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Abstract

Let x be a real number in [0, 1], Fn be the Farey sequence of order n and ρn(x) be
the distance between x and Fn. Assuming that n → ∞ we derive the asymptotic
distributions of the functions n2ρn(x) and nρn(x′/n), 0 ≤x′≤ n. We also establish
the asymptotics for

∫ 1
0 ρδ

n(x)dx, for all real δ.

Key words: Farey sequence, rational approximation, diophantine approximation,
asymptotic distribution.

1 Introduction: Statement of the problem and for-

mulation of the main results

Let x be a real number in [0, 1] and Fn be the Farey sequence of order n, that is, the
collection of all rationals p/q with p ≤ q, (p, q) = 1 and the denominators q ≤ n. In the
present work we derive two asymptotic distributions for

ρn(x) = min
p/q∈Fn

∣∣∣∣∣x−
p

q

∣∣∣∣∣ ,

the distance function between x and Fn, and establish the asymptotics for
∫ 1
0 ρδ

n(x)dx, for
all real δ.

It is well–known that the elements of the Farey sequence Fn are uniformly distributed
asymptotically, when n →∞, and this has important consequences in number theory: for
example, the Riemann hypothesis can be formulated in terms of the rate of convergence
of Fn to the uniform distribution, see [1, 2, 3]. However, little is known about other
asymptotic properties of Fn and the distance function ρn(x).

In our previous work [4] we have established some metric theorems concerning ρn(x).
Specifically, we have shown that for suitable functions f(·) the inferior and superior limits,

lim inf
n→∞ n2ρn(x)f(log n) and lim sup

n→∞
n2ρn(x)/f(log n) ,
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may achieve only values 0 and ∞, for almost all x with respect to the Lebesgue measure
on [0,1], depending on whether

∫∞
1 dx/f(x) converges or diverges. In the present work we

continue the study of the asymptotic behaviour of the distance function ρn(x). The main
results of the paper are formulated in the following four theorems.

Theorem 1.1. The sequence of functions

ρ̃n(x′) =

{
nρn(x′/n) if 0≤x′≤n
0 otherwise

(1)

converge in distribution, when n →∞, to the measure p̃(τ)dτ on B with the density

p̃(τ) =

{
2

∑m
k=1 ϕ(k) for τ ∈

(
1

2(m+1)
, 1

2m

]
, m = 1, 2, . . .

0 for τ /∈ (0, 1
2
]

(2)

that is, for any a,A such that 0 < a < A < ∞ ,

n meas{x ∈ [0, 1] : a < nρn(x) ≤ A} →
∫ A

a
p̃(τ)dτ , n →∞ .

Here and in what follows ’meas’ stands for the Lebesgue measure on [0, 1], B denotes
the σ–algebra of the Borel subsets of (0,∞) and ϕ(·) is the Euler function.

Theorem 1.2. The sequence of functions n2ρn(x) converge in distribution, when
n →∞, to the probability measure p̂(τ)dτ on B with the density

p̂(τ) =





6/π2 if 0 ≤ τ ≤ 1
2

6
π2τ

(1 + log τ − τ) if 1
2
≤ τ ≤ 2

3
π2τ

(
2 log(2τ)−4 log(

√
τ +

√
τ−2)−(

√
τ−√τ−2)2

)
if 2 ≤ τ < ∞

(3)

that is, for any a,A such that 0 < a < A < ∞ ,

meas{x ∈ [0, 1] : a < n2ρn(x) ≤ A} →
∫ A

a
p̂(τ)dτ , n →∞ .

One of the key elements in the proof of Theorem 1.2 is the asymptotic two-dimensional
uniformity of the pairs of the denominators of the neighbours in the Farey sequences.
Specifically, the following result holds.

Let p/q and p′/q′ be neighbours in Fn such that 0 ≤ p/q < p′/q′ ≤ 1. The ordered
pair (q, q′) will be called the neighbouring pair of denominators in Fn, the number of such
pairs equals N(n) = |Fn| − 1 =

∑n
q=1 ϕ(q). Let νn be the two-variate probability measure

assigning the mass 1/N(n) to each pair (q/n, q′/n) where (q, q′) take all possible values
in the set of all neighbouring pairs of denominators in Fn.

Theorem 1.3. The sequence of probability measures νn weakly converge, when n→∞,
to the uniform probability measure on the triangle {(x, y) : 0≤x, y≤1, x+y≥1}.
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An important result, which is essentially a consequence of Theorems 1.1 and 1.2, con-
cerns the asymptotic behaviour of the moments of the distance function ρn(x).

Theorem 1.4. For any δ 6= 0 and n →∞

δ + 1

2

∫ 1

0
ρδ

n(x)dx =





∞ if δ ≤ −1
3

δ2π2

(
2−δ + δ2δ+2B(−δ, 1

2
)
)
n−2δ (1+o(1)) if −1<δ<1, δ 6=0

3
π2 n

−2 log n + O (n−2) if δ = 1

2−δ ζ(δ)
ζ(δ+1)

n−δ−1 + O
(
n−2δ

)
if δ > 1

(4)

where ζ(·) and B(·, ·) are the Riemann zeta–function and the Beta–function, correspond-
ingly.

