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Abstract

This paper uses univariate and multivariate singular spectrum analysis for predicting the
value and the direction of changes in the daily pound / dollar exchange rate. To perform
the forecast, we also use the daily dollar exchange rates with respect to Euro and Japanese
yen. We use the random walk model as a benchmark model to evaluate performances of the
singular spectrum analysis as a prediction method. The empirical results show that the fore-
cast based on the multivariate singular spectrum analysis compares favorably to the forecast
of the random walk model, both for predicting the value and the direction of changes in the
daily pound / dollar exchange rate.
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1 Introduction

Explaining the behaviors and accurate prediction of the exchange rates has proved to be rather
challenging tasks for economists over the last three decades. Publication of Meese and Rogoff
(1983) which showed a simple random walk model can outperform both linear stochastic time
series and structural econometric models in predicting the exchange rates has generated the
voluminous literature of exchange rate economics. The main focus of these empirical works were
to develop methods that could outperform a random walk model in predicting the exchange
rates, although attempts were made to develop theories that could explain the volatility of
floating currencies also.

Accurate prediction of financial asset prices, however, is seriously doubted by those financial
economists who believe in efficiency of financial markets. Efficient Market Hypothesis (EMH) in
its weak form implies that the returns of financial asset prices are white noise processes consisting
of independent, identically distributed random variables1. Furthermore, the white noise nature
of the returns implies that the series at the level follows a random walk and is unpredictable.

In spite of the popularity of EMH, mostly in the academic circles, a vast literature deal-
ing with predictions of the financial asset prices exits. Reviewing the empirical exchange rate
economics literature one could discern two strands of research in the field that closely follow fun-
damentalist and chartist (technical analyst) schism that prevails in prediction of equity prices in
the stock markets. In the context of exchange rate economics, the fundamentalists believe that
exchange rates are determined by the money supply, the price level, national income, interest
rates, productivity, and other relevant economic variables. The chartists, on the other hand,
argue that explaining volatility and accurate predictions of the exchange rates by economic fun-
damentals is at best futile. They reason that, in spite of daily variations of the exchange rates,
the fundamental economic variables seldom, if at all, change in the very short run, making
the fundamentals unlikely explanatory variables, at least, in the short-run. Accordingly, the
chartists attempt to use historical prices of currencies to unravel the underlying dynamics of the
exchange rates, and by modeling the dynamics predict future evolutions of the data generating
processes of these currencies ( Frankel and Froot, 1990).

The most prominent models used in predicting the exchange rates in the fundamentalist
tradition include the purchasing power parity theory (Frenkel, 1981; Corbae and Ouliaris, 1988;
Soofi, 1998), sticky-price monetary model (Frankel, 1979), the Balassa-Samuleson productivity
differential model (DeGrgorio and Wolf, 1994), the behavioral equilibrium exchange rate model
(Clark and McDonald, 1999), and the interest rate parity model (Chinn and Meredith, 2004).

Time series analyses of exchange rates, both linear and nonlinear, attempt to predict the
exchange rates by using the historical data of interest and without considering the fundamental
economic variables that economic theory purports to cause the exchange rate behaviors.

The earlier empirical works in the latter strand of exchange rate economics often used linear
stochastic models such as ARIMA process, however, recent development in nonlinear dynamical
systems theory, methods of time-delay embedding, and phase space reconstruction has opened
up the possibility of testing for presence of nonlinear, deterministic structure in the dynamics of
the exchange rates. For example, Soofi and Cao (2002a), Soofi and Galka (2003), and Cao and
Soofi (1998) and references therein are attempts in prediction and understanding the underlying
dynamics of the exchange rates using methods and algorithms from dynamical systems theories
that are rarely used in the main stream financial economics.

Cheung et al.(2005) provides a comprehensive comparative analysis of these competing struc-

1White noise follows a power law in the form of f−β , where f is the frequency and β is the spectral exponent
with β = 0.
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tural econometric models of exchange rates against a random walk as a benchmark model using
quarterly data. The study finds evidence that the structural models outperform the random
walk model. We find random walk modeling of quarterly data questionable, for the dynamics of
underlying data generating process of the exchange rates could go through radical changes over
three months. It is one thing to argue that today’s price is a reasonable predictor of tomorrow’s
price; however, claiming that today’s price is a good predictor of the asset’s price 90-day hence
should be taken with a grain of salt.

