$ and $\varphi(\cdot)$ is the Euler function.

Theorem 1.2. The sequence of functions $n^{2} \rho_{n}(x)$ converge in distribution, when $n \rightarrow \infty$, to the probability measure $\hat{p}(\tau) d \tau$ on \mathcal{B} with the density

$$
\hat{p}(\tau)= \begin{cases}6 / \pi^{2} & \text { if } 0 \leq \tau \leq \frac{1}{2} \tag{3}\\ \frac{6}{\pi^{2} \tau}(1+\log \tau-\tau) & \text { if } \frac{1}{2} \leq \tau \leq 2 \\ \frac{3}{\pi^{2} \tau}\left(2 \log (2 \tau)-4 \log (\sqrt{\tau}+\sqrt{\tau-2})-(\sqrt{\tau}-\sqrt{\tau-2})^{2}\right) & \text { if } 2 \leq \tau<\infty\end{cases}
$$

that is, for any a, A such that $0<a<A<\infty$,

$$
\operatorname{meas}\left\{x \in[0,1]: a<n^{2} \rho_{n}(x) \leq A\right\} \rightarrow \int_{a}^{A} \hat{p}(\tau) d \tau, \quad n \rightarrow \infty .
$$

One of the key elements in the proof of Theorem 1.2 is the asymptotic two-dimensional uniformity of the pairs of the denominators of the neighbours in the Farey sequences. Specifically, the following result holds.

Let p / q and p^{\prime} / q^{\prime} be neighbours in \mathcal{F}_{n} such that $0 \leq p / q<p^{\prime} / q^{\prime} \leq 1$. The ordered pair $\left(q, q^{\prime}\right)$ will be called the neighbouring pair of denominators in \mathcal{F}_{n}, the number of such pairs equals $N(n)=\left|\mathcal{F}_{n}\right|-1=\sum_{q=1}^{n} \varphi(q)$. Let ν_{n} be the two-variate probability measure assigning the mass $1 / N(n)$ to each pair $\left(q / n, q^{\prime} / n\right)$ where $\left(q, q^{\prime}\right)$ take all possible values in the set of all neighbouring pairs of denominators in \mathcal{F}_{n}.

Theorem 1.3. The sequence of probability measures ν_{n} weakly converge, when $n \rightarrow \infty$, to the uniform probability measure on the triangle $\{(x, y): 0 \leq x, y \leq 1, x+y \geq 1\}$.

An important result, which is essentially a consequence of Theorems 1.1 and 1.2 , concerns the asymptotic behaviour of the moments of the distance function $\rho_{n}(x)$.

Theorem 1.4. For any $\delta \neq 0$ and $n \rightarrow \infty$

$$
\frac{\delta+1}{2} \int_{0}^{1} \rho_{n}^{\delta}(x) d x= \begin{cases}\infty & \text { if } \delta \leq-1 \tag{4}\\ \frac{3}{\delta^{2} \pi^{2}}\left(2^{-\delta}+\delta 2^{\delta+2} \mathrm{~B}\left(-\delta, \frac{1}{2}\right)\right) n^{-2 \delta}(1+o(1)) & \text { if }-1<\delta<1, \delta \neq 0 \\ \frac{3}{\pi^{2}} n^{-2} \log n+O\left(n^{-2}\right) & \text { if } \delta=1 \\ 2^{-\delta} \frac{\zeta(\delta)}{\zeta(\delta+1)} n^{-\delta-1}+O\left(n^{-2 \delta}\right) & \text { if } \delta>1\end{cases}
$$

where $\zeta(\cdot)$ and $B(\cdot, \cdot)$ are the Riemann zeta-function and the Beta-function, correspondingly.

The paper is organized as follows. In Section 2 we formulate and prove a number of technical lemmas that are used in the proofs of the main theorems. All statements of Section 2 are of a general character, for instance, the notion of the Farey sequence is used in neither of these statements.

Section 3 is devoted to the study of the asymptotic distribution of the sequence of functions (1). In this section we prove Theorem 3.1 which includes, as particular cases, Theorem 1.1 and a part of Theorem 1.4.

In Section 4 we study the asymptotic distribution of two sequences of probability measures associated with the functional sequence $n^{2} \rho_{n}(x)$. In this section we prove Theorem 1.3 and Theorem 4.1, the latter includes Theorem 1.2 as a component.

Theorem 1.4 is a corollary of three theorems, specifically, Theorem 3.1, in the case $\delta>1$, Theorem 4.1, the case $-1<\delta<1$, and Theorem 1 in [4], the case $\delta=1$.

2 Auxiliary results

In this section we prove several simple technical lemmas which shall be used in the next sections. First, we introduce some notation.

Let \mathcal{B} be the σ-algebra of Borel subsets of $(0, \infty)$ and \mathcal{M} be the set of the Borel measures on \mathcal{B}, these measures attach finite values to all intervals $[a, A]$ with $0<a<A<$ ∞.

We shall say that a sequence of measures μ_{n} in $\mathcal{M} *$-weakly converge to a measure $\mu \in \mathcal{M}$ and write $\mu_{n} \xrightarrow{*} \mu, n \rightarrow \infty$, if μ_{n} converge to μ in the sense of the theory of Schwartz's distributions. That is, $\mu_{n} \xrightarrow{*} \mu$ when $n \rightarrow \infty$, if for any continuous function g on $(0, \infty)$ with compact support $\int g d \mu_{n} \rightarrow \int g d \mu$. In the other words, $\mu_{n} \xrightarrow{*} \mu, n \rightarrow \infty$, if for any $0<a<A<\left.\left.\infty \quad \mu_{n}\right|_{(a, A)} \Longrightarrow \mu\right|_{(a, A)}, n \rightarrow \infty$, in the usual sense of weak convergence of finite measures, see [5]. For a thorough description of the $*$-weak convergence of measure sequences see, for example, [6], ch.6.

In the first two lemmas of this section we establish a general relation between two measures: the first one is the distribution of the distance function $\rho_{n}(x)$ and the other
assigns equal masses to all interval lengths of the partition generated by \mathcal{F}_{n}. This relation does not depend on the particular form of the Farey sequences and we thus consider a more general case.

For every $n=1,2, \ldots$, let $N(n)$ be a positive integer and \mathcal{F}_{n} be an ordered collection of $N(n)+1$ points in $[0,1]$:

$$
\begin{equation*}
\mathcal{F}_{n}=\left\{x_{0, n}, x_{1, n}, \ldots, x_{N(n), n}: \quad 0=x_{0, n}<x_{1, n}<\ldots<x_{N(n), n}=1\right\} \tag{5}
\end{equation*}
$$

With every point collection \mathcal{F}_{n} of this kind we associate the partition \mathcal{P}_{n} of $[0,1)$:

$$
\begin{equation*}
\mathcal{P}_{n}:[0,1)=\bigcup_{i=1}^{N(n)} I_{i, n} \quad \text { where } I_{i, n}=\left[x_{i-1, n}, x_{i, n}\right) \tag{6}
\end{equation*}
$$

and the collection of interval lenghts:

$$
\begin{equation*}
\left\{p_{i, n}=\left|I_{i, n}\right|=x_{i, n}-x_{i-1, n}, \quad i=1, \ldots, N(n)\right\} \tag{7}
\end{equation*}
$$

In Sections 3 and 4 , when \mathcal{F}_{n} will stand for the Farey sequence, \mathcal{P}_{n} will go under the name of the Farey partition.