The paper is organized as follows. In Section 2 we formulate and prove a number of
technical lemmas that are used in the proofs of the main theorems. All statements of
Section 2 are of a general character, for instance, the notion of the Farey sequence is used
in neither of these statements.

Section 3 is devoted to the study of the asymptotic distribution of the sequence of
functions (1). In this section we prove Theorem 3.1 which includes, as particular cases,
Theorem 1.1 and a part of Theorem 1.4.

In Section 4 we study the asymptotic distribution of two sequences of probability mea-
sures associated with the functional sequence n2ρn(x). In this section we prove Theorem
1.3 and Theorem 4.1, the latter includes Theorem 1.2 as a component.

Theorem 1.4 is a corollary of three theorems, specifically, Theorem 3.1, in the case
δ > 1, Theorem 4.1, the case −1 < δ < 1, and Theorem 1 in [4], the case δ = 1.

2 Auxiliary results

In this section we prove several simple technical lemmas which shall be used in the next
sections. First, we introduce some notation.

Let B be the σ–algebra of Borel subsets of (0,∞) and M be the set of the Borel
measures on B, these measures attach finite values to all intervals [a,A] with 0<a <A <
∞.

We shall say that a sequence of measures µn in M ∗-weakly converge to a measure
µ ∈ M and write µn

∗→µ, n → ∞, if µn converge to µ in the sense of the theory of
Schwartz’s distributions. That is, µn

∗→µ when n →∞, if for any continuous function g
on (0,∞) with compact support

∫
gdµn →

∫
gdµ. In the other words, µn

∗→µ, n →∞, if
for any 0<a<A<∞ µn|(a,A) =⇒ µ|(a,A), n →∞, in the usual sense of weak convergence
of finite measures, see [5]. For a thorough description of the ∗-weak convergence of measure
sequences see, for example, [6], ch.6.

In the first two lemmas of this section we establish a general relation between two
measures: the first one is the distribution of the distance function ρn(x) and the other
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assigns equal masses to all interval lengths of the partition generated by Fn. This relation
does not depend on the particular form of the Farey sequences and we thus consider a
more general case.

For every n = 1, 2, . . . , let N(n) be a positive integer and Fn be an ordered collection
of N(n)+1 points in [0,1]:

Fn = {x0,n, x1,n, . . . , xN(n),n : 0=x0,n <x1,n < . . . <xN(n),n =1} (5)

With every point collection Fn of this kind we associate the partition Pn of [0,1):

Pn : [0, 1) =
N(n)⋃

i=1

Ii,n where Ii,n = [xi−1,n, xi,n) , (6)

and the collection of interval lenghts:

{pi,n = |Ii,n| = xi,n − xi−1,n, i = 1, . . . , N(n)} . (7)

In Sections 3 and 4, when Fn will stand for the Farey sequence, Pn will go under the
name of the Farey partition.

For every n, let us define the measure µn ∈ M by assigning the mass 1 to the points
pi,n, i = 1, . . . , N(n). We write this measure as

µn =
N(n)∑

i=1

δ(t− pi,n) (8)

where δ(·) is the Dirac delta function.
For two numerical sequences of positive normalization constants Fn and Gn we also

define the normalized measures µn(Fn, Gn) by assigning equal masses Gn to the points
Fnpi,n, i = 1, . . . , N(n):

µn(Fn, Gn) =
N(n)∑

i=1

Gnδ(t− Fnpi,n) . (9)

In a particular case, when Fn = Gn = 1, µn(1, 1) = µn. Note also that for all n and
sequences of positive constants Fn and Gn the measures µn(Fn, Gn) are defined on B. We
will be interested in the sequences {Fn} and {Gn} which provide the ∗-weak convergence,
when n → ∞, of the sequence {µn(Fn, Gn)}n to certain non-degenerate Borel measures
µ on B. Since

∫∞
0 dµn(Fn, Gn) = N(n)Gn, we do not necessary expect that the limit

measures are finite, that is µ((0,∞)) < ∞.
For any x ∈ [0, 1] consider the distance between x and Fn:

ρn(x) = ρ(x,Fn) = min
xi,n∈Fn

|x− xi,n| .

This is a measurable function, with respect to the σ-algebra of Borel subsets of [0, 1], and
it can be associated with the probability measure dΦn(t) where

Φn(t) = meas {x ∈ [0, 1] : ρn(x) ≤ t} . (10)
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The following statement shows that there exists a simple relationship between the mea-
sure µn, defined in (8), and the density corresponding to (10).