In this paper we aim to predict daily pound/dollar, yen/dollar, and Euro/dollar exchange
rates using singular spectrum analysis (SSA). Furthermore, we compare the prediction results
with those of a random walk model and use Diebold-Mariano test statistics to rule out the
comparative results are chance occurrences. Finally, to gain a better understanding of prediction
accuracy of the methods, we examine the cumulative distribution of the absolute errors of the
competing forecasting methods used in this study.

The next section of the paper discusses SSA method. The time series data and empirical
results are presented in Sections 3 and 4. Section 5 discusses the implications of the results of
this study for efficeint market hypothesis. Finally, Section 6 makes concluding remarks.

2 Singular Spectral Analysis

The main purpose of SSA is to decompose the original series into a sum of series, so that each
component in this sum can be identified as either a trend, periodic or quasi-periodic (perhaps,
amplitude-modulated), or noise. This is followed by a reconstruction of the original series.

2.1 Informal description

The main idea of the Basic SSA is as follows.
Consider the real-valued nonzero time series YT = (y1, . . . , yT ) of sufficient length T . Let

K = T −L+1, where L (L ≤ T/2) is some integer called the window length. Define the matrix

X = (xij)
L,K
i,j=1 =




y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1
...

...
...

. . .
...

yL yL+1 yL+2 . . . yT


 (1)

and call it the trajectory matrix. Obviously xij = yi+j−1 so that the matrix X has equal elements
on the diagonals i + j =const.

We then consider X as a multivariate data with L characteristics and K = T − L + 1
observations. The columns Xj of X, considered as vectors, lie in an L-dimensional2 space RL.
Define the matrix XXT . Singular value decomposition (SVD) of XXT provides us with the
collections of L eigen–values λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and the corresponding eigen–vectors
P1, P2, . . . , PL, where Pi is the normalised eigen–vector corresponding to the eigenvalue λi (i =
1, . . . , L). Note that one can apply SVD to a variety of matrices; for example, in addition to
XXT , it is customary to use either the covariance or correlation matrix computed from X,
treated as a multivariate data matrix, see Golyandina et al (2001).

2Selecting the optimal embedding dimension, L is an important step in accurate phase space reconstruction of a
singular time series, discussion of which is beyond the scope of this work. See Cao(1997) on optimal determination
of embedding dimension L.
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A group of l (with 1 ≤ l < L) eigen–vectors determine an l-dimensional hyperplane in the
L-dimensional space RL of vectors Xj . The distance between vectors Xj (j = 1, . . . , K) and this
l-dimensional hyperplane can be rather small (it is controlled by the choice of the eigenvalues)
meaning that the projection of X into this hyperplane approximates well the original matrix
X. If we choose the first l eigen–vectors P1, . . . , Pl, then the squared L2-distance between
this projection and X is equal to

∑L
j=l+1 λj . According to the Basic SSA algorithm, the L-

dimensional data is projected onto this l-dimensional subspace and the subsequent averaging
over the diagonals allows us to obtain an approximation to the original series.

Let us now formally describe this algorithm next.

2.2 Formal description of the Basic SSA

Let us have a time series YT = (y1, . . . , yT ). Fix L (L ≤ T/2), the window length, and let
K = T − L + 1.

2.2.1 Algorithm 1.

(Basic SSA)
Step 1. (Computing the trajectory matrix): transfers a one-dimensional time series YT =

(y1, . . . , yT ) into the multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)
′ ∈

RL, where K = T − L +1. Vectors Xi are called L-lagged vectors (or, simply, lagged vectors).
The single parameter of the embedding is the window length L, an integer such that 2 ≤ L ≤ T .
The result of this step is the trajectory matrix X = [X1, . . . , XK ] = (xij)

L,K
i,j=1.

Step 2. (Constructing a matrix for applying SVD): compute the matrix XXT .
Step 3. (SVD of the matrix XXT ): compute the eigenvalues and eigen–vectors of the matrix

XXT and represent it in the form XXT = PΛP T . Here Λ = diag(λ1, . . . , λL) is the diagonal
matrix of eigenvalues of XXT ordered so that λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and P = (P1, P2, . . . , PL)
is the corresponding orthogonal matrix of eigen–vectors of XXT .

