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ABSTRACT: Real-time data on national accounts statistics typically undergoes an 

extensive revision process leading to multiple vintages on the same generic variable. 

The time between the publication of the initial and final data is a lengthy one and 

raises the question of how to model and forecast the final vintage of data – an issue 

that dates from seminal articles by Mankiw et. al., (1984), Mankiw and Shapiro 

(1986) and Nordhaus (1987). To solve this problem, we develop the nonparametric 

method of multivariate Singular Spectrum Analysis, MSSA, for multi-vintage data. 

MSSA is much more flexible than standard methods of modelling that involve at least 

one of the restrictive assumptions of linearity, normality and stationarity. The benefits 

are illustrated with data on the UK Index of Industrial Production: neither the 

preliminary vintages nor the competing models are as accurate as forecasts using 

MSSA.  

 

KEY WORDS: nonparametric methods, data revisions, trajectory matrix, 

reconstruction, Hankelisation, recurrence formula, forecasting. 

 

 

Correspondence Address: Kerry Patterson, Department of Economics, University of 

Reading, RG6 6AA, UK. Email: k.d.patterson@reading.ac.uk. The authors 

acknowledge the helpful comments of three referees and the editor. 

 

                                                        

 
a The authors are grateful to an anonymous referee and the editor for their constructive comments on an 
earlier version of this paper. 

 

mailto:k.d.patterson@reading.ac.uk


 2 

Introduction 

Much economic data, particularly for the national income and product accounts, is 

subject to a revision process, resulting in what is known as real-time data
1
. The 

stylised measurement process is that data is available on a variable, generically 

denoted y, at time t for an observation period (1, …, t – s), s  0, where s is the 

publication lag; then at t + 1 (say), data on ostensibly the same generic variable 

becomes available for (1, …, t – s + 1) and, typically, at least some data on the 

overlapping sample period differs, see Patterson (1995a). This process continues until, 

eventually, there is a sub-sample of data at time t + m that is (generally) unchanging, 

which concludes the revision process for that part of the data sample. The initial and 

revised data at different stages are referred to as different vintages of observations on 

y. We adopt the notation that there are v = 1, …, m vintages, with m being the last in a 

conditional sense; that is there is no presumption that this is the „true‟ data measured 

without error, although there may be a temptation for users to make that assumption, 

at least implicitly. Rather, the „final‟ vintage is the result of the conclusion of the 

measurement process. Typically one finds that the sequence of vintages become less 

variable as m is approached (which implies that the preliminary vintages are not 

efficient forecasts). 

 

The preliminary vintages naturally predate the final vintage and can thus be regarded 

as forecasts of the final vintage and, indeed, forecasts of any subsequent vintage. This 

was the focus of the seminal early articles by Mankiw et. al., (1984), Mankiw and 

Shapiro (1986), Mork (1987) and Nordhaus (1987), which shaped much subsequent 

research. That research established the view that preliminary vintages may be rational 

(or efficient) forecasts in the sense that subsequent revisions are „news‟ relative to the 

information set available at the time the preliminary vintages were formed; 

alternatively, the preliminary vintages may be less than efficient forecasts of later 

vintages. The two limiting cases are where the revisions are orthogonal to the 

preliminary vintage (pure „news‟) and where revisions are orthogonal to a later 

vintage (pure „noise‟). Much research has considered this question and for further 

references, the interested reader is referred to the website maintained by Dean 

Croushore (2009).  

 

The problems faced by policy makers, who need to take a timely view on the 

development of the economy and, at the same time, base their decisions on uncertain 

data, has led to a continuing interest in the properties of data revisions, see, for 

example, research at the Bank of England, Castle and Ellis (2002), Ashley et. al., 

(2005) and Cunningham et. al., (2007), at the Bureau of Economic Analysis, see 

Fixler and Nalewaik (2006) and at the Japanese Cabinet Office, see Kawagoe (2007). 

Research on methods has also continued, for example, an interesting parametric 

method, which develops an earlier state space approach to modeling data revisions 

(see, for example, Harvey, 1983, and Howrey, 1984) is due to Jacobs and van Norden 

(2010); this reflects the current research interest in modeling data revisions in a 

systems approach (for further references, see endnote 1). A recent contribution by 

Clements and Galvão (2009) illustrates the continuing interest in the impact of data 

revisions on forecasting models. 
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In a recent study Aruoba (2008) notes: “It is of great interest for practitioners and 

policy makers to find ways of exploiting the potential forecastability in real time …”. 

It is this forecastability that is the primary concern of this study. We construct 

forecasts of the final vintage by different methods and evaluate them against the 

baseline of the preliminary vintages. In a sense this is a development of the „news 

versus noise‟ debate, since if we can improve upon a preliminary vintage as a forecast 

of a later vintage using the same information set, then that preliminary vintage cannot 

be an efficient forecast of the later vintage.  

 

We consider two approaches to constructing forecasting models. Typically, the t ime 

series models used for forecasting are parametric and based on at least one of the 

restrictive assumptions of normality, stationarity and linearity; however, quite often 

financial and economic time series data are non-Gaussian and may be generated by 

processes that are nonstationary and/or nonlinear. The system based parametric 

approaches to modelling the structure of data revisions, such as a state space 

formulation, have also been applied within an essentially linear framework. 

Parametric models also require a specification that should match the underlying data 

generation process, typical choices being ARMA and VAR models. In contrast 

methods that do not depend on these assumptions are likely to be useful for modelling 

and forecasting economic data and, therefore, in the second approach, we construct 

models based on Singular Spectrum Analysis (SSA), which is a nonparametric 

method that does not embody the standard assumptions and exploits an analysis of the 

data in phase space rather than parameter space.  

 

The plan of this paper is as follows. The next section gives an overview to enable the 

key issues to be outlined as a guide to this study. The subsequent section outlines the 

framework for the interpretation of multi-vintage data; the MSSA methodology is 

presented in the fourth section; the fifth section considers the framework for forecast 

assessment; and the sixth section illustrates the application of SSA/MSSA and 

alternative parametric methods to the IIP, including an assessment of nonlinear 

dependence and non-normality; some concluding remarks are reserved for the final 

section. (An appendix gives details of the specification of the VAR models used in 

this study). 