Lemma 2.1. Let n ≥ 1, N(n) ≥ 1 and Fn be any collection of points (5). Then the
measure dΦn is absolutely continuous with respect to the Lebesgue measure, its density
pn(τ) = Φ′

n(τ) is such that pn(τ) = 0 for τ /∈ [0, 1
2
] and

pn(τ) = 2µn((2τ, +∞)) = 2
∑

i:pi,n>2τ

1 for any τ > 0 (11)

where the measure µn is defined in (8) and pi,n are defined in (7).
Proof. We have for any n and τ > 0:

1− Φn(τ) = meas{x ∈ [0, 1] : ρn(x) > τ} =
N(n)∑

i=1

meas{x ∈ Ii, ρn(x) > τ}

=
∑

i:|Ii|>2τ

meas{x ∈ Ii, ρn(x) > τ}

= 2
∑

i:|Ii|>2τ

meas{x ∈
[
xi−1,n,

xi−1,n + xi,n

2

)
, ρn(x) > τ}

= 2
∑

i:pi,n>2τ

meas{x ∈ [xi−1,n, xi−1,n + pi,n/2) , x− xi−1,n > τ} = 2
∑

i:pi,n>2τ

(pi,n/2− τ)

= 2
∑

i:pi,n>2τ

∫ pi,n/2

τ
1dt = 2

∫ ∞

τ

∑

i:pi,n>2t

1dt = 2
∫ ∞

τ
µn((2t,∞))dt

This implies that the measure dΦn(t) is absolutely continuous, with respect to the Lebesgue
measure, and it also yields the validity of the relation (11). The fact that pn(τ) = 0 for
τ /∈ [0, 1

2
] follows from the definition of pn. 2

The following statement is an obvious consequence of Lemma 2.1.

Corollary 2.1. For any two positive sequences {Fn} and {Gn}
pn(τ/Fn)Gn = 2Gnµn((2τ/Fn,∞)) = 2

∑

i:pi,nFn>2τ

Gn for any τ > 0 (12)

where the density pn(·) and the measure µn are the same as in Lemma 2.1.

Lemma 2.2. Let the sequence of partitions {Pn} of [0, 1) and the numerical sequences
{Fn}, {Gn} be such that the sequence of measures {µn = µn(Fn, Gn)}n defined through
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(9) ∗-weakly converge, when n → ∞, to some Borel measure µ and for some given A, a
point of continuity of the measure µ,

µn([A,∞)) → µ([A,∞)) < ∞, n →∞ . (13)

Then the sequence of measures {pn(τ/Fn)Gndτ} ∗-weakly converge to an absolutely con-
tinuous, with respect to the Lebesgue measure on (0,∞), measure p(τ)dτ where

p(τ) = 2µ([2τ,∞)) (14)

for any τ > 0 such that 2τ is the point of continuity of the measure µ. Besides, the
sequence of functions {pn(τ/Fn)Gn} converge to p(τ) for all such τ .

Proof. Let the sequence of measures {µn = µn(Fn, Gn)}n ∗-weakly converge, when
n→∞, to some Borel measure µ and µn([A,∞)) → µ([A,∞)) < ∞ for some A, a point
of continuity of the measure µ. Let B be any point of continuity of the measure µ and
let, say, 0 < B < A. Then µn([B,∞)) = µn([B, A)) + µn([A,∞)). Using (13) and the
fact that ∗-weak convergence of measures on open intervals coincides with the standard
weak convergence, we get

lim
n→∞µn([B,∞)) = lim

n→∞µn([B,A)) + lim
n→∞µn([A,∞)) = µ([B,∞)) . (15)

The relation (15) can be analogously proven for B ≥ A and it thus holds for any B, the
point of continuity of the measure µ. The relations (12) and (15) yield

pn(τ/Fn)Gn = 2Gnµn((2τ/Fn,∞)) → 2µ([2τ,∞)) = p(τ), n →∞ ,

for any τ > 0 such that 2τ is the point of continuity of the measure µ.
Let us now fix τ1 and τ2 such that 0 <τ1 <τ2 and 2τ1, 2τ2 are the points of continu-

ity of the measure µ. Since pn(τ/Fn)Gn is monotonously decreasing with respect to τ ,
pn(τ/Fn)Gn ≤ pn(τ1/Fn)Gn for any τ ∈ [τ1, τ2] and therefore according to the Lebesgue
theorem on the dominated convergence for any such τ1 and τ2

∫ τ2

τ1
pn(τ/Fn)Gndτ →

∫ τ2

τ1
p(τ)dτ , n →∞ .

This completes the proof. 2

Lemma 2.3. Let a measure µ and a function p be related via (14) and∫∞
0 tδ+1dµ(t)<∞ for some real δ. Then

∫ ∞

0
tδp(t)dt =

{
+∞ if δ ≤ −1
Cδ

∫∞
0 tδ+1dµ(t) < +∞ if δ > −1

(16)

where

Cδ =
1

(1 + δ)2δ
. (17)
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Proof. Using (14) and the Fubini theorem, we get for any δ>−1 :
∫ ∞

0
τ δp(τ)dτ =

∫ ∞

0
τ δ2µ([2τ,∞))dτ =

∫ ∞

0
2τ δ

∫ ∞

2τ−
dµ(t)dτ =

2
∫ ∞

0

∫ t/2

0
τ δdτdµ(t) = Cδ

∫ ∞

0
tδ+1dµ(t) .

If δ ≤ −1 then one of the integrals in the chain, namely
∫ t/2
0 τ δdτ, diverges; this yields

that the first integral in the chain also diverges. 2

Lemmas 2.2 and 2.3 establish a correspondence between the asymptotic behaviour of
the distributions of the functions ρn(x) = ρ(x,Fn) and the distributions µn of the interval
lengths of the partitions generated by Fn, as well as a relation between the moments of
these distributions. The next problem is to find a convenient sufficient condition for the
convergence, when n →∞, of a properly normalized sequence of measures {µn}.