Step 4. (Selection of eigen–vectors): select a group of l (1 ≤ l ≤ L) eigen–vectors
Pi1 , Pi2 , . . . , Pil .

The grouping step corresponds to splitting the elementary matrices Xi into several groups
and summing the matrices within each group. Let I = {i1, . . . , ip} be a group of indices i1, . . . , ip.
Then the matrix XI corresponding to the group I is defined as XI = Xi1 + · · ·+ Xip .

Step 5. (Reconstruction of the one-dimensional series): compute the matrix X̃ = ||x̃i,j || =∑l
k=1 PikP T

ik
X as an approximation to X. Transition to the one–dimensional series can now be

achieved by averaging over the diagonals of the matrix X̃.

2.3 Multivariate Singular Spectrum Analysis: MSSA

Multivariate (or multichannel) SSA is an extension of the standard SSA to the case of mul-
tivariate time series (see e.g. Broomhead and King (1986)). It can be described as follows.
Assume that we have an M -variate time series yj =

(
y

(1)
j , . . . , y

(M)
j

)
, where j = 1, . . . , T and let

L be window length. Using (1), we can define the trajectory matrices X(i) (i=1, . . . , M) of the
one-dimensional time series {y(i)

j } (i = 1, . . . , M). The trajectory matrix X can then be defined
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as

X =




X(1)

...
X(M)


 . (2)

The other stages of the Basic Multivariate SSA procedure are identical to the Basic SSA as
described in Algorithm 1 with an obvious modification that the diagonal averaging should be
applied to each of the M components separately.

There are numerous examples of successful application of the multivariate SSA (see, for ex-
ample, Plaut and Vautard, 1994; Danilov and Zhigljavsky, 1997), but the theory of multivariate
SSA is yet to be developed.

2.4 SSA Forecasting Algorithm

Forecasting by SSA can be applied to the time series that approximately satisfy linear recur-
rent formulae (LRF). That is why we start with the LRF. An important property of the SSA
decomposition is the fact that, if the original time series YT satisfies a linear recurrent formula
(LRF):

yi+d =
d∑

k=1

akyi+d−k, 1 ≤ i ≤ T − d (3)

of some dimension d with some coefficients a1, . . . , ad, then for any T and L there are at most
d nonzero singular value in the SVD of the trajectory matrix X; therefore, even if the window
length L and K = T −L+1 are larger than d, we only need at most d matrices Xi to reconstruct
the series.

The fact that the series yt satisfies an LRF (3) is equivalent to its representability as a sum
of products of exponentials, polynomials and harmonics, that is as

yt =
q∑

k=1

αk(t) eµkt sin (2πωkt + ϕk) (4)

Here αk(t) are polynomials, µk, ωk and ϕk are arbitrary parameters. The number of linearly
independent terms q in (4) is less than or equal to d. The class of series that can be approximated
by the series satisfying LRFs of the form (3) (or, equivalently, by the time series of the form (4)
with small number of terms) is very broad. We may also be interested in some periodic (perhaps,
amplitude-modulated) components of the original series and in the trend, which is a residual of
the time series when the noise and all oscillatory components of the series are removed.

SSA forecasting algorithm is based on a fact which, roughly specking, states the following; if
the number of terms r in the SVD of the trajectory matrix X is smaller than the window length
L, then the series satisfies some LRF of some dimension d ≤ r.

Let us formally describe the forecasting algorithm under consideration (for more information
see Golyandina et al.(2001)):

Algorithm input:
(a) Time series YT = (y1, . . . , yT ).
(b) Window length L, 1 < L < T .
(c) Linear Space Lr ⊂ RL of dimension r < L. It is assumed that eL /∈ Lr, where eL =

(0, 0, . . . , 1) ∈ RL.
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(d) Number M of points to forecast for.

Notations and comments:
(a) X = [X1, . . . , XK ] is the trajectory matrix of the time series YT .
(b) P1, . . . , Pr is an orthonormal basis in Lr.
(c) X̂ = [X̂1 : . . . : X̂K ] =

∑r
i=1 PiP

T
i X. The vector X̂i is the orthogonal projection of Xi

onto the space Lr.
(d) X̃ = HX = [X̃1 : . . . : X̃K ] is the result of the Hankellization of the matrix X̂.
(e) For any vector Y ∈ RL we denote by YM ∈ RL−1 the vector consisting of the last L− 1

components of the vector Y , while Y O ∈ RL−1 is the vector of the first L− 1 components of the
vector Y .