 

Overview 

The SSA
2
 method consists of two complementary stages: decomposition and 

reconstruction (or estimation), with each stage comprising two separate steps. At the 

first stage, the series is decomposed into mutually orthogonal components and in the 

second stage the original series is reconstructed selecting those components that 

reduce the noise in the series. The reconstructed series is then used for forecasting 

new data points. The methods of SSA can be applied to a single series or jointly to 

several series and in the latter case it is referred to as multivariate SSA or MSSA; as 

in the case of parametric modelling, two or more series may be related, which in the 

context of MSSA has a correspondence in terms of matched components of the 

several series. 
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A particular concern of this study is to show how the flexibility of the MSSA can be 

used in forecasting data subject to multiple revisions, comparing that method with 

forecasts obtained by more conventional parametric models. In so doing, we make a 

distinction between forecasting „within-sample‟ and forecasting „out-of-sample‟. By 

the nature of the data measurement process, data for different vintages, v = 1, …, m, is 

published sequentially; that is letting the data for the v-th vintage of the generic 

variable y for time period t be denoted )v(
ty , it is necessarily the case that publication 

of this vintage precedes publication of vintages )v(
ty 1 , )v(

ty 2  and so on until the final 

vintage )m(
ty . Thus, one forecasting problem is to forecast )m(

ty  having available data 

on some of the preceding vintages relating to time t and preceding time periods. This 

is a within-sample forecasting
3
 problem, provided that the sample is interpreted as 

including the latest data on the earliest vintage.  

 

In contrast, the out-of-sample problem occurs when the data period to be forecast 

starts later than the period for which the most recent data on the earliest vintage is 

available. In this case, by definition, the first vintage of the data is not available and 

hence neither that nor any other vintage can act as the default forecast. This is the kind 

of problem in which it is necessary to „fix‟ a sample period or more precisely in our 

case an information set, on which estimation of the phase space or parameter space is 

based; given that information, the underlying algorithm projects the data forward in 

time. 

 

We have found the MSSA approach to be beneficial for a number of time series that 

are subject to revision. To illustrate the benefits we report results for the Index of 

Industrial Production (IIP) for the U.K, as in Patterson (2002). This variable is taken 

as a key indicator of the state of the U.K‟s industrial base and is regarded as a leading 

(monthly) indicator of the general state of the U.K economy. We are able to 

benchmark the improvement in forecasting using MSSA relative to standard linear 

models, such as ARMA and VAR models.  

 

In the case of within-sample forecasting, the comparison also includes the use of the 

preliminary vintages as the default forecasts; additionally in this context, the 

comparison is extended to recursive updating of the modelling space. Forecasting 

performance is evaluated in a number of ways. In addition to a standard comparison 

using the root mean squared error, we consider whether differences in forecasts are 

statistically significant, see Diebold and Marino (1995) and Harvey et. al., (1997), and 

whether the methods are able to forecast the direction of change. Overall, we find that 

there are significant gains in using MSSA. 

 

The General Structure of Real-time Data 

To establish some notation, let the variable of interest (the „generic‟ variable) be 

denoted y and let )v(
ty  be the v-th vintage (v = 1, , m) of y for the period t, where v 

= 1 indicates the initially published data and v = m the finally published data. The 

structure of the published data at time t, assuming a one period publication lag, can be 

represented4 in a data matrix tY  of dimension (t – 1)m, with each column 
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designating a vintage and each row a time period, as follows, where n.a indicates data 

not available at time = t: 
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Note that publication from a particular issue of the data source at time t traces back a 

diagonal of the observation matrix tY , which is a composite of data of different 

vintages; for example, at time t the published data is )(
ty
1
1 , )(

ty
2
2 , …, )m(

mty  . This is 

sometimes referred to as „real-time‟ data. The first complete set of vintages available 

at time t is )v(
mty  , v = 1, …, m. The time series of the v-th vintage of data is denoted 

)(v
Y  = )'y,,y(

)v(

T

)v(
1 v

  where vT   is the length of 
)v(

Y  and v = 1, …, m. 

 

Multivariate Singular Spectrum Analysis (MSSA) for Multi-vintage Data 

The data vintages are part of a measurement system characterised by m  1 vintages 

of the generic variable y and this section contains a brief description of the method of 

MSSA developed for the case of multiple data vintages.  

 

Each time series component of the multivariate system is viewed as the sum of 

unobservable components: the signal comprises components such as the trend, 

oscillations or periodic movements, and noise. This decomposition excludes the 

possibility of chaotic dynamics and we, therefore, also conducted a test, based on 

Lyapunov exponents, for the absence of this feature from our data
4
; for the general 

issues see, for example, Rivero et. al., (2005) and for a practical test see Saïda (2007).  

 

The aim of MSSA is to extract the signal leaving the residual; more generally, the 

algorithm can also extract groups corresponding to components of the signal. The two 

stages to the process are decomposition and reconstruction, each of which comprises 

two steps. Finally, the MSSA algorithm provides forecasts via a linear recurrence 

formula.  

 

Stage 1: Decomposition: Embedding and Singular Value Decomposition (SVD) 

Step 1: Embedding 

Embedding is a mapping that translates a one-dimensional time series into a multi-

dimensional series through the use of subsets of the original series. The key output in 

this stage is the trajectory matrix, generically referred to as X. This is a matrix that is 

formed by taking a window of observations of length L and moving this throughout 

the sample. Such a procedure will be familiar from time series analysis that focuses on 

calculating moving averages or recursive estimation with a moving window; here 

moving vectors of observations are created. 
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To see how this works we take a window comprising the first vL  observations of 

)v(
Y , then drop the first observation and add the ( vL  + 1)-th observation to create 

another same length window (vector). This process is continued, with the data 

organised into a matrix 
)v(

X , of dimension vL  vK , where vK  = vT  – vL + 1. The 

resulting trajectory matrix 
)v(

X  is: 
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
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    (2) 

 

In this set-up vT  and vL  are allowed to differ depending on v; thus, in general 
)v(

X  

is of dimension vL  vK  where vK  = vT – vL  + 1. In practice, a common vL  is 

chosen in the case that the trajectory matrices are stacked horizontally to obtain the 

system trajectory matrix. For simplicity of exposition, we also assume T = 1T = … = 

mT  implying 1K  = … = mK  = K; this assumption is relaxed below.  