For every n, let us define the measure $\mu_{n} \in \mathcal{M}$ by assigning the mass 1 to the points $p_{i, n}, i=1, \ldots, N(n)$. We write this measure as

$$
\begin{equation*}
\mu_{n}=\sum_{i=1}^{N(n)} \delta\left(t-p_{i, n}\right) \tag{8}
\end{equation*}
$$

where $\delta(\cdot)$ is the Dirac delta function.
For two numerical sequences of positive normalization constants F_{n} and G_{n} we also define the normalized measures $\mu_{n}\left(F_{n}, G_{n}\right)$ by assigning equal masses G_{n} to the points $F_{n} p_{i, n}, i=1, \ldots, N(n):$

$$
\begin{equation*}
\mu_{n}\left(F_{n}, G_{n}\right)=\sum_{i=1}^{N(n)} G_{n} \delta\left(t-F_{n} p_{i, n}\right) \tag{9}
\end{equation*}
$$

In a particular case, when $F_{n}=G_{n}=1, \mu_{n}(1,1)=\mu_{n}$. Note also that for all n and sequences of positive constants F_{n} and G_{n} the measures $\mu_{n}\left(F_{n}, G_{n}\right)$ are defined on \mathcal{B}. We will be interested in the sequences $\left\{F_{n}\right\}$ and $\left\{G_{n}\right\}$ which provide the $*$-weak convergence, when $n \rightarrow \infty$, of the sequence $\left\{\mu_{n}\left(F_{n}, G_{n}\right)\right\}_{n}$ to certain non-degenerate Borel measures μ on \mathcal{B}. Since $\int_{0}^{\infty} d \mu_{n}\left(F_{n}, G_{n}\right)=N(n) G_{n}$, we do not necessary expect that the limit measures are finite, that is $\mu((0, \infty))<\infty$.

For any $x \in[0,1]$ consider the distance between x and \mathcal{F}_{n} :

$$
\rho_{n}(x)=\rho\left(x, \mathcal{F}_{n}\right)=\min _{x_{i, n} \in \mathcal{F}_{n}}\left|x-x_{i, n}\right|
$$

This is a measurable function, with respect to the σ-algebra of Borel subsets of $[0,1]$, and it can be associated with the probability measure $d \Phi_{n}(t)$ where

$$
\begin{equation*}
\Phi_{n}(t)=\operatorname{meas}\left\{x \in[0,1]: \rho_{n}(x) \leq t\right\} . \tag{10}
\end{equation*}
$$

The following statement shows that there exists a simple relationship between the measure μ_{n}, defined in (8), and the density corresponding to (10).

Lemma 2.1. Let $n \geq 1, N(n) \geq 1$ and \mathcal{F}_{n} be any collection of points (5). Then the measure $d \Phi_{n}$ is absolutely continuous with respect to the Lebesgue measure, its density $p_{n}(\tau)=\Phi_{n}^{\prime}(\tau)$ is such that $p_{n}(\tau)=0$ for $\tau \notin\left[0, \frac{1}{2}\right]$ and

$$
\begin{equation*}
p_{n}(\tau)=2 \mu_{n}((2 \tau,+\infty))=2 \sum_{i: p, n>2 \tau} 1 \quad \text { for any } \tau>0 \tag{11}
\end{equation*}
$$

where the measure μ_{n} is defined in (8) and $p_{i, n}$ are defined in (7).
Proof. We have for any n and $\tau>0$:

$$
\begin{aligned}
& 1-\Phi_{n}(\tau)=\operatorname{meas}\left\{x \in[0,1]: \rho_{n}(x)>\tau\right\}=\sum_{i=1}^{N(n)} \operatorname{meas}\left\{x \in I_{i}, \rho_{n}(x)>\tau\right\} \\
& =\sum_{i:\left|I_{i}\right|>2 \tau} \operatorname{meas}\left\{x \in I_{i}, \rho_{n}(x)>\tau\right\} \\
& =2 \sum_{i:\left|I_{i}\right|>2 \tau} \operatorname{meas}\left\{x \in\left[x_{i-1, n}, \frac{x_{i-1, n}+x_{i, n}}{2}\right), \rho_{n}(x)>\tau\right\} \\
& =2 \sum_{i: p_{i, n}>2 \tau} \operatorname{meas}\left\{x \in\left[x_{i-1, n}, x_{i-1, n}+p_{i, n} / 2\right), x-x_{i-1, n}>\tau\right\}=2 \sum_{i: p_{i, n}>2 \tau}\left(p_{i, n} / 2-\tau\right) \\
& =2 \sum_{i: p_{i, n}>2 \tau} \int_{\tau}^{p_{i, n} / 2} 1 d t=2 \int_{\tau}^{\infty} \sum_{i: p_{i, n}>2 t} 1 d t=2 \int_{\tau}^{\infty} \mu_{n}((2 t, \infty)) d t
\end{aligned}
$$

This implies that the measure $d \Phi_{n}(t)$ is absolutely continuous, with respect to the Lebesgue measure, and it also yields the validity of the relation (11). The fact that $p_{n}(\tau)=0$ for $\tau \notin\left[0, \frac{1}{2}\right]$ follows from the definition of p_{n}.

The following statement is an obvious consequence of Lemma 2.1.
Corollary 2.1. For any two positive sequences $\left\{F_{n}\right\}$ and $\left\{G_{n}\right\}$

$$
\begin{equation*}
p_{n}\left(\tau / F_{n}\right) G_{n}=2 G_{n} \mu_{n}\left(\left(2 \tau / F_{n}, \infty\right)\right)=2 \sum_{i: p_{i, n} F_{n}>2 \tau} G_{n} \quad \text { for any } \tau>0 \tag{12}
\end{equation*}
$$

where the density $p_{n}(\cdot)$ and the measure μ_{n} are the same as in Lemma 2.1.
Lemma 2.2. Let the sequence of partitions $\left\{\mathcal{P}_{n}\right\}$ of $[0,1)$ and the numerical sequences $\left\{F_{n}\right\},\left\{G_{n}\right\}$ be such that the sequence of measures $\left\{\mu_{n}=\mu_{n}\left(F_{n}, G_{n}\right)\right\}_{n}$ defined through
(9) *-weakly converge, when $n \rightarrow \infty$, to some Borel measure μ and for some given A, a point of continuity of the measure μ,

$$
\begin{equation*}
\mu_{n}([A, \infty)) \rightarrow \mu([A, \infty))<\infty, \quad n \rightarrow \infty . \tag{13}
\end{equation*}
$$

Then the sequence of measures $\left\{p_{n}\left(\tau / F_{n}\right) G_{n} d \tau\right\}$ *-weakly converge to an absolutely continuous, with respect to the Lebesgue measure on $(0, \infty)$, measure $p(\tau) d \tau$ where

$$
\begin{equation*}
p(\tau)=2 \mu([2 \tau, \infty)) \tag{14}
\end{equation*}
$$

for any $\tau>0$ such that 2τ is the point of continuity of the measure μ. Besides, the sequence of functions $\left\{p_{n}\left(\tau / F_{n}\right) G_{n}\right\}$ converge to $p(\tau)$ for all such τ.