(f) We set v2 = π2
1 + . . . + π2

r , where πi is the last component of the vector Pi (i = 1, . . . , r).
(g) Suppose that eL /∈ Lr. (In the other words, we assume that Lr is not a vertical space).

Then v2 < 1. It can be proved that the last component yL of any vector Y = (y1, . . . , yL)T ∈ Lr

is a linear combination of the first components (y1, . . . , yL−1) (see Golyandina et al.(2001), Chap.
5):

yL = a1yL−1 + . . . + aL−1y1.

Vector A = (aL−1, . . . , a1) can be expressed as

A =
1

1− v2

r∑

i=1

πiP
O
i

and dose not depend on the choice of a basis P1, . . . , Pr in the linear space Lr. In the above
notations, define the time series YT+M = (y1, . . . , yT+M ) by the formula

yi =
{

ỹi for i = 1, . . . , T∑L−1
j=1 ajyi−j for i = T + 1, . . . , T + M

(5)

The numbers yT+1, . . . , yT+M from the M terms of the SSA recurrent forecast. Let us define
the linear operator P(r) : Lr 7→ RL by the formula

P(r)Y =
(

YM
AT YM

)
, Y ∈ Lr

If setting

Zi =
{

X̃i for i = 1, . . . , K

P(r)Zi−1 for i = K + 1, . . . , K + M
(6)

the matrix Z = [Z1, . . . , ZK+M ] is the trajectory matrix of the series YT+M . Therefore, (6)
can be regard as the vector form of (5).

2.5 Bootstrap averaged series

Experimentally, we find that bootstrapping the original series would reduce noise and improve
forecasting accuracy. Accordingly, let us consider a method of constructing bootstrap averaged
series for the signal Y

(1)
T of the original series. Under suitable choice of window length L and

the corresponding eigentriples, we have the representation YT = Ỹ
(1)
T + Ỹ

(2)
T , where Ỹ

(1)
T (the

reconstructed series) approximates Y
(1)
T and Ỹ

(2)
T is the residual series. Suppose now that we

have a (stochastic) model for the residual Ỹ
(2)
T (for instance, we can postulate some model for

Y
(2)
T , and since Ỹ

(1)
T ≈ Y

(1)
T , we apply the same model for Ỹ

(2)
T with the estimated parameters).
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Then, simulating N independent copies Y
(2)
T,i of the series Ỹ

(2)
T , we obtain N series YT,i =

Ỹ
(1)
T + Ỹ

(2)
T,i and produce N reconstructing results ỹ

(1)
T,i.

When the sample ỹ
(1)
T,i (1 ≤ i ≤ T ) of the reconstruction results is obtained, we can calculate

its bootstrap averaged series by averaging the bootstrap results. The simplest model for Y
(2)
T is

the Gaussian white noise model. The corresponding hypotheses can be checked with the help
of the standard test for randomness and normality.

3 Time series data

3.1 Data

We shall use three series of daily exchange rates: pound/dollar (UK), Euro/dollar (EU) and
yen/dollar (Japan). We scale each data series according to yt → yt/ ‖ YT ‖ t = 1, . . . , T ,
where ‖ YT ‖2=

∑T
t=1 y2

t .
It should be noted that the results of the SSA analysis depend on the scale of the data.

To make sure that all series we are dealing with have the same scale (weight) we adopt the
normalization method introduced above.

Fig. 1 shows these three (rescaled) series over the period 3-Jan-2000 to 8-Dec-2006, in these
prediction exercises. Each of these series contain 1810 points.

Its very clear that the UK and EU series are highly correlated (indeed, the linear correlation
coefficient between UK and EU series is about 0.975). It also looks like the yen/dollar exchange
rate series behaves differently than pound/dollar and Euro/dollar (EU) series (the correlation
coefficient between UK and Japan is −0.55) 3. It must be mentioned that this correlation only
shows the relationship between the main trends of the series.

Figure 1: The exchange rate series UK (thick line), EU (thin line) and Japan (dashed line)
exchange rate series over the period 2000 to 2006.