  

The trajectory matrix for the system as a whole comprising 
)v(

Y , v = 1, …, m, is 

obtained by stacking the trajectory matrices horizontally to form the trajectory matrix 

of the multidimensional series. The resulting trajectory matrix X of dimension LmK, 

is given by: 

 

X  =  )()()1( ;;;; mv XXX        (3)  

=  )()(
1

)()(
1

)1()1(
1 ;;;;

m
K

mv
K

v
K XXXXXX     

 

Notice that each of the m blocks of K columns corresponds to the trajectory matrix for 

a particular vintage. X is the trajectory matrix for the system of data vintages given by 

Y  = ),,,,(
)()()1( mv

YYY   which, in this simplified case, is a vector of dimension 

mT1, where 
)v(

Y  = )',,(
)()(

1
v

T
v

yy  . The case where vT  and so vK  are not equal is 

easily accommodated; in that case because the individual trajectory matrices are 

stacked horizontally, they can be of different column dimensions. Thus, X is of 

dimension  


m

v vKL
1

 and Y is of dimension 1
1

 

m

v vT . 

 

The trajectory matrix is an example of a Hankel matrix in which the diagonal 

elements are equal for all combinations where the sum of the row (i)  and column (j) 

indices are equal to a constant; that is, ijX  = jiX  for ij = c. Visually, the diagonals 

are those on a line from the South-West to the North-East of the matrix, which are 

referred to as the Hankel diagonals. This is a characteristic that is used in the second 
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stage in which the original series are reconstructed using the principal components 

obtained in the next step. 

 

Step 2: obtain the singular value decomposition, SVD, of the system trajectory matrix 

The second step in stage 1 is to construct the SVD of the trajectory matrix X and 

represent it as a sum of d  L rank-one, mutually orthogonal elementary matrices. 

First define the matrix C = 'XX  and denote by d ,,1   the ordered non-negative 

eigenvalues of C, such that d 1  0; where d  L, with d = L if all i   0. 

The corresponding eigenvectors are d
iiU 1}{  ; the factor vectors are d

iiV 1}{   where iV  

= iiUX /'  are of dimension mK1. The principle component vectors are iiV  

and the eigentriple that forms the basis of the SVD is ),,( iii VU .  

 

The trajectory matrix X is decomposed into the sum of d elementary matrices iX  = 

'iii VU , such that: 

 

X  =  

d

i iX
1

         (4) 

 

The matrices iX  are referred to as elementary matrices, which have rank 1 and are, 

by construction, mutually orthogonal. The SVD given by (4) is optimal in the sense 

that among all the matrices of rank r  d, the matrix 
)r(

X  =  

r

i iX
1

 provides the 

best approximation to the trajectory matrix X in the norm sense, such that 

||XX|| )r(  is a minimum.  

 

The contribution of the component iX  to the expansion (3) is given by its eigenvalue 

i  as a share in the sum of the eigenvalues, that is  

d

j ji 1
/  . The singular 

spectrum (hence the description singular spectrum analysis) refers to a graph of the 

ordered eigenvalues, d 1  0 and is useful in deciding which principal 

components to include in the reconstruction step of the SSA method. If none of the 

eigenvalues are negative, then the singular spectrum is a graph of the L ordered 

eigenvalues. 

 

The aim of the first two steps is to achieve separability of the components in the 

decomposition of the series, for example, in a simple case into the trend, any periodic 

elements and the noise. In this respect the selection of L is critical, which must be 

large enough to allow a separation into the components. If L is too small, not all of the 

components will be captured and it must, therefore, be large enough so that each 

column of 
)v(

X  captures an essential part of the (time series) behaviour of 
)(v

Y . On 

the other hand, if L is too large there will be too few „windows‟ to follow the evolving 

behaviour of 
)(v

Y . The degree of separability can be assesed empirically by, for 

example, means of the weighted correlation coefficients – see equation (14) below. 

The use of the SVD has an anology with principal components analysis (PCA), in 

which orthogonal components of the orginal series are extracted and a reduced 
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dimensionality can be achieved. In SVD, the directions determined by the d 

eigenvectors, d
iiU 1}{  , are orthogonal and maximise the variation in that direction, 

just as in PCA. 

 

Stage 2: Reconstruction, Hankelisation and Gouping 

Step 3: diagonal averaging (block Hankelisation)  

In the first stage of this step, the elementary matrices iX , corresponding to the i-th 

principal component in the SVD, are used to (re)construct series of the same length as 

the original series. Note that X is in m blocks, one for each vintage of data; thus each 

block is Hankelised and then the m resulting vT 1 vectors are stacked vertically into 

a 1
1

 

m

v vT  vector; if vT  = T then the resulting vector is mT 1. We briefly 

describe the Hankelisation procedure for one of these blocks. 

 

The Hankelisation procedure may be represented by first rearranging iX  so that the 

sum of each Hankel diagonal is one element in a T1 vector, say '
,iHX  and then 

premultiplying by a diagonal matrix H = diag )h( i , with diagonal elements that are 

the inverse of the number of elements in the corresponding row of i,HX . That is: 
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where 
)i(

k,jx  is the (i,k)-th element of iX . Note that the sum of the subscripts in each 

row is the same; thus, the general element sums and then averages the Hankel 

diagonal elements for each row element. The result is a T1 vector of the time series 

components corresponding to the i-th principal component of the trajectory matrix. 

The T vr  matrix X
~

 of all reconstructed components is defined with typical column 

vector iX
~

, thus X
~

 = ]X
~

,,X
~

,X
~

[
vr21  . 

 

Step 4: grouping 

Let r denote the trajectory dimension resulting from grouping in the multivariate case 

and let vr  denote the dimension of the univariate trajectory space for the v-th vintage. 

Golyandina and Stepanov (2005) show that minr   r  maxr , where minr  = max{ vr : v = 

1, …, m} and maxr  =  

m

v vr1
. Thus, the ceiling to the multivariate trajectory 

dimension is simply that obtained when there are, in a sense, no common or matched 
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components amongst the m vintages; the presence of matching components reduces 

the dimension of the multivariate system and indicates that the system is interrelated, 

which should result in gains when forecasting the series. The selection of r  minr  

leads to a loss of precision as parts of the signals in all series will be lost. From the 

other side, if r  maxr  then noise is included the reconstructed series. The selection of r 

 minr  (keeping r > minr ) is a good choice for highly interrelated series sharing several 

common components. The selection of r   maxr  is necessary when the series analysed 

have very little relation to each other.  