Let us associate with every µ ∈M its Mellin transform

M(µ)(s) =
∫ ∞

0
tsdµ(t) (18)

which is defined and analytic in the strip {s : Re s ∈ (A,B)} where (A,B) is the biggest
open interval such that

∫∞
0 tαdµ(t) < ∞, α ∈ (A,B). According to the S.N.Bernstein

theorem, see [7], the set Wa,b of functions f on (a, b) which can be represented in the
form f = M(µ)|(a,b), µ ∈ M, can be also described as follows: f ∈ Wa,b if and only
if f is continuous and all forms

∑n
i,k=1 f(xixk)ξiξk, n ≥ 1, such that xixk ∈ (a, b), are

nonnegative.
For any f ∈ Wa,b, denote the measure in M, corresponding to f , by µ(f). The follow-

ing technical lemma relates the pointwise convergence of functions in Wa,b and the ∗-weak
convergence of the corresponding measures.

Lemma 2.4.
1. Let {fn}∞n=1 be a sequence of functions in Wa,b, 0<a<b<∞, and fn(x) → f(x) for all
x ∈ (a, b). Then f ∈ Wa,b and µ(fn)

∗→µ(f), n →∞. Besides, M(µn) converge to M(µ)
uniformly on all compact subsets of the strip {s : Re s ∈ (a, b)} .
2. Let {µn} be a sequence of measures inM, µn

∗→µ when n →∞, for some 0<a <b <∞

sup
n≥1

∫ ∞

0
(ta + tb)dµn(t) < +∞ , (19)

and for some α ∈ (a, b)
∫ ∞

0
tαdµn(t) →

∫ ∞

0
tαdµ(t) , n →∞ . (20)

Then M(µn)(x) → M(µ)(x) < ∞, n →∞, for all x ∈ (a, b).
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Proof. 1. Let µn∈M be such that M(µn)=fn, n ≥ 1, and denote Hn(s)=M(µn)(s),
Re s ∈ (a, b). Then for any a1, b1, such that a < a1 < b1 < b, the absolute values of the
functions Hn, n ≥ 1, are upper bounded by supn≥1(fn(a1) + fn(b1)). Therefore, according
to the Vitali theorem, see for example Theorem 5.2.1 in [8], the sequence of analytic
functions {Hn(s)}n converge to some function H(s) uniformly on compact subsets of the
strip {s : Re s∈(a, b)}. This implies that f =H|(a,b) is a continuous function and, moreover,
according to the S.N.Bernstein theorem, see [7], f ∈Wa,b and therefore f =M(µ) for some
µ ∈M and H(s) = M(µ)(s) for s such that Re s ∈ (a, b).

Let us fix some α∈(a, b) and consider the measures dλn(t) = tαdµn(t), dλ(t) = tαdµ(t).
Then λn((0,∞)) = fn(α) → f(α) = λ((0,∞)), n →∞, and for every real y

∫ ∞

0
tiydλn(t) = Hn(α + iy) −→ H(α + iy) =

∫ ∞

0
tiydλ(t) , n →∞ .

Using the standard existence criterion of the weak limit, we get the weak convergence
λn =⇒ λ and therefore µn

∗→µ when n →∞.

2. Let µn ∈M, µn
∗→µ when n →∞, and let Hn, H, λn and λ have the same meaning

as above. Then, applying the well-known theorem of continuity, see e.g.[5], we get
∫ ∞

0
tα+iydλn(t) →

∫ ∞

0
tα+iydλ(t) , y ∈ R, n →∞ .

Besides, according to the proof of the first part of Lemma, Hn and H are uniformly
bounded within the strip {s : Re s ∈ (a, b)}. Therefore the Vitali theorem gives that M(µn)
converge to M(µ), when n → ∞, uniformly on compacts in the strip {s : Re s ∈ (a, b)}.
2

Lemma 2.5. Let T be the unit circle,

Iα = {eiψ, −α ≤ ψ ≤ α} ⊆ T , 0 ≤ α ≤ π .

and let {µn}∞n=1 be a sequence of probability measures on the unit circle T weakly converg-
ing to m, the normalized Lebesgue measure on T. Then

lim
n→∞µn(Iαeiφ) = α/π = m(Iα)

uniformly with respect to φ ∈ [0, 2π).
Proof. Let an integer n ≥ 1 be such that 1/n < α < π−1/n. Consider functions

fn, gn∈C(T) such that 0 ≤ fn(ζ) ≤ 1, 0 ≤ gn(ζ) ≤ 1,

fn(ζ) =

{
1 if ζ ∈ Iα

0 if ζ /∈ Iα+1/n
, gn(ζ) =

{
1 if ζ ∈ Iα−1/n

0 if ζ /∈ Iα .