3We note that the correlations between yen/dolar and pound/dollar as well as yen/dollar and Eu/dollar are
0.577 and 0.487, respectively.
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3.2 Trend Analysis

The main discrepancy between SSA and classical time series analysis lies in the notion of trend.
For the SSA technique, trend is any slowly varying component of the series which does not
contain cyclical / seasonal components. As we do not have obvious periodic components in
the series, we only need to extract the trend of these data sets and for trend extraction small
window length should suffice (for more information about selection of the SSA parameter see
Golyandina et. all (2001), chap. 1 and 2).

Fig 2 shows the extracted trend of the original series of UK (thick line), EU (thin line)
and Japan (dashed line) which are obtained from the first eigentriple and the window length
L = 30. Note that we can build a more complicated approximation of the trend if we use some
other eigentriples and smaller window length. However, the precision we would gain will be very
small but the model of the trend will become much more complicated. The linear correlation
coefficient between the trends of UK and EU series is 0.978 and between UK and Japan is
−0.558. We see that the correlation coefficients have slightly increased (in the absolute values).
This is due to smoothing. The change is very small but important for forecasting. We found
that if we use bootstrap averaged series (which can be considered as smoothed versions of the
series) rather than the original series, then the forecasting becomes more precise. This finding
is in agreement with some results reported in the literature which indicate that reducing noise
level may help us to get more accurate forecasts, especially in financial data and nonlinear series
(for example, see Soofi and Cao (2002)).

To forecast UK exchange rate series, we shall use rescaled and then bootstrapped EU and
Japan exchange rate series. Note that we use the original UK series in conjunction with rescaled
and bootstrapped EU and Japan series.

Figure 2: Trends of UK, EU and Japan exchange rate series which are obtained from the first
eigentriple.

4 Results

In Table 1 we show the results of comparison of RW forecasts with forecasts made by SSA,
MSSA, and MSSA (AI). In the first column for each forecasting procedure, we provide the
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values of the normalized root-mean-square error (RMSE):

RMSE =
[
∑N

i=1(ŷT+i − yT+i)2]1/2

[
∑N

i=1(yT+i − yT+i−1)2]1/2
. (7)

Here N is the number of forecasted points and ŷT+i is the one-step ahead forecasted value of
yT+i. The denominator in (7) is the root-mean-square error of the RW forecast.

If either RMSE = 0 or RMSE is very small, then the predictions are prefect or very accurate.
If RMSE < 1, then the selected forecasting procedure outperforms the random walk. Alterna-
tively, the values of RMSE are larger than 1, then the performance of the selected forecasting
procedure is worse than the random walk forecast.

The second characteristic computed for each forecasting procedure is the so-called modified
Diebold-Marino statistics (DM) defined by Harvey et al. (1977). As we forecast one-step

ahead, the DM statistic is just d̄
√

N (N − 1)
(∑N

i=1(di − d̄)2
)− 1

2 where d̄ = N−1
∑N

i=1 di, di =

(ŷT+i − yT+i)2 − (yT+i − yT+i−1)2, and N represents out-of-sample observations. Large (in
absolute values) negative values of DM statistics indicate superiority of the chosen method over
the RW.

The third characteristic computed for each method is the direction of change criterion (DC).
It shows the proportion of forecasts that correctly predict the direction of the series movement.
Let Zt (t = T + 1, . . . , T + N) takes a value 1 if the forecast series correctly predicts the
direction of change and 0 otherwise. The Moivre-Laplace central limit theorem implies that for
large samples the test statistic 2(Z̄− 0.5)N1/2 is approximately distributed as standard normal.
When Z̄ is significantly larger than 0.5, the forecast is said to have the ability to predict the
direction of change. Alternatively, if Z̄ is significantly smaller than 0.5, the forecast tends to
give the wrong direction of change.

The rows of Table 1 correspond to different time periods where we aggregate the forecasts
in different time intervals. The first row characterizes the first 10 forecasts, the second row - the
first 20, etc. The last row summarizes the results for 60 forecasted data points.

We have selected 60 data points. The behaviour of the series in the chosen period looks very
typical. As shown in Fig. 3 we have many changes of direction in the series, periods of slow and
fast movements of the normalized rates.