 

The result of the grouping step is the reconstructed series, or estimated signal in this 

case, for all m vintages; that is: 

 

Y
~

 =  Ii iX
~

         (6) 

 

So that Y
~

is the estimation counterpart of the actual series Y and of dimension mT 1 

or, more generally, 1
1

 

m

v vT .  

 

Forecasting multiple series 

The SSA forecasting method can be applied to time series that satisfy the linear 

recurrence formula, which for a single series, is given by: 

 

ty   = 


 

1

1

L

j jtj ya                 (7) 

 

where 
1L

1jj}a{ 
  is a sequence of constant coefficients. The class of time series 

governed by the linear recurrence formula is wide, including harmonics, polynomials 

and exponential time series, see Golyandina and Stepanov (2005). Within the 

estimation sample, fitted values of ty  are just given by the reconstructed series; 

otherwise, forecasts are dynamic and given by application of the recurrence formula.  

 

Letting a ^ over a variable denote an estimated or forecasted value, then for a single 

series, forecasts are obtained as follows. 

 

Estimation sample, for t = 1, …, T: 

 
)v(

tŷ = )v(
ty~          (8a) 

 

where )(~ v
ty  is the t-th element of 

)v(
Y
~

. 

 

Dynamic forecasts, t = T + 1, …, T + h: 

 
)v(
hTŷ   = 



 

1L

hj

)v(
jhTj ya  + 



 

1

1

)(ˆ
h

j

v
jhTj ya  for h  L – 1     (8b) 

)v(
hTŷ   = 



 

1

1

L

j

)v(
jhTj ŷa                    for h  L – 1   (8c) 
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Note that (8b) uses the actual values of jhTy   where they are available, that is where 

T + h – j  T.  

 

For simplicity of exposition assume that vK  = K, then in the case of multiple series, 

there is one (K – 1)1 vector of recurrence coefficients for each of the v = 1, …, m 

time series. Let Ẑ  denote the m(K – 1)1 overall vector of vertically stacked vectors 

of the last K – 1 forecast values, that is: 

 

Ẑ   =  ')(
1

)(
1

)1(
1

)1(
1

ˆˆ;;ˆˆ m
hT

m
KhThTKhT yyyy     (9) 

 

Then the forecasts are obtained by application of an extension of the linear recurrence 

rule to the multivariate case. The general representation is: 

  

F̂  = Ẑ           (10) 

 

where F̂  = )'ˆˆˆ(
)()2()1( m
hThThT yyy   . Where actual values are available they replace 

forecasted values.  

 

The multivariate recurrence coefficients are given in the   matrix of dimension 

mm(K – 1), where: 

 

   = ')'( 1 QIm          (11) 

 

The components of   are defined as follows. To obtain Q, first note that an output of 

the SVD is the set of factor vectors jV  = jiUX /' , j = 1, …, r, which are each of 

dimension (mK1); next, as in the univariate case, a new vector is created, but with 

the m elements at K, 2K, …, mK excluded. The resulting vector is denoted 
m

jV 
, and 

these vectors, j = 1, …, m, are collected into the m(K – 1)  r matrix Q, such that:  

 

Q   =  s
r

s
j

s VVV  ;;;;1       (12) 

 

The set of excluded elements from jV  becomes the j-th column vector of the m r 

matrix   = ][ 1 rj   , that is j   = )'( )()()1( m
j

v
jj   , 

such that: 

 

   = 























)()()(
1

)(
1

)()(
1

)1()1()1(
1

m
r

m
j

m

vv
j

v

rj

















     (13) 
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Selection of parameters: L 

In principle more than two groups corresponding to the signal and the system noise or 

residual, can be identified in MSSA; however, in our case, interest centres on this 

two-fold split, the signal providing the basis on which to forecast the series. MSSA 

requires the selection of two parameters: the window length L and the number of 

elementary matrices r from which to form the index set I. Their selection depends on 

the structure of the data and the purpose of the analysis. There are some particular 

considerations of the structure of the multi-vintage data that affect the choice of L. 

 

In the case of multi-vintage data subject to the kind of data measurement process 

outlined in second section, the data vector for each vintage is of a different length. For 

example, consider a bivariate system with vintages v and m, (which we find to work 

well for IIP). The data vectors are then of dimension vT  and mT , respectively, where 

vT  – mT  = m – v  0; this is evident from the data matrix tY , see (1) above. In effect 

within-sample forecasting relates to „squaring‟ off the matrix tY , replacing the not 

available (n.a) observations by forecasts using the SSA recurrence relationships; the 

use of 
)(vY  and 

)(mY  implies that L should be chosen such that L  m – v + 1 so that 

at least one observation of the final vintage is used in the linear recurrent formula. In 

the case of a system with more than two vintages, L should be chosen such that L  m 

– min(v) + 1, where min(v) is the minimum of the v values. 

 

Otherwise, L should be selected to enable separability of the components, here into 

the signal and the noise. For example, if L is small, the trajectory matrix would be 

influenced by the system noise, so L should be sufficiently large to capture the local 

trend without being too influenced by the noise. The maximum number of principal 

components in the SVD is L, so the singular spectrum can be helpful in deciding on 

the selection of L. The first elementary matrix 1X  with the norm 
1
 has the largest 

contribution to the norm of X in (3) and the last elementary matrix dX , with the norm 


d
, has the smallest contribution to the norm of X.  

 

Selection of parameters: r 

The aim in choosing the value of r is to separate the noise and signal; the SSA 

decomposition is successful if the resulting additive components of the series are 

separated from each other. The weighted correlation or w-correlation, see Golyandina 

et. al., (2001) can be used in determining separability. It is a geometrically motivated 

measure of dependence between two series, say, 
)i(

TZ  and 
)j(

TZ , defined as: 

 

w
ji,   = 

w
)j(

Tw
)i(

T

w
)j(

T
)i(

T

||Z||||Z||

Z,Z 
       (14) 

 

where w
)j(

T
)i(

T Z,Z   = 
)j(

t

T

t

)i(
tt zzw 1

, w
)i(

T ||Z||  = w
)i(

T
)i(

T Z,Z   and )i(
tz  is a 

typical element of 
)i(

TZ . The series are w-orthogonal if 
w

ji,  = 0, which is necessary 

for separability. The weights are: 
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tw  = t  for 1  t  *L  

tw  = *L for *L   t  *K  

tw  = T – t for *K   t  T 

 

where *L  = min(L, K), *K  = max(L, K).  