Then the families of functions

{fn,φ(ζ) = fn(ζeiφ), ζ ∈ T, φ ∈ [0, 2π]} , {gn,φ(ζ) = gn(ζeiφ), ζ ∈ T, φ ∈ [0, 2π]}
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are compact sets in C(T), since the former, for example, is the image of T for the contin-
uous mapping φ → fn,φ of the interval [0, 2π] into C(T). Since the point-wise convergence
of linear functionals with the norm 1 yields the uniform convergence on compact subsets,
we get

lim
k→∞

∫

T
fn,φ(ζ)dµk(ζ) =

∫

T
fn,φ(ζ)dµ(ζ) , lim

k→∞

∫

T
gn,φ(ζ)dµk(ζ) =

∫

T
gn,φ(ζ)dµ(ζ)

uniformly with respect to φ ∈ [0, 2π]. Besides, it is obvious that
∫

T
gn,φ(ζ)dµk(ζ) ≤ µk(Iαeiφ) ≤

∫

T
fn,φ(ζ)dµk(ζ) ,

and
∫

T
gn,φ(ζ)dm(ζ) ≤ m(Iαeiφ) ≤

∫

T
fn,φ(ζ)dm(ζ)

The transition to the limit yields the required. 2

Finally, let us formulate a statement which may well be hidden in manuals on elemen-
tary probability theory.

Lemma 2.6. Let α and β be independent random variables uniformly distributed on
[0, 1] and t ≥ 0. Then the probability of the event {αβ ≤ t}, conditionally on α+β ≥ 1,
equals Pr{αβ ≤ t|α + β ≥ 1} =

F (t) =





−4t log 1+
√

1−4t
2

− (1−√1−4t)2

2
if 0 ≤ t ≤ 1

4

2t(1− log t)− 1 if 1
4
≤ t ≤ 1

1 if t ≥ 1

(21)

and the moments of the probability measure dF (t) exist for any α>−2 and equal

Mα =
∫ 1

0
tαdF (t) =

{
2

α+1

(
1

α+1
− 4−αB(α+1, 1

2
)
)

for α>−2, α 6=−1

π2/3 for α=−1
(22)

Proof. The proof is an exercise in calculation of integrals. The derivation of the
formula (21) for F (t) is easy. To derive (22) we have used integration by parts, the formula
(1−√1−4t)(1+

√
1−4t)=4t, the representation F (t) = F1(t)−F2(t) for 0 ≤ t ≤ 1

4
where

F1(t) = −4t log
1+
√

1−4t

2
, F2(t) =

(1−√1−4t)2

2
,

and the analytic expression for the following integral

I =
∫ 1/4

0
tα

1−√1− 4t√
1− 4t

dt =

{
4α−1

(
B(α+1, 1

2
)− 1

α+1

)
for α>−2, α 6=−1

π2/3 for α = −1 .
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The formula (22) for α 6= −1 follows then from

∫ 1/4

0
tαdF1(t)=

1

α+1

(
4−α log 2+2αI

)
,

∫ 1/4

0
tαdF2(t)=2I,

∫ 1

1/4
tαdF (t)=

2

(α+1)2

(
1−4−α−1(1+2(α+1) log 2)

)
.

The case α = −1 is easy and should be treated separately. 2

3 Asymptotic distribution of nρn(x/n), 0 ≤ x ≤ n.

For any n the distribution of nρn(x′/n), 0 ≤ x′ ≤ n, is pn(τ/n)dτ where pn(·) is the
density function of ρn(x), 0≤ x≤ 1, introduced in Lemma 2.1. Therefore the study of
the asymptotic distribution of nρn(x′/n), 0≤ x′≤n, n → ∞, is equivalent to the study
of the ∗-weak convergence of the measure sequence pn(τ/n)dτ . This study is the main
purpose of Theorem 3.1 which also contains a statement concerning ∗-weak convergence
of the sequence of measures µ̃n = µn(n, 1) which assign the measure 1 to the numbers
npi,n for i = 1, . . . , N(n):

µ̃n = µn(n, 1) =
N(n)∑

i=1

δ(t− npi,n) ,

where pi,n are defined in (7).

Theorem 3.1. Let Fn be the Farey sequence of order n and n → ∞. Then the
measure sequence {µ̃n}n ∗-weakly converge to the measure

µ̃ = 2
∞∑

k=1

ϕ(k)δ(t− 1

k
) (23)

on B and the measure sequence {pn(τ/n)dτ} ∗-weakly converge to the measure p̃(τ)dτ on
B with the density (2). Moreover, for all τ 6= 1

2m
, m = 1, 2, . . . , the sequence pn(τ/n)

converge to p̃(τ) and for n →∞ and any δ > 1

∫ ∞

0
tδ+1dµ̃n(t) →

∫ ∞

0
tδ+1dµ̃(t) = 2

ζ(δ)

ζ(δ + 1)
< ∞ , (24)

nδ+1
∫ 1

0
ρδ

n(x)dx =
∫ ∞

0
τ δpn(τ/n)dτ →

∫ ∞

0
τ δp̃(τ)dτ = 2Cδ

ζ(δ)

ζ(δ + 1)
< ∞ (25)

where Cδ = 2−δ/(1 + δ) is as defined in (17) and the error terms in (24) and (25) have

the order O
(
n1−δ

)
, n →∞.