We observed that the forecast is typically good when there is no sudden change of behaviour
of the series at the forecast point. Alternatively, if there is such a change, the forecast is often
misleading.

Table 1 shows that the results based on Basic SSA are slightly better than the results
obtained using RW but the difference is not large. On the other hand, the difference between
MSSA predictions and RW are significant with respect to all chosen criteria. This confirms the
findings we have made from observing Figures 3 and 4. Of course, Table 1 confirms that the
MSSA(AI) forecasts are the most accurate.

To consider the precision of the technique, we forecast all observations of the series UK from
18-Sep-2006 to 8-Dec-2006. We only perform one-step ahead forecasting based on the most
up-to-date information available at the time of the forecast.

We select window length 3 for both Basic SSA and MSSA to forecast the UK series. The
length of the series for all three series is the same and we also use the bootstrap averaged series
instead of the original series for EU and Japan series.

To acquire a better understanding of forecasting accuracy of the methods, we examine the
empirical cumulative distribution function for the absolute errors of the respective methods next.
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SSA MSSA MSSA (AI)
N RMSE DM DC RMSE DM DC RMSE DM DC
10 0.87 -0.46 0.90*** 0.84 -0.94 0.80* 0.70 -1.56 0.90***
20 0.83 -1.00 0.90*** 0.73 -1.91* 0.85*** 0.63 -2.37*** 0.85***
30 0.95 -0.36 0.80*** 0.81 -1.55 0.83*** 0.62 -2.77*** 0.80***
40 1.02 0.16 0.75*** 0.84 -1.64* 0.77*** 0.61 -3.66*** 0.77***
50 1.05 0.40 0.72*** 0.81 -2.08** 0.76*** 0.60 -4.08*** 0.76***
60 1.04 0.38 0.73*** 0.79 -2.45*** 0.78*** 0.62 -4.28*** 0.80***

Table 1: Summary of the results for forecasting of UK exchange rate series with SSA, MSSA,
RW. *, **, and *** indicate the significant results on the 10%, 5% and 1% levels, respectively.

Figure 3: Left: Original series (thin line), forecasting results of MSSA (thick line) and Random
Walk (dashed line); Right: Empirical cumulative distribution functions of the absolute errors
for MSSA (thick line) and random walk (dashed line).

Fig. 3 (left) shows the original UK series (thick line) together with forecasted values obtained
by MSSA (thin line) and the random walk model (dashed line) for the last 60 data points. In
Fig. 3 (right) we display the empirical cumulative distribution function (CDF) for the absolute
errors of the MSSA and RW forecasts. This plot shows that the empirical distribution of the
RW errors stochastically dominates the distribution of the MSSA errors (that is, the RW errors
are stochastically larger than the MSSA errors). The histograms of errors of the two forecasts
(absolute values) is shown in Fig. 4. Note that the Kolmogorov-Smirnov test (the p-value is
0.90), indicates that the distribution of errors for the MSSA forecast does not contradict the
hypothesis of normality.

Fig. 5 shows the scatterplot of the forecasting errors for the MSSA and RW. The white area
in this plot shows the part of the plane where the absolute values of the MSSA forecast are
smaller; the grey area shows the region where the absolute values of the MSSA forecast are
larger.

We have performed calculations similar to the ones for MSSA for two other SSA forecasts.
The first one is the Basic SSA forecast (one-dimensional, no EU and Japan series involved).
We shall refer to this version simply as SSA. The second one is the MSSA forecasts (EU and
Japan series are involved) when we use the information about EU and Japan time series in
forecasting the UK series. We shall refer to this version of SSA as MSSA (AI), where AI stands
for ‘additional information’.

We do not provide the figures corresponding to Fig. 3–5 for the Basic SSA and MSSA (AI)
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Figure 4: Histograms of the forecasting errors (absolute values) for MSSA and RW.

Figure 5: Scatterplot of the errors for MSSA versus RW forecasts.

forecasts. In SSA forecast, the forecasting errors are not obviously smaller (in probabilistic
sense) than the errors of the RW forecast (see Table 1 for some characteristics of the these
errors). The errors for the MSSA (AI) forecast are much smaller than for all other forecasts
(see Table 1). This is not surprising though as the additional data used for forecast is highly
correlated with the values we are forecasting.