 

The w-correlation, w
ji, , is calculated for pairs of reconstructed components 

corresponding to pairs of the L eigenvalues in the SVD. Large values of w
ji,  between 

the reconstructed components indicate that these are candidates to be put into one 

group, corresponding to the same element in the MSSA decomposition 

 

The next stage is to obtain the sequence of cumulative w-correlations. The original 

time series is first reconstructed using just the first component )(
TZ

1  = 1X
~

, 

considering the remaining components as the noise element, say )(
TZ

2  =  

m

2j jX
~

 

corresponding here to eigentriples 2, …, m. Then the w-correlation between )(
TZ

1  and 

)(
TZ

2  is calculated, denote it C(1).  

 

Next, take the first two eigenvalues, obtain the reconstructed series and consider the 

rest, that is using eigentriples 3, …, m, as noise, and again calculate the w-correlation, 

denote it C(2). Continue, so that a sequence of cumulative w-correlations is 

constructed as C(k), k = 1, …, L – 1,  between the reconstructed series from the first k 

components and the remaining L – k components.  The existence of structure in the 

series is indicated by local minima and maxima in the graph of C(k) against k. For 

example, a typical pattern is a decline in the cumulative w-correlations corresponding 

to a separation of the components as k increases; the first local minimum indicates the 

first separation and subsequent local maxima suggest possible secondary structure. 

 

Forecasting assessment framework 

In this section, the forecasting problem is considered in greater detail; this is a 

problem to be considered in „real time‟, that is as it would present itself to a 

practitioner who has available at time t the data summarised in the data matrix tY  of 

equation (1). As noted in the introduction, two aspects of the forecasting problem are 

distinguished depending on the information that is available at the time of forecasting.  

 

Forecasting within-sample  

The first of the real-time forecasting problems at time t is to complete the final 

column of the data matrix tY , with forecasts of )(m
sty  , s = m – 1, …, 1; (forecasts are 

indicated by ^ above). This is referred to as a within-sample problem in the sense that 

the time subscript, t – 1,  of the last forecast observation, 
)(

1
ˆ m

ty  , matches that of the 

most recent observation, 
)1(
1ty , in the data matrix at time t. In contrast, the out-of-

sample problem refers to forecasts that extend the data matrix.  
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The data matrix tY  of (1) is reproduced below, but with the final column completed 

by forecasts: 

 

tŶ   = 





















































)m(
1t

)1(
1t

)m(
2t

)2(
2t

)1(
2t

)m(
3t

)3(
3t

)2(
3t

)1(
3t

)m(
1mt

)m(
mt

)3(
1mt

)3(
mt

)2(
1mt

)2(
mt

)1(
1mt

)1(
mt

)m(
1

)3(
1

)2(
1

)1(
1

ŷy

ŷyy

ŷyyy

ŷ

y

y

y

y

y

y

y

yyyy










    (15) 

 

One way of obtaining the forecasts is to project forward using only data in the final 

column, as in the case of a univariate model using either standard ARMA modelling 

or univariate SSA. At time t, the information set on which to base the univariate 

forecast is fixed at )m(
mt , that is the final column of the data matrix: 

 
)(m
mt  = )',,( )()(

1
m
mt

m
yy         (16) 

 

The h-step ahead forecasts are formed conditional on )(m
mt , and the conditional 

within-sample h-step ahead forecast of )(m
vty   is denoted: 

 
)()(

, |ˆ m
mt

m
hvty      v = m – h; h =  1, 2, …, m – 1    (17) 

 

For h varying, this generates the sequence 
1
1

)()(
, }|ˆ{ 


m
h

m
mt

m
hvty  . Alternatively, fixing h 

(for example, for the 1-step ahead forecast, h = 1) and allowing t to vary, generates 

the sequence 
nT

Tt
m
mt

m
hvty 

 }|ˆ{ )()(
,  ; it is these sequences for h = 1, 2, …, m – 1, which are 

used in constructing measures of forecasting comparison.  

 

In fact, this univariate procedure makes no use of information in tY other than that of 

the final column with terminal observation, )(m
mty  . In this case, the estimation sample 

for the univariate model of the m-th vintage is (1, …, t – m), so that forecasting first 

takes up the within-sample difference (t – m + 1, …, t – 1) and then moves to the out-

of-sample period (t, t + 1, …, t + n), n  1.  

 

Alternative forecasts are provided by the preliminary vintages. Generally, )(v
vty  , 

available at t – v + 1, is an h-step ahead forecast of )(m
vty  , where h = m – v, v = 1, …, 

m – 1 implying h = m – 1, …, 1. In more detail, at time t, 
)1(
1ty  is published, this is the 

first forecast internal to the measurement system at t of the final vintage 
)(

1
m

ty  , where 

the latter is not available until a further m – 1 time periods have elapsed. Also at time 

t, 
)2(
2ty  is published, which can be regarded as the (m – 2)-period ahead forecast of 

)(
2

m
ty  ; this is the second available forecast of 

)(
2

m
ty  , the first being the (m – 1)-period 



 14 

ahead forecast at time t, )1(
2ty ; this process continues through to the publication at time 

t of 
)1(

)1(



m
mty , which is the one-period ahead internal forecast of 

)(
)1(

m
mty  , being the 

eleventh in the series of internal forecasts of 
)(

)1(
m

mty  .  

 

As an alternative to the univariate approach, the different vintages can be modelled 

jointly in a multivariate system. This could take the form of a VAR model or, in the 

present context, the MSSA algorithm can be applied to the system. For example, 

consider a bivariate system comprising vintages v and m, then the data at time t 

comprises the vectors )(v
vtY   = )',,( )()(

1
v
vt

v
yy   and )(m

mtY   = )',,( )()(
1

m
mt

m yy  . The 

trajectory matrix that follows from this system is an example of equation (10) and the 

MSSA algorithm is then applied to the bivariate trajectory matrix.  