10



Proof. In the course of the proof we shall use the notations of Section 2 and results of
four lemmas, namely, Lemmas 2.1–2.4. The consideration of the measures µ̃n = µn(n, 1)
and pn(τ/n)dτ means that we have put Fn =n and Gn =1 for the values of the normal-
ization constants of Section 2. Certainly, we consider the Farey sequences as Fn. (The
corresponding partitions Pn of [0, 1) will be called the Farey partitions.)

Lemma 2.1 implies that for every n ≥ 1 the densities pn(τ/n) and the measures µ̃n

are related via (14) and the application of Lemma 2.3 gives that for every δ > 1 the
moment of order δ of ρn(x) can be represented through the Mellin transform, see (18), of
the measure µ̃n:

∫ 1

0
ρδ

n(x)dx =
1

n

∫ n

0
ρδ

n(x′/n)dx′ =
1

nδ+1

∫ ∞

0
τ δpn(τ/n)dτ =

Cδ

nδ+1
M(µ̃n)(δ+1)

where

M(µ̃n)(δ+1) =
∫ ∞

0
tδ+1dµ̃n(t) = nδ+1

N(n)∑

i=1

pδ+1
i,n .

The Mellin transform of the measure µ̃, defined via (23), is equal to

M(µ̃)(s) = 2
∞∑

q=1

ϕ(q)

qs
= 2

ζ(s− 1)

ζ(s)
< ∞ (26)

for all s such that Re s > 2. (Here we have used the well-known relation between the
Riemann ζ–function and the Euler ϕ–function, see [9], problem 29, ch.2)

Let us prove that for all δ > 1

M(µ̃n)(δ+1) → M(µ̃)(δ+1), n →∞ . (27)

It is well known, see for example [10], that if p/q and p′/q′ are two succesive terms in
the Farey sequence Fn then

1 ≤ q, q′ ≤ n, q 6= q′, q + q′ > n . (28)

This implies that if the endpoints of the intervals Ii,n ∈ Pn, that is, xi−1,n and xi,n, have
denominators q and q′ and q ≤ q′ then q′ > n/2 and the length pi,n = xi,n−xi−1,n = 1/(qq′)
of Ii,n can always be bounded as

1

qn
≤ pi,n ≤ 1

q(n− q)
. (29)

These bounds will be used for the intervals Ii,n one of whose has a denominator q ≤ n/2.
An upper bound for the length of the intervals Ii,n, when both endpoints have denom-

inators ≥ n/2, follows from the formula pi,n = 1/(qq′) :

1

n2
≤ pi,n ≤ 4

n2
. (30)

11



The bounds (29), (30) for pi,n give the following lower and upper bounds for M(µ̃n)(δ+1):

M(µ̃n)(δ+1) ≥ An = 2nδ+1
n/2∑

q=1

ϕ(q)
1

qδ+1nδ+1
= 2

n/2∑

q=1

ϕ(q)

qδ+1
, (31)

M(µ̃n)(δ+1) ≤ Bn = 2nδ+1




n/2∑

q=1

ϕ(q)
1

qδ+1(n− q)δ+1
+

4δ+1

n2(δ+1)

n∑

q=n/2

ϕ(q)


 (32)

Since ϕ(q) ≤ q for all integers q,

Bn = 2nδ+1
n/2∑

q=1

ϕ(q)
1

qδ+1(n− q)δ+1
+ O

(
1

nδ−1

)
, n →∞.

According to the finite difference formula for every n ≥ 1, 1 ≤ q ≤ n and δ > 1

nδ+1 − (n− q)δ+1 ≤ q(δ + 1)nδ

and therefore

0 ≤ Bn − An = 2
n/2∑

q=1

ϕ(q)
nδ+1 − (n− q)δ+1

qδ+1(n− q)δ+1
+ O

(
1

nδ−1

)
≤

(δ + 1)
(

2

n

)δ+1 n/2∑

q=1

1

qδ−1
+ O

(
1

nδ−1

)
= O

(
1

nδ−1

)

when n →∞. Furthermore, using (26) we get for all δ > 1 :

0 ≤ M(µ̃)(δ+1)− An = 2
∞∑

q=n/2

ϕ(q)

qδ+1
= O

(
1

nδ−1

)
, n →∞ .

This implies (27). Applying now the first part of Lemma 2.4 we obtain the ∗-weak
convergence of the sequence of measures µ̃n to µ̃ when n → ∞. The statement of the
theorem concerning the convergence of pn(τ/n) to p̃(τ) follows from Lemma 2.2. The
condition (13) obviously holds for A = 2 since µ̃n([2,∞)) = µ̃([2,∞)) = 0 for any n ≥ 1.
The relation (25) follows from (24) and Lemma 2.3. 2

4 Asymptotic distribution of n2ρn(x).

For any n the distribution of n2ρn(x), 0 ≤ x ≤ 1, is n−2pn(τ/n2)dτ , and we thus can
consider the problem of studying the asymptotic distribution of n2ρn(x), n →∞, as the
problem of the weak convergence of the sequence of probability measures n−2pn(τ/n2)dτ .

12



Analogously with Theorem 3.1, in Theorem 4.1 one more associated measure sequence is
also studied, this time this is the sequence of probability measures

µ̂n = µn(n2, 1/N(n)) =
1

N(n)

N(n)∑

i=1

δ(t− n2pi,n)

which corresponds to the selection of Fn, Gn of Section 2 in the form Fn = n2, Gn =
1/N(n) where N(n) = |Fn| − 1 =

∑n
k=1 ϕ(k) .