5 Discussions

The empirical results of the present study are instructive in examining the efficient market
controversy. Accordingly, we first present formal discussions of the martingale games, random
walk processes, their relationship with the EMH, and then we elaborate on the implications of
our findings for the EMH.

A stochastic process xt follows a martingale if

Et(xt+1|Ωt) = xt (8)

where Ωt is the information set at time t that includes xt also. Equation (8) implies that if xt

follows a martingale the best forecast of xt+1 is xt, given the information set Ωt.
Alternatively, one could present a martingale as a “fair game”– meaning a game that is

neither in your favor nor in your opponent’s favor– as

Et[(xt+1 − xt)|Ωt] = 0 (9)
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The implication of the fair game model (9) is that the returns of the asset price xt are
unpredictable, given the information set Ωt. Accordingly, the information set Ωt is fully reflected
in the asset price, and this is known as the EMH4.

Note that one may restrict the information set Ωt only to the asset’s past price history,
making alternative representation of (8) and (9) as

E(xt+1|xt, xt−1, ....) = xt (10)

or

E(xt+1 − xt|xt, xt−1, . . . ...) = 0 (11)

In the latter representation, again, the EMH suggests that the information contained in the
price series of an asset is “instantly, fully, and perpetually” reflected in the asset’s current price.
Since the price series and the information contained in it are available to all market participants,
no one can benefit by attempting to take advantage of the information contained in the price
history of an asset by trading in the markets. This reasoning implies that the price movements
in the most efficient market are completely random.

A random walk model without drift is represented as follows:

xt+1 = xt + ηt (12)

where ηt is i.d.d. , a white noise process, with zero mean. A random walk model is a martin-
gale, but a more restrictive one, in the sense that it requires both independence of conditional
expectation of price changes from the available information (as does the martingale) as well as
independence of higher conditional moments (variance, skewness, and kurtosis) of the probability
distribution of price changes.

What are the implications of our empirical findings for the EMH? Based on the results of
SSA predictions which were based only on the past price history, we conclude that the currency
markets are efficient and follow a random walk process. However, the results based on MSSA
which are obtained by including other information, i.e. EU/dollar exchange rate, clearly point
to inadequacy of the random walk in modeling exchange rate for predictions. Moreover, the
superior results obtained from the direction of change method, also provide additional support
for the view that currency markets may not be efficient in the sense discussed above.

6 Summary and conclusions

This paper used univariate and multivariate singular spectrum analysis in prediction of value
and direction of changes (series moving up or down) in the daily pound/dollar exchange rates.
We use a random walk as a benchmark model to compare performances of the SSA, MSSA, and
direction of change criterion (DC) in these prediction exercises. We also used Diebold-Mariano
statistics to validate the findings.

The empirical results and the test statistics show that MSSA and DC have outperformed
random walk models for pound/dollar and EU/dollar exchange rates5. However, these methods
could not outperform a random walk model using yen/dollar exchange rate.

4We are using EMH in a generic sense, to avoid further discussion of the types of efficient market hypothesis
which is not germane to the issue here. We refer the interested reader to Campbell, Lo, and Mackinlay, 1997.

5We do not report the results for EU/dollar rate.
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Explaining the difference in performances of these methods in predicting UK and EU rates
on one hand and yen rate on the other, hinges upon co-movements of the series. As was pointed
out earlier, UK and EU move in proximity of each other and have high correlation. However,
the correlation between pound/dollar and yen/dollar rates is relatively small and negative. The
high correlation between two series is a good indicator of accurate predictability of one series
using the two series together in prediction exercises.

Another explanation might be that because of stochastic trends in all series6 UK/dollar and
EU/dollar might be cointegerated but UK/yen and EU/yen are not cointegrated. Of course, a
linear combination of two cointegrated series is a stationary process, even though each series is
non-stationary.

Given that the traditional structural econometric models of exchange rates have a poor
record in prediction of the exchange rates in comparison to random walk models, we believe
SSA and MSSA methods are highly promising. As is shown in this paper, the SSA method,
at least in its multivariate representation, has decisively outperformed random walk models for
two exchange rate series. Further methodological development in this field as well as extensive
application of these methods in financial and economic data could prove to be indispensable for
accurate prediction exercises.

6It is well-known that exchange rates under study here are integrated I(1) series
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