 

This procedure can be repeated for vintages v, v  m, and m. In principle, a sequence 

of (v + 1)-th order MSSA models could be constructed starting with )1(
1tY  and )(m

mtY  , 

continuing with )1(
1tY , )2(

2tY  and )(m
mtY   and so on through to the m-th order system 

comprising )1(
1tY , )2(

2tY , …,  
)1(

)1(



m
mtY  and )(m

mtY  . This can be reduced to a sequence of 

bivariate models if vintage v data in a sense encompasses data of previous vintages 

(for example, in adding nothing significant in a mean squared error sense to the 

accuracy of the forecasts). We found that the simpler bivariate approach was as 

effective as the corresponding higher order model and, therefore, the empirical results 

reported below relate to this case.  

 

The information set for the within-sample bivariate forecasts is: 

 
),( mv

vt  = )',,(;)',,( )()(
1

)()(
1

m
mt

mv
vt

v
yyyy        (18) 

 

That is )m(
mt  is appended by the v-th column of tY . The conditional within-sample 

h-step ahead bivariate forecast of )(m
vty   is denoted: 

 
),()(

, |ˆ mv
vt

m
hvty      v = m – h; h =  1, 2, …, m – 1    (19) 

 

At time t, this forecast uses information on 
)(v

y  to time t – v and on 
)(m

y  to time t – 

m to produce h-step ahead forecasts of 
)(m

y  in order to complete the final column of 

tŶ . 

 

These forecasts, whether based on a univariate or bivariate model, are recursive in the 

sense that as t increments by one at each step in the evaluation sample, the underlying 

model is updated by the new sample observation. 

 

Forecasting out-of-sample  

The second of the forecasting problems arises when the forecast period is beyond the 

within-sample period. The forecast is then necessarily ahead of the last period for 

which vintage v data is available in tY ; thus, neither the final vintage data nor the v-th 
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vintage data are available. This occurs at time t – (v – 1) in forecasting )(m
sty  , s = –(v – 

1), …, 0, 1, …, n, using )(v
vtY   where v  m. In the case of univariate forecasts, the 

information set available is identical to the within-sample case and so the distinction 

applies to the VAR and the bivariate version of MSSA and not to the ARMA model 

and univariate SSA.  

 

In the case of a bivariate SSA model, the data on )v(
vtY   and )m(

mtY   are used jointly to 

provide forecasts of )(v
sty   and )(m

sty  . The bivariate forecasts at time t – (v – 1) are 

conditioned on the information set denoted ),(ˆ mv
vt , defined as follows:  

 
),(ˆ mv

vt  = )}'|ŷ,,ŷ(;y,,y{;)'y,,y( )m,v(
vt

)m(
vt

)m(
1mt

)m(
mt

)m(
1

)v(
vt

)v(
1    (20) 

 

The difference between )m,v(
vt

ˆ
  of (24) and )m,v(

vt  of (22), is that the missing values 

in the final column of tY are replaced by their forecasts from the bivariate system. 

 

We assume that the data is published monthly (as in the case of the IIP) and that the 

problem is to construct an out-of-sample forecast of an annual cycle of data, that is 

month 1 through to month 12; for a particular estimation sample this generates a 

sequence of out-of-sample forecasts with index i = 1, .., 12. A sequence of annual 

forecast cycles is then generated over the forecast period, t + 1, …, t + n. The 

sequence of h-step ahead out-of-sample forecasts comprises those forecasts with the 

same value of h. In each case, for both the bivariate models considered, the final 

vintage is combined with a different preliminary vintage, v = 1, …, m – 1. This gives 

rise to two dimensions of evaluation: the index of the horizon length, h, and the index 

of the preliminary vintage, v, which is combined with the final vintage. 

 

For a particular annual cycle, the (conditional on ),(ˆ mv
vt ) out-of-sample forecast data 

vector for the final vintage, where the underlying model comprises the v-th and final 

vintage, is: 

 

),(ˆ mv
tY  = )'ˆ|ˆ,,ˆ,ˆ( ),()(

12),112(
)(
2,1

)(
1,

mv
vt

m
t

m
t

m
t yyy    v = 1, …, m – 1 (21) 

 

The sequence of h-step ahead forecasts is 
n
j

mv
vjt

m
hjty 0

),()(
, }ˆ|ˆ{   , for h = 1, …, 12. 

 

Forecast evaluation criteria 

The forecast performance is evaluated in terms of two criteria: the relative root mean 

squared error, rrmse, and the accuracy in determining changes in direction. 

Throughout, T is the start of the evaluation period, m is the final vintage and n is the 

forecast horizon. 

  

Within-sample 

Univariate h-step ahead: in the univariate case, the rmse relative to an alternative 

forecast (indicated by y


), is given by: 
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rrmse(h) = 
 

 

2/1

0

2)()()(
,

0

2)()()(
,

)|(

)|ˆ(

























 

 

n

j

m
vjT

m
mjT

m
hvjT

n

j

m
vjT

m
mjT

m
hvjT

yy

yy


   (22a) 

 

This measure is calculated for each h = 1, 2, …, 11 and v = m – h.    

 

The idea is to evaluate the h-step ahead forecast by the univariate SSA method for h = 

1, 2, …, 11, and to scale it relative to an alternative method. In the case of the 

univariate forecasts, the scaling is relative to the ARMA forecast of the same horizon 

length.  

 

Bivariate h-step ahead: in this case use is made of vintages other than the m-th in 

forming the forecast. The MSSA and VAR models each use vintage v and m data over 

the forecast period; alternatively, the preliminary vintage v data implies an h = m – v 

step head forecast. Scaled by the rmse for the corresponding preliminary vintage, the 

rrmse is: 

 

rrmse(h) = 
 

 

2/1

0

2)()(

0

2)(),()(
, )|ˆ(

























 

 

n

j

m
vjT

v
vjT

n

j

m
vjT

mv
vjT

m
hvjT

yy

yy 
     (22b) 

 

This measure is also evaluated for each h = 1, 2, …, 11 and v is obtained from v = m – 

h. In this case it is sensible to scale the numerator rmse by the rmse of the preliminary 

vintage data of the same horizon length as these are competing candidates for 

forecasting the final vintage. 