Proof. Let the sequence of measures $\left\{\mu_{n}=\mu_{n}\left(F_{n}, G_{n}\right)\right\}_{n}$ *-weakly converge, when $n \rightarrow \infty$, to some Borel measure μ and $\mu_{n}([A, \infty)) \rightarrow \mu([A, \infty))<\infty$ for some A, a point of continuity of the measure μ. Let B be any point of continuity of the measure μ and let, say, $0<B<A$. Then $\mu_{n}([B, \infty))=\mu_{n}([B, A))+\mu_{n}([A, \infty))$. Using (13) and the fact that $*$-weak convergence of measures on open intervals coincides with the standard weak convergence, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{n}([B, \infty))=\lim _{n \rightarrow \infty} \mu_{n}([B, A))+\lim _{n \rightarrow \infty} \mu_{n}([A, \infty))=\mu([B, \infty)) \tag{15}
\end{equation*}
$$

The relation (15) can be analogously proven for $B \geq A$ and it thus holds for any B, the point of continuity of the measure μ. The relations (12) and (15) yield

$$
p_{n}\left(\tau / F_{n}\right) G_{n}=2 G_{n} \mu_{n}\left(\left(2 \tau / F_{n}, \infty\right)\right) \rightarrow 2 \mu([2 \tau, \infty))=p(\tau), \quad n \rightarrow \infty,
$$

for any $\tau>0$ such that 2τ is the point of continuity of the measure μ.
Let us now fix τ_{1} and τ_{2} such that $0<\tau_{1}<\tau_{2}$ and $2 \tau_{1}, 2 \tau_{2}$ are the points of continuity of the measure μ. Since $p_{n}\left(\tau / F_{n}\right) G_{n}$ is monotonously decreasing with respect to τ, $p_{n}\left(\tau / F_{n}\right) G_{n} \leq p_{n}\left(\tau_{1} / F_{n}\right) G_{n}$ for any $\tau \in\left[\tau_{1}, \tau_{2}\right]$ and therefore according to the Lebesgue theorem on the dominated convergence for any such τ_{1} and τ_{2}

$$
\int_{\tau_{1}}^{\tau_{2}} p_{n}\left(\tau / F_{n}\right) G_{n} d \tau \rightarrow \int_{\tau_{1}}^{\tau_{2}} p(\tau) d \tau, \quad n \rightarrow \infty
$$

This completes the proof.
Lemma 2.3. Let a measure μ and a function p be related via (14) and $\int_{0}^{\infty} t^{\delta+1} d \mu(t)<\infty$ for some real δ. Then

$$
\int_{0}^{\infty} t^{\delta} p(t) d t= \begin{cases}+\infty & \text { if } \delta \leq-1 \tag{16}\\ C_{\delta} \int_{0}^{\infty} t^{\delta+1} d \mu(t)<+\infty & \text { if } \delta>-1\end{cases}
$$

where

$$
\begin{equation*}
C_{\delta}=\frac{1}{(1+\delta) 2^{\delta}} \tag{17}
\end{equation*}
$$

Proof. Using (14) and the Fubini theorem, we get for any $\delta>-1$:

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{\delta} p(\tau) d \tau=\int_{0}^{\infty} \tau^{\delta} 2 \mu([2 \tau, \infty)) d \tau=\int_{0}^{\infty} 2 \tau^{\delta} \int_{2 \tau-}^{\infty} d \mu(t) d \tau= \\
& 2 \int_{0}^{\infty} \int_{0}^{t / 2} \tau^{\delta} d \tau d \mu(t)=C_{\delta} \int_{0}^{\infty} t^{\delta+1} d \mu(t)
\end{aligned}
$$

If $\delta \leq-1$ then one of the integrals in the chain, namely $\int_{0}^{t / 2} \tau^{\delta} d \tau$, diverges; this yields that the first integral in the chain also diverges.

Lemmas 2.2 and 2.3 establish a correspondence between the asymptotic behaviour of the distributions of the functions $\rho_{n}(x)=\rho\left(x, \mathcal{F}_{n}\right)$ and the distributions μ_{n} of the interval lengths of the partitions generated by \mathcal{F}_{n}, as well as a relation between the moments of these distributions. The next problem is to find a convenient sufficient condition for the convergence, when $n \rightarrow \infty$, of a properly normalized sequence of measures $\left\{\mu_{n}\right\}$.

Let us associate with every $\mu \in \mathcal{M}$ its Mellin transform

$$
\begin{equation*}
M(\mu)(s)=\int_{0}^{\infty} t^{s} d \mu(t) \tag{18}
\end{equation*}
$$

which is defined and analytic in the strip $\{s: \operatorname{Re} s \in(A, B)\}$ where (A, B) is the biggest open interval such that $\int_{0}^{\infty} t^{\alpha} d \mu(t)<\infty, \alpha \in(A, B)$. According to the S.N.Bernstein theorem, see [7], the set $W_{a, b}$ of functions f on (a, b) which can be represented in the form $f=\left.M(\mu)\right|_{(a, b)}, \quad \mu \in \mathcal{M}$, can be also described as follows: $f \in W_{a, b}$ if and only if f is continuous and all forms $\sum_{i, k=1}^{n} f\left(x_{i} x_{k}\right) \xi_{i} \xi_{k}, n \geq 1$, such that $x_{i} x_{k} \in(a, b)$, are nonnegative.

For any $f \in W_{a, b}$, denote the measure in \mathcal{M}, corresponding to f, by $\mu(f)$. The following technical lemma relates the pointwise convergence of functions in $W_{a, b}$ and the $*$-weak convergence of the corresponding measures.

Lemma 2.4.

1. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions in $W_{a, b}, 0<a<b<\infty$, and $f_{n}(x) \rightarrow f(x)$ for all $x \in(a, b)$. Then $f \in W_{a, b}$ and $\mu\left(f_{n}\right) \xrightarrow{*} \mu(f), n \rightarrow \infty$. Besides, $M\left(\mu_{n}\right)$ converge to $M(\mu)$ uniformly on all compact subsets of the strip $\{s: \operatorname{Re} s \in(a, b)\}$.
2. Let $\left\{\mu_{n}\right\}$ be a sequence of measures in $\mathcal{M}, \mu_{n} \xrightarrow{*} \mu$ when $n \rightarrow \infty$, for some $0<a<b<\infty$

$$
\begin{equation*}
\sup _{n \geq 1} \int_{0}^{\infty}\left(t^{a}+t^{b}\right) d \mu_{n}(t)<+\infty, \tag{19}
\end{equation*}
$$

and for some $\alpha \in(a, b)$

$$
\begin{equation*}
\int_{0}^{\infty} t^{\alpha} d \mu_{n}(t) \rightarrow \int_{0}^{\infty} t^{\alpha} d \mu(t), \quad n \rightarrow \infty \tag{20}
\end{equation*}
$$

Then $M\left(\mu_{n}\right)(x) \rightarrow M(\mu)(x)<\infty, n \rightarrow \infty$, for all $x \in(a, b)$.

Proof. 1. Let $\mu_{n} \in \mathcal{M}$ be such that $M\left(\mu_{n}\right)=f_{n}, n \geq 1$, and denote $H_{n}(s)=M\left(\mu_{n}\right)(s)$, Re $s \in(a, b)$. Then for any a_{1}, b_{1}, such that $a<a_{1}<b_{1}<b$, the absolute values of the functions $H_{n}, n \geq 1$, are upper bounded by $\sup _{n \geq 1}\left(f_{n}\left(a_{1}\right)+f_{n}\left(b_{1}\right)\right)$. Therefore, according to the Vitali theorem, see for example Theorem 5.2.1 in [8], the sequence of analytic functions $\left\{H_{n}(s)\right\}_{n}$ converge to some function $H(s)$ uniformly on compact subsets of the strip $\{s: \operatorname{Re} s \in(a, b)\}$. This implies that $f=\left.H\right|_{(a, b)}$ is a continuous function and, moreover, according to the S.N.Bernstein theorem, see [7], $f \in W_{a, b}$ and therefore $f=M(\mu)$ for some $\mu \in \mathcal{M}$ and $H(s)=M(\mu)(s)$ for s such that $\operatorname{Re} s \in(a, b)$.