Theorem 4.1. Let Fn be the Farey sequence of order n, and let the function F (·)
and the constant Mα be defined via (21) and (22), correspondingly. Then the sequence of
probability measures µ̂n = µn(n2, 1/N(n)) weakly converge, when n →∞, to the probability
measure µ̂ on B with the cumulative distribution function µ̂(τ) = 1− F (1/τ), τ ≥ 0, the
sequence of probability measures n−2pn(τ/n2)dτ in M weakly converge, when n → ∞,
to the probability measure p̂(τ)dτ in M with the probability density p̂(τ) = 6

π2 F (1/(2τ)),
τ ≥ 0, and for all τ > 0 the sequence n−2pn(τ/n2) converge, when n → ∞, to p̂(τ).
Moreover, for any δ < 2 and n →∞

∫ ∞

0
τ δdµ̂n(τ) →

∫ ∞

0
τ δdµ̂(τ) = M−δ < ∞ , (33)

and for any −1 < δ < 1 and n →∞

n2δ
∫ 1

0
ρδ

n(x)dx = n−2
∫ ∞

0
τ δpn(τ/n2)dτ →

∫ ∞

0
τ δp̂(τ)dτ =

3

(1+δ)π22δ
M−δ−1 < ∞ (34)

To prove the theorem we need to introduce some notation and prove two more lemmas
and Theorem 1.3.

Let p/q and p′/q′ be neighbours in Fn such that 0 ≤ p/q < p′/q′ ≤ 1. The ordered
pair (q, q′) will go under the name of the neighbouring pair of denominators in Fn.

Lemma 4.1. The set of all neighbouring pairs of denominators in Fn coincides with
the set of pairs of ordered integers

Qn = {(q, q′) : q, q′ ∈ {1, 2, . . . , n}, (q, q′) = 1, q + q′ > n} . (35)

Proof. Let p/q and p′/q′ be two neighbours in Fn such that p/q < p′/q′. Then
the property of the Farey sequences (28) implies (q, q′) ∈ Qn. Note that the number of
different neighbouring pairs (p/q, p′/q′) in Fn equals N(n) =

∑n
j=1 ϕ(j) . The number

of elements in Qn also equals N(n). Indeed, for a fixed q ∈ {1, . . . , n} , the number of
elements in the set

Mq,n = {q′ : (q, q′) = 1, q′ ∈ {n−q+1, . . . , n}}
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does not depend on n and equals |Mq,n| = ϕ(q), therefore

Qn =
n⋃

q=1

Mq,n, |Qn| =
n∑

q=1

|Mq,n| =
n∑

q=1

ϕ(q) = N(n) .

To (q, q′) ∈ Qn, there can correspond at most one pair of neighbours (p/q, p′/q′) in Fn:
for such neighbours we have the equation p′q− pq′ = 1, 0 ≤ p < q, 1 ≤ p′ ≤ q′, and since
(q, q′) = 1, there is only one solution of this equation. Since, as pointed out, the number
of elements inQn is equal to the number of neighbouring pairs in Fn, the lemma follows. 2

Lemma 4.2. Consider the set of ϕ(q) points on the unity circle T

Zq = {e2πiq′/q, q′ = 1, . . . , q, (q′, q) = 1} ⊆ T .

Then the sequence of Borel probability measures on T

λq =
1

ϕ(q)

∑

ζ∈Zq

δζ (36)

converge, when n →∞, to the normalized Lebesque measure m on T and the convergence
is uniform: for any arc Iα = {eiψ, −α ≤ ψ ≤ α}, 0 ≤ α ≤ π ,

lim
q→∞λq(Iαeiφ) =

α

π
= m(Iα)

uniformly with respect to φ ∈ [0, 2π).
Proof. The fact of convergence of the measure sequence {λn}n to the uniform mea-

sure on T is equivalent to the asymptotic uniformity of the Farey sequence, the proof of
this can be found, for example, in [11]. The fact that this convergence is uniform, follows
from Lemma 2.5. 2

Proof of Theorem 1.3. Define the trapezoid

∆=∆(β1, β2, α1, α2)={(x, y) ∈ [0, 1]×[0, 1] : β1≤x<β2, α1≤ 1−y

x
<α2} (37)

where 0 ≤ α1 < α2 ≤ 1 and 0 ≤ β1 < β2 ≤ 1.
The set of all trapezoids of the form (37) constitutes the set determining convergence,

see [5], on the triangle T = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≥ 1}. To establish the weak
convergence of the measure sequence {νn}n to m, the uniform probability measure on T
and thus the doubled Lebesgue measure on T , it is therefore sufficient to show that

lim
n→∞ νn(∆) = m(∆) = (α2 − α1)(β

2
2 − β2

1) (38)

for all 0≤α1 <α2≤ 1, 0 <β1 <β2≤1 and ∆ = ∆(β1, β2, α1, α2).
Let us fix α1 < α2, β1 < β2 and denote n(q) = |{q′ : ( q

n
, q′

n
) ∈ ∆}|. For any q,

1 ≤ q ≤ n, there exists γq ∈ [0, 2π) such that

n(q)