 

Bivariate out-of-sample forecasts 

In this case there are h-step forecasts, h = 1, …, 12, available for each value of v; 

conditional on v, the rrmse is given by, 

 

rrmse(h| v) = 
 

 

2/1

0

2)()()(
,

0

2)(),()(
,

)
~

|~(

)ˆ|ˆ(

























 

 

n

j

m
vjT

m
vjT

m
hjT

n

j

m
vjT

mv
vjT

m
hjT

yy

yy




          (22c) 

 

If rrmse(h)  1, then the SSA forecasts outperform the denominator forecast in a root 

mean squared error sense; alternatively, if rrmse(h)  1, then the SSA forecasts are 

worse than the denominator forecast. The Diebold-Mariano (1995) test, modified by 

Harvey et. al. (1997)
6
, denoted HS1 , is calculated to check if the difference between 

the two forecasting procedures is statistically significant. 

 

Predicting turning points 

For some purposes it may be more harmful to make a smaller prediction error yet 

wrongly forecast the direction of change than to make a larger directionally correct 

error, see Ash et. al., (1997) and Heravi et. al., (2004). Clements and Smith (1999) 

suggest that model forecasts may be better evaluated by assessing their accuracy in 
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forecasting the direction of change. Thus, we also compute the percentage of forecasts 

that correctly predict the direction of the annual change in y. That is we compare the 

sign of )(
)(

12
)( m

t
m

t yy   with the sign of the predicted annual change from the 

preliminary vintage and, as the case may be, the univariate or bivariate SSA model 

and the ARMA or VAR model (see the appendix for detail of the VAR specification).. 

 

The results in the tables that follow in section 5, present the proportion of times that 

the forecast is of the right sign together with the significance of the test statistic 

constructed as follows. Let tZ , t = T + 1, …, T + n, take the value 1 if the forecast 

correctly predicts the direction of change and 0 otherwise. The Moivre-Laplace limit 

theorem implies that for large samples, the test statistic DC = 2/1)5.0(2 nZ  , where 

Z  is the mean of tZ  over the forecast period, is aysmptotically distributed as 

standard normal. When Z  is significantly larger than 0.5, the forecast is said to have 

the ability to predict the direction of change; alternatively if Z  is significantly smaller 

than 0.5, the forecasts tend to give the wrong direction of change. 

 

Empirical Analysis 

The data on IIP: structure and summary statistics 

The IIP is published in Table 7 of the monthly Digest of statistics (MDS) as “output 

of the total production industries”. The overall data period for this study comprises 

423 monthly observations for 1972:1 to 2007:3 on 12 vintages of seasonally adjusted 

IIP. The first vintage, which is published one month after the latest month of 

published data, refers to the first publication in the MDS. The second vintage refers to 

the next published figure and so on. For this study we take the 12 th vintage as the final 

vintage (m), so that there are 12 vintages of data on the same generic variable.  

 

Descriptive statistics 

The revisions to the data are defined as v
tr   

)m(
t

)v(
t yy  , with % revisions given by 

)v(
tpr   

)v(
t

)m(
t

)v(
t y/)yy( 100 . To give an idea of the structure of the revisions, 

some summary statistics for )v(
tpr  are presented in Table 1. 

 

„Table 1 here‟ 

 

The mean revision is negative for all vintages, showing that the estimates 

systematically under-predict the final vintage. The standard deviations also indicate 

that the early vintages are relatively noisy predictions of the final vintage; for 

example, the standard deviation of the first revision is twice the standard deviation of 

the 8th revision. This decline in the standard deviations as v increases is an implication 

of the „noise‟ characterisation of revisions, which is considered further below. 

 

Time series characteristics of the data 

To illustrate the time series characteristics of the data on the IIP, we briefly consider 

some background material. Figure 1 graphs the first and final vintages of IIP and 

Figure 2 shows their first differences. It is evident from Figure 1 that there is a trend 

in the data, the critical question in this context being whether the trend is better 

characterised as a stochastic or deterministic trend. There is, however, no evident 
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trend in the first differenced series, see Figure 2. (Craft, Leybourne and Mills, 1989, 

found that a measure of industrial production during the industrial revolution that 

imposed two unit roots worked well, but the data characteristics of that period of 

growth do not translate to the 20
th
/21

st
 century data period considered here; moreover, 

Newbold and Agiakloglou (1991) found that the application of some standard unit 

root tests did not suggest two unit roots for that historical period.) 

 

„Figures 1 and 2 about here‟ 

 

To investigate further, Table 2 reports the psuedo-t test statistics due to Dickey and 

Fuller, DF, (Fuller 1996), Elliott, Rothenberg and Stock, ERS, (1996) and Shin and 

Fuller, SF, (1998). The ADF and ERS statistics use an autoregressive model, whereas 

the SF procedure uses exact ML estimation of the unconditional likelihood function 

with an ARMA model, or ARIMA model. (Note that the ERS-type tests are not 

sensible when the alternative is not local-to-unity as in the case of the test for a second 

unit root.)  

 

The sequential testing procedure follows Dickey and Pantula (1987), with lag lengths 

selected alternately by AIC and BIC. Note that the test statistics for two unit roots 

indicate unambiguous rejection of the null hypothesis; the sample values being well in 

excess, in absolute value, of the respective 1% critical values. In the case of the tests 

for two unit roots, the alternative is a single unit root with an intercept, that is a drifted 

random walk; neither an explosive alternative nor nonstationarity about a linear trend 

are suggested by the data and, indeed, the qualitative results are as strong for rejection 

if this alternative is entertained. In the case of the test statistics for a single unit root, 

the null hypothesis is not rejected, the alternative in this case being stationarity around 

a linear trend. Thus, we conclude that we cannot reject the null hypothesis of a single 

unit root for any of the vintages of IIP. The parametric forecasting models for IIP, 

therefore, imposed a unit root. 

     

„Table 2 about here‟ 

 

News or noise? 