Let us fix some $\alpha \in(a, b)$ and consider the measures $d \lambda_{n}(t)=t^{\alpha} d \mu_{n}(t), d \lambda(t)=t^{\alpha} d \mu(t)$. Then $\lambda_{n}((0, \infty))=f_{n}(\alpha) \rightarrow f(\alpha)=\lambda((0, \infty)), n \rightarrow \infty$, and for every real y

$$
\int_{0}^{\infty} t^{i y} d \lambda_{n}(t)=H_{n}(\alpha+i y) \longrightarrow H(\alpha+i y)=\int_{0}^{\infty} t^{i y} d \lambda(t), \quad n \rightarrow \infty
$$

Using the standard existence criterion of the weak limit, we get the weak convergence $\lambda_{n} \Longrightarrow \lambda$ and therefore $\mu_{n} \xrightarrow{*} \mu$ when $n \rightarrow \infty$.
2. Let $\mu_{n} \in \mathcal{M}, \mu_{n} \xrightarrow{*} \mu$ when $n \rightarrow \infty$, and let H_{n}, H, λ_{n} and λ have the same meaning as above. Then, applying the well-known theorem of continuity, see e.g.[5], we get

$$
\int_{0}^{\infty} t^{\alpha+i y} d \lambda_{n}(t) \rightarrow \int_{0}^{\infty} t^{\alpha+i y} d \lambda(t), \quad y \in R, \quad n \rightarrow \infty .
$$

Besides, according to the proof of the first part of Lemma, H_{n} and H are uniformly bounded within the strip $\{s: \operatorname{Re} s \in(a, b)\}$. Therefore the Vitali theorem gives that $M\left(\mu_{n}\right)$ converge to $M(\mu)$, when $n \rightarrow \infty$, uniformly on compacts in the strip $\{s: \operatorname{Re} s \in(a, b)\}$.

Lemma 2.5. Let \mathbf{T} be the unit circle,

$$
I_{\alpha}=\left\{e^{i \psi},-\alpha \leq \psi \leq \alpha\right\} \subseteq \mathbf{T}, \quad 0 \leq \alpha \leq \pi .
$$

and let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of probability measures on the unit circle \mathbf{T} weakly converging to m, the normalized Lebesgue measure on \mathbf{T}. Then

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(I_{\alpha} e^{i \phi}\right)=\alpha / \pi=m\left(I_{\alpha}\right)
$$

uniformly with respect to $\phi \in[0,2 \pi)$.
Proof. Let an integer $n \geq 1$ be such that $1 / n<\alpha<\pi-1 / n$. Consider functions $f_{n}, g_{n} \in C(\mathbf{T})$ such that $0 \leq f_{n}(\zeta) \leq 1,0 \leq g_{n}(\zeta) \leq 1$,

$$
f_{n}(\zeta)=\left\{\begin{array}{ll}
1 & \text { if } \zeta \in I_{\alpha} \\
0 & \text { if } \zeta \notin I_{\alpha+1 / n}
\end{array} \quad, \quad g_{n}(\zeta)= \begin{cases}1 & \text { if } \zeta \in I_{\alpha-1 / n} \\
0 & \text { if } \zeta \notin I_{\alpha}\end{cases}\right.
$$

Then the families of functions

$$
\left\{f_{n, \phi}(\zeta)=f_{n}\left(\zeta e^{i \phi}\right), \zeta \in \mathbf{T}, \phi \in[0,2 \pi]\right\}, \quad\left\{g_{n, \phi}(\zeta)=g_{n}\left(\zeta e^{i \phi}\right), \zeta \in \mathbf{T}, \phi \in[0,2 \pi]\right\}
$$

are compact sets in $C(\mathbf{T})$, since the former, for example, is the image of \mathbf{T} for the continuous mapping $\phi \rightarrow f_{n, \phi}$ of the interval $[0,2 \pi]$ into $C(\mathbf{T})$. Since the point-wise convergence of linear functionals with the norm 1 yields the uniform convergence on compact subsets, we get

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{T}} f_{n, \phi}(\zeta) d \mu_{k}(\zeta)=\int_{\mathbf{T}} f_{n, \phi}(\zeta) d \mu(\zeta), \quad \lim _{k \rightarrow \infty} \int_{\mathbf{T}} g_{n, \phi}(\zeta) d \mu_{k}(\zeta)=\int_{\mathbf{T}} g_{n, \phi}(\zeta) d \mu(\zeta)
$$

uniformly with respect to $\phi \in[0,2 \pi]$. Besides, it is obvious that

$$
\int_{\mathbf{T}} g_{n, \phi}(\zeta) d \mu_{k}(\zeta) \leq \mu_{k}\left(I_{\alpha} e^{i \phi}\right) \leq \int_{\mathbf{T}} f_{n, \phi}(\zeta) d \mu_{k}(\zeta),
$$

and

$$
\int_{\mathbf{T}} g_{n, \phi}(\zeta) d m(\zeta) \leq m\left(I_{\alpha} e^{i \phi}\right) \leq \int_{\mathbf{T}} f_{n, \phi}(\zeta) d m(\zeta)
$$

The transition to the limit yields the required.
Finally, let us formulate a statement which may well be hidden in manuals on elementary probability theory.

Lemma 2.6. Let α and β be independent random variables uniformly distributed on $[0,1]$ and $t \geq 0$. Then the probability of the event $\{\alpha \beta \leq t\}$, conditionally on $\alpha+\beta \geq 1$, equals $\operatorname{Pr}\{\alpha \beta \leq t \mid \alpha+\beta \geq 1\}=$

$$
F(t)= \begin{cases}-4 t \log \frac{1+\sqrt{1-4 t}}{2}-\frac{(1-\sqrt{1-4 t})^{2}}{2} & \text { if } 0 \leq t \leq \frac{1}{4} \tag{21}\\ 2 t(1-\log t)-1 & \text { if } \frac{1}{4} \leq t \leq 1 \\ 1 & \text { if } t \geq 1\end{cases}
$$

and the moments of the probability measure $d F(t)$ exist for any $\alpha>-2$ and equal

$$
M_{\alpha}=\int_{0}^{1} t^{\alpha} d F(t)= \begin{cases}\frac{2}{\alpha+1}\left(\frac{1}{\alpha+1}-4^{-\alpha} \mathrm{B}\left(\alpha+1, \frac{1}{2}\right)\right) & \text { for } \alpha>-2, \alpha \neq-1 \tag{22}\\ \pi^{2} / 3 & \text { for } \alpha=-1\end{cases}
$$

Proof. The proof is an exercise in calculation of integrals. The derivation of the formula (21) for $F(t)$ is easy. To derive (22) we have used integration by parts, the formula $(1-\sqrt{1-4 t})(1+\sqrt{1-4 t})=4 t$, the representation $F(t)=F_{1}(t)-F_{2}(t)$ for $0 \leq t \leq \frac{1}{4}$ where

$$
F_{1}(t)=-4 t \log \frac{1+\sqrt{1-4 t}}{2}, \quad F_{2}(t)=\frac{(1-\sqrt{1-4 t})^{2}}{2}
$$

and the analytic expression for the following integral

$$
I=\int_{0}^{1 / 4} t^{\alpha} \frac{1-\sqrt{1-4 t}}{\sqrt{1-4 t}} d t= \begin{cases}4^{\alpha-1}\left(\mathrm{~B}\left(\alpha+1, \frac{1}{2}\right)-\frac{1}{\alpha+1}\right) & \text { for } \alpha>-2, \alpha \neq-1 \\ \pi^{2} / 3 & \text { for } \alpha=-1\end{cases}
$$