ϕ(q)
= λq(Iαeiγq)
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where α = π(α2 − α1) and λq is the measure (36). The statement of Lemma 4.2 implies
that for any ε > 0 there exists n0(ε) such that for all n ≥ n0(ε) the inequality

∣∣∣∣∣
n(q)

ϕ(q)
− (α2 − α1)

∣∣∣∣∣ < ε

holds for all q such that β1n ≤ q ≤ β2n. Therefore for all n ≥ n0(ε)
∣∣∣∣∣∣
νn(∆)− (α2 − α1)

β2n∑

q=β1n

ϕ(q)/N(n)

∣∣∣∣∣∣
≤

1

N(n)

β2n∑

q=β1n

∣∣∣∣∣
n(q)

ϕ(q)
− (α2 − α1)

∣∣∣∣∣ ϕ(q) ≤ ε
1

N(n)

β2n∑

q=β1n

ϕ(q) ≤ ε .

The well–known summation formula for the Euler function

N(n) =
n∑

q=1

ϕ(q) =
3

π2
n2 + O(n log n) , n →∞ , (39)

implies that for all 0 < β1 < β2 ≤ 1

β2n∑

q=β1n

ϕ(q) =
3

π2
(β2

1 − β2
2)n

2 + O(n log n) , n →∞ ,

and therefore

1

N(n)

β2n∑

q=β1n

ϕ(q) → β2
1 − β2

2 when n →∞ .

We thus get (38), and this completes the proof. 2

Proof of Theorem 4.1. Recall that the length of every interval Ii,n in the Farey
partition Pn equals pi,n = 1/(qq′) where (q, q′) ∈ Qn is the ordered pair of the denomina-
tors of the endpoints of the interval, see Lemma 4.1. According to the definition of the
measure νn, given in the introduction, for any a > 0

µ̂n([a,∞)) =
1

N(n)

∣∣∣∣∣{(q, q
′) ∈ Qn :

n2

qq′
≥ a}

∣∣∣∣∣

= νn({(x, y) : 0 ≤ x, y ≤ 1, x + y ≥ 1, xy ≤ 1/a})
Theorem 1.3 implies that the expression in the right-hand side of the last formula tends
to F (1/a) = µ̂([a,∞)), when n →∞, for any a > 0. For all n ≥ 1 and τ > 0 define

p̂n(τ) =
1

N(n)
pn(τ/n2) = 2µ̂n([2τ,∞))
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and note that for all τ > 0

n−2pn(τ/n2)

p̂n(τ)
=

N(n)

n2
=

3

π2
+ O(n−1 log n), n →∞ .

Applying Lemma 2.2 we get that for all τ > 0

p̂n(τ) → 2µ̂([2τ,∞)) = 2F (1/(2t)) , n →∞ ,

and therefore

n−2pn(τ/n2) → p̂(τ) =
6

π2
F (1/(2t)) , n →∞ ,

for all τ > 0, where the explicit form of p̂(τ) is given in (3). Lemma 2.2 also yields the
weak convergence, when n →∞, of the probability measures p̂n(τ)dτ ∈M to the limiting
measure p̂(τ)dτ .

We are going now to apply the second part of Lemma 2.4 to prove (33). To do this,
we have to verify the conditions (19) and (20). Since the measures µ̂n and µ̂ are the
probability measures, (20) obviously holds for α = 0. To demonstrate the validity of (19),
it is enough to show that for any a < 2

sup
n≥1

∫ ∞

0
tadµ̂n(t) < ∞ . (40)

If a < 0 then the left–hand side of (30) gives

∫ ∞

0
tadµ̂n(t) =

n2a

N(n)

N(n)∑

i=1

pa
i,n ≤

n2a

N(n)

N(n)∑

i=1

n−2a = 1

Assume now that 0 < a < 2. Then analogously to (32), with δ + 1 = a, we get

∫ ∞

0
tadµ̂n(t) = M(µ̃n)(a) =

n2a

N(n)

N(n)∑

i=1

pa
i,n

≤ 2
n2a

N(n)




n/2∑

q=1

ϕ(q)
1

qa(n− q)a
+

4a

n2a

n∑

q=n/2

ϕ(q)


 .

Since ϕ(q) ≤ q, N(n) ≥ n(n + 1)/4 and

n/2∑

q=1

q1−a ≤ 1 +
∫ n

1
x1−adx ≤ n2−a/(2− a) + 1 ,

for all integers n and 0 < a < 2, we get

∫ ∞

0
tadµ̂n(t) ≤ 2

na

N(n)

n/2∑

q=1

q1−a

(
n

n− q

)a

+ 2
4a

N(n)

n∑

q=1

q ≤

16



8na−22a
n/2∑

q=1

q1−a + 4a+1 ≤ 2a+3(1 + 1/(2− a)) + 4a+1 .

We thus have shown the validity of (40) and therefore completed the justification of (33).
The validity of (34) follows now from Lemmas 2.2, 2.3 and the relation
p̂(τ) = 6

π2 µ̂([2τ,∞)). 2
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