The formula (22) for $\alpha \neq-1$ follows then from

$$
\begin{aligned}
& \int_{0}^{1 / 4} t^{\alpha} d F_{1}(t)=\frac{1}{\alpha+1}\left(4^{-\alpha} \log 2+2 \alpha I\right), \int_{0}^{1 / 4} t^{\alpha} d F_{2}(t)=2 I, \\
& \int_{1 / 4}^{1} t^{\alpha} d F(t)=\frac{2}{(\alpha+1)^{2}}\left(1-4^{-\alpha-1}(1+2(\alpha+1) \log 2)\right) .
\end{aligned}
$$

The case $\alpha=-1$ is easy and should be treated separately.

3 Asymptotic distribution of $n \rho_{n}(x / n), 0 \leq x \leq n$.

For any n the distribution of $n \rho_{n}\left(x^{\prime} / n\right), 0 \leq x^{\prime} \leq n$, is $p_{n}(\tau / n) d \tau$ where $p_{n}(\cdot)$ is the density function of $\rho_{n}(x), 0 \leq x \leq 1$, introduced in Lemma 2.1. Therefore the study of the asymptotic distribution of $n \rho_{n}\left(x^{\prime} / n\right), 0 \leq x^{\prime} \leq n, n \rightarrow \infty$, is equivalent to the study of the $*$-weak convergence of the measure sequence $p_{n}(\tau / n) d \tau$. This study is the main purpose of Theorem 3.1 which also contains a statement concerning $*$-weak convergence of the sequence of measures $\tilde{\mu}_{n}=\mu_{n}(n, 1)$ which assign the measure 1 to the numbers $n p_{i, n}$ for $i=1, \ldots, N(n)$:

$$
\tilde{\mu}_{n}=\mu_{n}(n, 1)=\sum_{i=1}^{N(n)} \delta\left(t-n p_{i, n}\right)
$$

where $p_{i, n}$ are defined in (7).
Theorem 3.1. Let \mathcal{F}_{n} be the Farey sequence of order n and $n \rightarrow \infty$. Then the measure sequence $\left\{\tilde{\mu}_{n}\right\}_{n} *$-weakly converge to the measure

$$
\begin{equation*}
\tilde{\mu}=2 \sum_{k=1}^{\infty} \varphi(k) \delta\left(t-\frac{1}{k}\right) \tag{23}
\end{equation*}
$$

on \mathcal{B} and the measure sequence $\left\{p_{n}(\tau / n) d \tau\right\}$ *-weakly converge to the measure $\tilde{p}(\tau) d \tau$ on \mathcal{B} with the density (2). Moreover, for all $\tau \neq \frac{1}{2 m}, m=1,2, \ldots$, the sequence $p_{n}(\tau / n)$ converge to $\tilde{p}(\tau)$ and for $n \rightarrow \infty$ and any $\delta>1$

$$
\begin{align*}
& \int_{0}^{\infty} t^{\delta+1} d \tilde{\mu}_{n}(t) \rightarrow \int_{0}^{\infty} t^{\delta+1} d \tilde{\mu}(t)=2 \frac{\zeta(\delta)}{\zeta(\delta+1)}<\infty \tag{24}\\
& n^{\delta+1} \int_{0}^{1} \rho_{n}^{\delta}(x) d x=\int_{0}^{\infty} \tau^{\delta} p_{n}(\tau / n) d \tau \rightarrow \int_{0}^{\infty} \tau^{\delta} \tilde{p}(\tau) d \tau=2 C_{\delta} \frac{\zeta(\delta)}{\zeta(\delta+1)}<\infty \tag{25}
\end{align*}
$$

where $C_{\delta}=2^{-\delta} /(1+\delta)$ is as defined in (17) and the error terms in (24) and (25) have the order $O\left(n^{1-\delta}\right), n \rightarrow \infty$.

Proof. In the course of the proof we shall use the notations of Section 2 and results of four lemmas, namely, Lemmas 2.1-2.4. The consideration of the measures $\tilde{\mu}_{n}=\mu_{n}(n, 1)$ and $p_{n}(\tau / n) d \tau$ means that we have put $F_{n}=n$ and $G_{n}=1$ for the values of the normalization constants of Section 2. Certainly, we consider the Farey sequences as \mathcal{F}_{n}. (The corresponding partitions \mathcal{P}_{n} of $[0,1)$ will be called the Farey partitions.)

Lemma 2.1 implies that for every $n \geq 1$ the densities $p_{n}(\tau / n)$ and the measures $\tilde{\mu}_{n}$ are related via (14) and the application of Lemma 2.3 gives that for every $\delta>1$ the moment of order δ of $\rho_{n}(x)$ can be represented through the Mellin transform, see (18), of the measure $\tilde{\mu}_{n}$:

$$
\int_{0}^{1} \rho_{n}^{\delta}(x) d x=\frac{1}{n} \int_{0}^{n} \rho_{n}^{\delta}\left(x^{\prime} / n\right) d x^{\prime}=\frac{1}{n^{\delta+1}} \int_{0}^{\infty} \tau^{\delta} p_{n}(\tau / n) d \tau=\frac{C_{\delta}}{n^{\delta+1}} M\left(\tilde{\mu}_{n}\right)(\delta+1)
$$

where

$$
M\left(\tilde{\mu}_{n}\right)(\delta+1)=\int_{0}^{\infty} t^{\delta+1} d \tilde{\mu}_{n}(t)=n^{\delta+1} \sum_{i=1}^{N(n)} p_{i, n}^{\delta+1}
$$

The Mellin transform of the measure $\tilde{\mu}$, defined via (23), is equal to

$$
\begin{equation*}
M(\tilde{\mu})(s)=2 \sum_{q=1}^{\infty} \frac{\varphi(q)}{q^{s}}=2 \frac{\zeta(s-1)}{\zeta(s)}<\infty \tag{26}
\end{equation*}
$$

for all s such that $\operatorname{Re} s>2$. (Here we have used the well-known relation between the Riemann ζ-function and the Euler φ-function, see [9], problem 29, ch.2)

Let us prove that for all $\delta>1$

$$
\begin{equation*}
M\left(\tilde{\mu}_{n}\right)(\delta+1) \rightarrow M(\tilde{\mu})(\delta+1), \quad n \rightarrow \infty \tag{27}
\end{equation*}
$$

It is well known, see for example [10], that if p / q and p^{\prime} / q^{\prime} are two succesive terms in the Farey sequence \mathcal{F}_{n} then

$$
\begin{equation*}
1 \leq q, q^{\prime} \leq n, q \neq q^{\prime}, q+q^{\prime}>n . \tag{28}
\end{equation*}
$$

This implies that if the endpoints of the intervals $I_{i, n} \in \mathcal{P}_{n}$, that is, $x_{i-1, n}$ and $x_{i, n}$, have denominators q and q^{\prime} and $q \leq q^{\prime}$ then $q^{\prime}>n / 2$ and the length $p_{i, n}=x_{i, n}-x_{i-1, n}=1 /\left(q q^{\prime}\right)$ of $I_{i, n}$ can always be bounded as

$$
\begin{equation*}
\frac{1}{q n} \leq p_{i, n} \leq \frac{1}{q(n-q)} \tag{29}
\end{equation*}
$$

These bounds will be used for the intervals $I_{i, n}$ one of whose has a denominator $q \leq n / 2$.
An upper bound for the length of the intervals $I_{i, n}$, when both endpoints have denominators $\geq n / 2$, follows from the formula $p_{i, n}=1 /\left(q q^{\prime}\right)$:

$$
\begin{equation*}
\frac{1}{n^{2}} \leq p_{i, n} \leq \frac{4}{n^{2}} \tag{30}
\end{equation*}
$$

The bounds (29), (30) for $p_{i, n}$ give the following lower and upper bounds for $M\left(\tilde{\mu}_{n}\right)(\delta+1)$:

$$
\begin{align*}
& M\left(\tilde{\mu}_{n}\right)(\delta+1) \geq A_{n}=2 n^{\delta+1} \sum_{q=1}^{n / 2} \varphi(q) \frac{1}{q^{\delta+1} n^{\delta+1}}=2 \sum_{q=1}^{n / 2} \frac{\varphi(q)}{q^{\delta+1}} \tag{31}\\
& M\left(\tilde{\mu}_{n}\right)(\delta+1) \leq B_{n}=2 n^{\delta+1}\left(\sum_{q=1}^{n / 2} \varphi(q) \frac{1}{q^{\delta+1}(n-q)^{\delta+1}}+\frac{4^{\delta+1}}{n^{2(\delta+1)}} \sum_{q=n / 2}^{n} \varphi(q)\right) \tag{32}
\end{align*}
$$

Since $\varphi(q) \leq q$ for all integers q,

$$
B_{n}=2 n^{\delta+1} \sum_{q=1}^{n / 2} \varphi(q) \frac{1}{q^{\delta+1}(n-q)^{\delta+1}}+O\left(\frac{1}{n^{\delta-1}}\right), \quad n \rightarrow \infty .
$$

According to the finite difference formula for every $n \geq 1,1 \leq q \leq n$ and $\delta>1$

$$
n^{\delta+1}-(n-q)^{\delta+1} \leq q(\delta+1) n^{\delta}
$$

and therefore

$$
\begin{aligned}
& 0 \leq B_{n}-A_{n}=2 \sum_{q=1}^{n / 2} \varphi(q) \frac{n^{\delta+1}-(n-q)^{\delta+1}}{q^{\delta+1}(n-q)^{\delta+1}}+O\left(\frac{1}{n^{\delta-1}}\right) \leq \\
& (\delta+1)\left(\frac{2}{n}\right)^{\delta+1} \sum_{q=1}^{n / 2} \frac{1}{q^{\delta-1}}+O\left(\frac{1}{n^{\delta-1}}\right)=O\left(\frac{1}{n^{\delta-1}}\right)
\end{aligned}
$$

when $n \rightarrow \infty$. Furthermore, using (26) we get for all $\delta>1$:

$$
0 \leq M(\tilde{\mu})(\delta+1)-A_{n}=2 \sum_{q=n / 2}^{\infty} \frac{\varphi(q)}{q^{\delta+1}}=O\left(\frac{1}{n^{\delta-1}}\right), \quad n \rightarrow \infty .
$$

This implies (27). Applying now the first part of Lemma 2.4 we obtain the $*$-weak convergence of the sequence of measures $\tilde{\mu}_{n}$ to $\tilde{\mu}$ when $n \rightarrow \infty$. The statement of the theorem concerning the convergence of $p_{n}(\tau / n)$ to $\tilde{p}(\tau)$ follows from Lemma 2.2. The condition (13) obviously holds for $A=2$ since $\tilde{\mu}_{n}([2, \infty))=\tilde{\mu}([2, \infty))=0$ for any $n \geq 1$. The relation (25) follows from (24) and Lemma 2.3.

4 Asymptotic distribution of $n^{2} \rho_{n}(x)$.

For any n the distribution of $n^{2} \rho_{n}(x), 0 \leq x \leq 1$, is $n^{-2} p_{n}\left(\tau / n^{2}\right) d \tau$, and we thus can consider the problem of studying the asymptotic distribution of $n^{2} \rho_{n}(x), n \rightarrow \infty$, as the problem of the weak convergence of the sequence of probability measures $n^{-2} p_{n}\left(\tau / n^{2}\right) d \tau$.

Analogously with Theorem 3.1, in Theorem 4.1 one more associated measure sequence is also studied, this time this is the sequence of probability measures

$$
\hat{\mu}_{n}=\mu_{n}\left(n^{2}, 1 / N(n)\right)=\frac{1}{N(n)} \sum_{i=1}^{N(n)} \delta\left(t-n^{2} p_{i, n}\right)
$$

which corresponds to the selection of F_{n}, G_{n} of Section 2 in the form $F_{n}=n^{2}, G_{n}=$ $1 / N(n)$ where $N(n)=\left|\mathcal{F}_{n}\right|-1=\sum_{k=1}^{n} \varphi(k)$.

Theorem 4.1. Let \mathcal{F}_{n} be the Farey sequence of order n, and let the function $F(\cdot)$ and the constant M_{α} be defined via (21) and (22), correspondingly. Then the sequence of probability measures $\hat{\mu}_{n}=\mu_{n}\left(n^{2}, 1 / N(n)\right)$ weakly converge, when $n \rightarrow \infty$, to the probability measure $\hat{\mu}$ on \mathcal{B} with the cumulative distribution function $\hat{\mu}(\tau)=1-F(1 / \tau), \tau \geq 0$, the sequence of probability measures $n^{-2} p_{n}\left(\tau / n^{2}\right) d \tau$ in \mathcal{M} weakly converge, when $n \rightarrow \infty$, to the probability measure $\hat{p}(\tau) d \tau$ in \mathcal{M} with the probability density $\hat{p}(\tau)=\frac{6}{\pi^{2}} F(1 /(2 \tau))$, $\tau \geq 0$, and for all $\tau>0$ the sequence $n^{-2} p_{n}\left(\tau / n^{2}\right)$ converge, when $n \rightarrow \infty$, to $\hat{p}(\tau)$. Moreover, for any $\delta<2$ and $n \rightarrow \infty$

$$
\begin{equation*}
\int_{0}^{\infty} \tau^{\delta} d \hat{\mu}_{n}(\tau) \rightarrow \int_{0}^{\infty} \tau^{\delta} d \hat{\mu}(\tau)=M_{-\delta}<\infty \tag{33}
\end{equation*}
$$

and for any $-1<\delta<1$ and $n \rightarrow \infty$

$$
\begin{equation*}
n^{2 \delta} \int_{0}^{1} \rho_{n}^{\delta}(x) d x=n^{-2} \int_{0}^{\infty} \tau^{\delta} p_{n}\left(\tau / n^{2}\right) d \tau \rightarrow \int_{0}^{\infty} \tau^{\delta} \hat{p}(\tau) d \tau=\frac{3}{(1+\delta) \pi^{2} 2^{\delta}} M_{-\delta-1}<\infty \tag{34}
\end{equation*}
$$

To prove the theorem we need to introduce some notation and prove two more lemmas and Theorem 1.3.

Let p / q and p^{\prime} / q^{\prime} be neighbours in \mathcal{F}_{n} such that $0 \leq p / q<p^{\prime} / q^{\prime} \leq 1$. The ordered pair $\left(q, q^{\prime}\right)$ will go under the name of the neighbouring pair of denominators in \mathcal{F}_{n}.

Lemma 4.1. The set of all neighbouring pairs of denominators in \mathcal{F}_{n} coincides with the set of pairs of ordered integers

$$
\begin{equation*}
\mathcal{Q}_{n}=\left\{\left(q, q^{\prime}\right): q, q^{\prime} \in\{1,2, \ldots, n\},\left(q, q^{\prime}\right)=1, q+q^{\prime}>n\right\} . \tag{35}
\end{equation*}
$$

Proof. Let p / q and p^{\prime} / q^{\prime} be two neighbours in \mathcal{F}_{n} such that $p / q<p^{\prime} / q^{\prime}$. Then the property of the Farey sequences (28) implies $\left(q, q^{\prime}\right) \in \mathcal{Q}_{n}$. Note that the number of different neighbouring pairs $\left(p / q, p^{\prime} / q^{\prime}\right)$ in \mathcal{F}_{n} equals $N(n)=\sum_{j=1}^{n} \varphi(j)$. The number of elements in \mathcal{Q}_{n} also equals $N(n)$. Indeed, for a fixed $q \in\{1, \ldots, n\}$, the number of elements in the set

$$
\mathcal{M}_{q, n}=\left\{q^{\prime}:\left(q, q^{\prime}\right)=1, q^{\prime} \in\{n-q+1, \ldots, n\}\right\}
$$

does not depend on n and equals $\left|\mathcal{M}_{q, n}\right|=\varphi(q)$, therefore

$$
\mathcal{Q}_{n}=\bigcup_{q=1}^{n} \mathcal{M}_{q, n}, \quad\left|\mathcal{Q}_{n}\right|=\sum_{q=1}^{n}\left|\mathcal{M}_{q, n}\right|=\sum_{q=1}^{n} \varphi(q)=N(n) .
$$

To $\left(q, q^{\prime}\right) \in \mathcal{Q}_{n}$, there can correspond at most one pair of neighbours $\left(p / q, p^{\prime} / q^{\prime}\right)$ in \mathcal{F}_{n} : for such neighbours we have the equation $p^{\prime} q-p q^{\prime}=1,0 \leq p<q, 1 \leq p^{\prime} \leq q^{\prime}$, and since $\left(q, q^{\prime}\right)=1$, there is only one solution of this equation. Since, as pointed out, the number of elements in \mathcal{Q}_{n} is equal to the number of neighbouring pairs in \mathcal{F}_{n}, the lemma follows.

Lemma 4.2. Consider the set of $\varphi(q)$ points on the unity circle \mathbf{T}

$$
Z_{q}=\left\{e^{2 \pi i q^{\prime} / q}, \quad q^{\prime}=1, \ldots, q, \quad\left(q^{\prime}, q\right)=1\right\} \subseteq \mathbf{T} .
$$

Then the sequence of Borel probability measures on \mathbf{T}

$$
\begin{equation*}
\lambda_{q}=\frac{1}{\varphi(q)} \sum_{\zeta \in Z_{q}} \delta_{\zeta} \tag{36}
\end{equation*}
$$

converge, when $n \rightarrow \infty$, to the normalized Lebesque measure m on \mathbf{T} and the convergence is uniform: for any arc $I_{\alpha}=\left\{e^{i \psi},-\alpha \leq \psi \leq \alpha\right\}, 0 \leq \alpha \leq \pi$,

$$
\lim _{q \rightarrow \infty} \lambda_{q}\left(I_{\alpha} e^{i \phi}\right)=\frac{\alpha}{\pi}=m\left(I_{\alpha}\right)
$$

uniformly with respect to $\phi \in[0,2 \pi)$.
Proof. The fact of convergence of the measure sequence $\left\{\lambda_{n}\right\}_{n}$ to the uniform measure on \mathbf{T} is equivalent to the asymptotic uniformity of the Farey sequence, the proof of this can be found, for example, in [11]. The fact that this convergence is uniform, follows from Lemma 2.5.

Proof of Theorem 1.3. Define the trapezoid

$$
\begin{equation*}
\Delta=\Delta\left(\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}\right)=\left\{(x, y) \in[0,1] \times[0,1]: \beta_{1} \leq x<\beta_{2}, \alpha_{1} \leq \frac{1-y}{x}<\alpha_{2}\right\} \tag{37}
\end{equation*}
$$

where $0 \leq \alpha_{1}<\alpha_{2} \leq 1$ and $0 \leq \beta_{1}<\beta_{2} \leq 1$.
The set of all trapezoids of the form (37) constitutes the set determining convergence, see [5], on the triangle $T=\{(x, y): 0 \leq x, y \leq 1, x+y \geq 1\}$. To establish the weak convergence of the measure sequence $\left\{\nu_{n}\right\}_{n}$ to m, the uniform probability measure on T and thus the doubled Lebesgue measure on T, it is therefore sufficient to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \nu_{n}(\Delta)=m(\Delta)=\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}^{2}-\beta_{1}^{2}\right) \tag{38}
\end{equation*}
$$

for all $0 \leq \alpha_{1}<\alpha_{2} \leq 1,0<\beta_{1}<\beta_{2} \leq 1$ and $\Delta=\Delta\left(\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}\right)$.
Let us fix $\alpha_{1}<\alpha_{2}, \beta_{1}<\beta_{2}$ and denote $n(q)=\left|\left\{q^{\prime}:\left(\frac{q}{n}, \frac{q^{\prime}}{n}\right) \in \Delta\right\}\right|$. For any q, $1 \leq q \leq n$, there exists $\gamma_{q} \in[0,2 \pi)$ such that

$$
\frac{n(q)}{\varphi(q)}=\lambda_{q}\left(I_{\alpha} e^{i \gamma_{q}}\right)
$$

where $\alpha=\pi\left(\alpha_{2}-\alpha_{1}\right)$ and λ_{q} is the measure (36). The statement of Lemma 4.2 implies that for any $\varepsilon>0$ there exists $n_{0}(\varepsilon)$ such that for all $n \geq n_{0}(\varepsilon)$ the inequality

$$
\left|\frac{n(q)}{\varphi(q)}-\left(\alpha_{2}-\alpha_{1}\right)\right|<\varepsilon
$$

holds for all q such that $\beta_{1} n \leq q \leq \beta_{2} n$. Therefore for all $n \geq n_{0}(\varepsilon)$

$$
\begin{aligned}
& \left|\nu_{n}(\Delta)-\left(\alpha_{2}-\alpha_{1}\right) \sum_{q=\beta_{1} n}^{\beta_{2} n} \varphi(q) / N(n)\right| \leq \\
& \frac{1}{N(n)} \sum_{q=\beta_{1} n}^{\beta_{2} n}\left|\frac{n(q)}{\varphi(q)}-\left(\alpha_{2}-\alpha_{1}\right)\right| \varphi(q) \leq \varepsilon \frac{1}{N(n)} \sum_{q=\beta_{1} n}^{\beta_{2} n} \varphi(q) \leq \varepsilon .
\end{aligned}
$$

The well-known summation formula for the Euler function

$$
\begin{equation*}
N(n)=\sum_{q=1}^{n} \varphi(q)=\frac{3}{\pi^{2}} n^{2}+O(n \log n), \quad n \rightarrow \infty \tag{39}
\end{equation*}
$$

implies that for all $0<\beta_{1}<\beta_{2} \leq 1$

$$
\sum_{q=\beta_{1} n}^{\beta_{2} n} \varphi(q)=\frac{3}{\pi^{2}}\left(\beta_{1}^{2}-\beta_{2}^{2}\right) n^{2}+O(n \log n), \quad n \rightarrow \infty
$$

and therefore

$$
\frac{1}{N(n)} \sum_{q=\beta_{1} n}^{\beta_{2} n} \varphi(q) \rightarrow \beta_{1}^{2}-\beta_{2}^{2} \text { when } n \rightarrow \infty .
$$

We thus get (38), and this completes the proof.
Proof of Theorem 4.1. Recall that the length of every interval $I_{i, n}$ in the Farey partition \mathcal{P}_{n} equals $p_{i, n}=1 /\left(q q^{\prime}\right)$ where $\left(q, q^{\prime}\right) \in \mathcal{Q}_{n}$ is the ordered pair of the denominators of the endpoints of the interval, see Lemma 4.1. According to the definition of the measure ν_{n}, given in the introduction, for any $a>0$

$$
\begin{aligned}
& \hat{\mu}_{n}([a, \infty))=\frac{1}{N(n)}\left|\left\{\left(q, q^{\prime}\right) \in \mathcal{Q}_{n}: \frac{n^{2}}{q q^{\prime}} \geq a\right\}\right| \\
& =\nu_{n}(\{(x, y): 0 \leq x, y \leq 1, x+y \geq 1, x y \leq 1 / a\})
\end{aligned}
$$

Theorem 1.3 implies that the expression in the right-hand side of the last formula tends to $F(1 / a)=\hat{\mu}([a, \infty))$, when $n \rightarrow \infty$, for any $a>0$. For all $n \geq 1$ and $\tau>0$ define

$$
\hat{p}_{n}(\tau)=\frac{1}{N(n)} p_{n}\left(\tau / n^{2}\right)=2 \hat{\mu}_{n}([2 \tau, \infty))
$$

and note that for all $\tau>0$

$$
\frac{n^{-2} p_{n}\left(\tau / n^{2}\right)}{\hat{p}_{n}(\tau)}=\frac{N(n)}{n^{2}}=\frac{3}{\pi^{2}}+O\left(n^{-1} \log n\right), \quad n \rightarrow \infty .
$$

Applying Lemma 2.2 we get that for all $\tau>0$

$$
\hat{p}_{n}(\tau) \rightarrow 2 \hat{\mu}([2 \tau, \infty))=2 F(1 /(2 t)), \quad n \rightarrow \infty
$$

and therefore

$$
n^{-2} p_{n}\left(\tau / n^{2}\right) \rightarrow \hat{p}(\tau)=\frac{6}{\pi^{2}} F(1 /(2 t)), \quad n \rightarrow \infty
$$

for all $\tau>0$, where the explicit form of $\hat{p}(\tau)$ is given in (3). Lemma 2.2 also yields the weak convergence, when $n \rightarrow \infty$, of the probability measures $\hat{p}_{n}(\tau) d \tau \in \mathcal{M}$ to the limiting measure $\hat{p}(\tau) d \tau$.

We are going now to apply the second part of Lemma 2.4 to prove (33). To do this, we have to verify the conditions (19) and (20). Since the measures $\hat{\mu}_{n}$ and $\hat{\mu}$ are the probability measures, (20) obviously holds for $\alpha=0$. To demonstrate the validity of (19), it is enough to show that for any $a<2$

$$
\begin{equation*}
\sup _{n \geq 1} \int_{0}^{\infty} t^{a} d \hat{\mu}_{n}(t)<\infty . \tag{40}
\end{equation*}
$$

If $a<0$ then the left-hand side of (30) gives

$$
\int_{0}^{\infty} t^{a} d \hat{\mu}_{n}(t)=\frac{n^{2 a}}{N(n)} \sum_{i=1}^{N(n)} p_{i, n}^{a} \leq \frac{n^{2 a}}{N(n)} \sum_{i=1}^{N(n)} n^{-2 a}=1
$$

Assume now that $0<a<2$. Then analogously to (32), with $\delta+1=a$, we get

$$
\begin{aligned}
& \int_{0}^{\infty} t^{a} d \hat{\mu}_{n}(t)=M\left(\tilde{\mu}_{n}\right)(a)=\frac{n^{2 a}}{N(n)} \sum_{i=1}^{N(n)} p_{i, n}^{a} \\
& \leq 2 \frac{n^{2 a}}{N(n)}\left(\sum_{q=1}^{n / 2} \varphi(q) \frac{1}{q^{a}(n-q)^{a}}+\frac{4^{a}}{n^{2 a}} \sum_{q=n / 2}^{n} \varphi(q)\right) .
\end{aligned}
$$

Since $\varphi(q) \leq q, N(n) \geq n(n+1) / 4$ and

$$
\sum_{q=1}^{n / 2} q^{1-a} \leq 1+\int_{1}^{n} x^{1-a} d x \leq n^{2-a} /(2-a)+1,
$$

for all integers n and $0<a<2$, we get

$$
\int_{0}^{\infty} t^{a} d \hat{\mu}_{n}(t) \leq 2 \frac{n^{a}}{N(n)} \sum_{q=1}^{n / 2} q^{1-a}\left(\frac{n}{n-q}\right)^{a}+2 \frac{4^{a}}{N(n)} \sum_{q=1}^{n} q \leq
$$

$$
8 n^{a-2} 2^{a} \sum_{q=1}^{n / 2} q^{1-a}+4^{a+1} \leq 2^{a+3}(1+1 /(2-a))+4^{a+1}
$$

We thus have shown the validity of (40) and therefore completed the justification of (33). The validity of (34) follows now from Lemmas 2.2, 2.3 and the relation $\hat{p}(\tau)=\frac{6}{\pi^{2}} \hat{\mu}([2 \tau, \infty))$.

5 Acknowledgment

The authors are grateful to the reviewer whose comments have led to a significant reduction of the proof of Lemma 4.1 and a valuable improvement of the presentation in whole. Also, the authors express their gratitude to the Russian Fund for Fundamental Research which partly supported the present research, Grants 95-01-12342 and 96-01-00541.

References

[1] J.Franel, Les suites de Farey et le probleme des nombres premiers, Gottinger Nachrichten, 1924, 198-201.
[2] M.N. Huxley, The distribution of Farey points,I, Acta Arithm., 18, 1971, 281-287.
[3] H. Niederreiter, The distribution of Farey points, Mathem. Annalen, 201, 1973, 341-345.
[4] P. Kargaev, A. Zhigljavsky, Approximation of real numbers by rationals: some metric theorems, Journal of Number Theory, to be published.
[5] P. Billingsley, "Convergence of Probability Measures", Wiley, N.-Y., 1968.
[6] W. Rudin, "Functional Analysis", McGraw-Hill, N.-Y., 1973.
[7] D. Widder, "The Laplace Transform", Princeton, 1946.
[8] E. Titchmarsh, "The Theory of Functions", Oxford University Press, Oxford, 1939.
[9] I.M. Vinogradov, "Fundamentals of Number Theory", Nauka, Moscow, 1981.
[10] G.H. Hardy and E.M. Wright, "An Introduction to the Theory of Numbers", 5th ed., Clarendon, Oxford, 1984.
[11] G. Polya and G.Szego, "Aufgaben und Lehrsatze in der Analysis I, Dritte Auflage", Springer, Berlin, 1964.