A longstanding interest in assessing the characteristics of data revisions is whether 

they can be viewed as „news‟ or „noise‟. To ensure stationarity the revisions are 

analysed in first differences, thus first define )v(
tz   )v(

ty , where  is the first 

difference operator, so that the revisions are defined as v
t,zr   )m(

t
)v(

t zz  . If the 

revisions are news, then the v-th revision v
t,zr  is not forecastable given )v(

tz , since all 

information has been efficiently incoprorated into )v(
tz ; as a result, v

t,zr  should be 

orthogonal to )v(
tz . If the revisions are noise, then v

t,zr  is orthogonal to )m(
tz , simply 

being a measurement error relative to )m(
tz . These hypotheses are referred to 

respectively as the efficient forecasts hypothesis (EFH) and the measurement error 

hypothesis (MEH). The standard framework testing these hypotheses is: 

 

„News‟: EFH 
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)m(
tz  = *

1  + )v(
t

*
2 z  + *

t   v = 1, …, m – 1  

 
v
t,zr  = 1  + )v(

t2 z  + t    

 

where 1  = *
1 , 1  = 1 – *

2 , t  = *
t  and 0H : 1  = 2  = 0. 

 

 „Noise‟: MEH 
)v(

tz  = 1  + )m(
t

*
2 z  + t   v = 1, …, m – 1 

 
v
t,zr  = 1  + )m(

t2 z  + t    

 

where 2  = *
2  – 1 and 0H : 1  = 2  = 0. 

 

In each case the alternative hypothesis is the negation of the null hypothesis. 

Estimation of these regressions should allow for serial correlation in the regression 

disturbances, which is induced by the implict forecasting horizon. As Brown and 

Maital (1981) and Mork (1987) note, the serial correlation is in the form of a moving 

average error process of order j, where j is the elapse time between compilation of the 

the preliminary and final vintages; see Patterson and Heravi (1992) for details in a 

revisions context. The results for testing the EFH and MEH for IIP are reported in 

Table 3, where the table entries are the test statistic (an F test on the appropriate 0H ) 

with the corresponding p-value shown beneath the test statistic. 

 

„Table 3 about here‟ 

 

The results are unambiguous. First, the EFH is uniformly rejected for all vintages 

except the last, indicating that the revisions are in principle forecastable; it is only 

with the very last vintage that the results indicate, at least in a linear context, that the 

final revision not forecastable and is „news‟. Second, the MEH is not rejected for any 

of the vintages. Taken together these results are promising in the sense of offering 

improvments on taking the preliminary vinatges alone as implicit forecast of the final 

vintage. 

 

Assessing nonlinear dependence 

If a time series is the output of a non-deterministic, linear dynamic system, then 

measures of linear association such as the standard correlation coefficient,  , can be 

used for measuring dependencies, for example, between two time series. However, if 

the data are outputs from a nonlinear process, a measure should be used that has the 

ability to capture the nonlinearities of series. Granger and Lin (1994) defined a 

standardised measure based on the mutual information between the series (see also 

Darbellay, 1998, and Granger et. al., 2004), referred to as the global correlation 

coefficient, defined as:  

 

),( YX   = 
2/1)}]Y,X(I2exp{1[       (23) 
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)Y,X(I  is the mutual information of two continuous random variables X and Y  

given by:  

 

I(X, Y)  =  
 
    

x y

dxdy
yfxf

yxf
yxf

,
ln,      (24) 

 

where f(x, y) is the joint probability density function (pdf) of X and Y, and f(x) and f(y) 

are the marginal pdfs of X and Y, respectively.  

 

The coefficient )Y,X(  varies between 0 and 1 and measures the dependence, 

whether linear or nonlinear, between X and Y. As to the former, an important property 

of ),( YX  follows if X and Y are bivariate normal with correlation coefficient  ; in 

that case )Y,X(  = ||  , see Granger and Lin (1994). The null hypothesis of no 

dependence corresponds to )Y,X(  = 0 and the alternative hypothesis to )Y,X(   

0; the critical values, obtained by simulation, are provided in Granger et. al., (2004).  

 

The main difficulty in estimating the mutual information and global information 

measures from empirical data lies in the fact that the relevant pdfs are unknown. One 

solution to this problem is to approximate the densities by means of histograms, but a 

histogram with an arbitrary bin size would not be the best way, because it can cause 

underestimation or overestimation of the empirical mutual information. To overcome 

this problem we use the method of marginal equiquantization, which establishes a 

homogeneous partition of the space into equiprobable cells. The partition is stopped 

when local independence is found between cells using the chi-square test for that 

purpose, see Darbellay (1998). 

 

Table 4 shows the results of measuring global correlation and linear correlation 

between the revisions )v(
tr  and the preliminary vintage, )v(

ty , and between )v(
tr  and 

the final vintage, )m(
ty . All table entries are significant at the 5% level as indicated by 

*.  These results strongly suggest that there is a significant degree of nonlinear 

dependence among the series; note that, uniformly across the vintages, global 

correlation exceeds linear correlation, suggesting that nonlinearity is a feature of the 

data. This observation 

 

„Table 4 here‟ 

 

Multivariate non-normality 

The SSA method does not assume linearity or normality of the data either in finite 

samples or asymptotically. To assess the normality aspect of our data set, we used the 

Doornik-Hansen Omnibus, DHO, multivariate normality test
7
, see Doornik and 

Hansen (1994). This is a multivariate version of Shenton and Bowman‟s (1977) 

univariate omnibus test for normality, based on transformed skewness and kurtosis 

coefficients.  

 

The DHO(p) test statistic is approximately distributed as )2(2 p , where p is the 

number of series being considered jointly. Two cases of interest reported here. In the 
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first case, the test is applied pairwise between )v(
tr  and )v(

ty , and also pairwise 

between )v(
tr  and )m(

ty  (as in Table 2), with the results reported in Table 3. All table 

entries exceed the 99% quantile, indicating that there is strong evidence of non-

normality. 

 

The second case is when all 12 vintages are considered together, so that the null 

hypothesis corresponds to multivariate normality with p = 12. In this case DHO(12) is  

distributed as )( 242 , with a 95% quantile of )(. 242
950  = 36.42; the sample value of 

the test statistic is 3,850, leading to an unequivocal rejection of the null hypothesis of 

normality. Thus, taken together, the measures of nonlinear dependence and tests for 

(non)normality show that it would be unwise to adopt a linear forecasting framework, 

whether univariate or multivariate, for IIP. 

 

„Table 5 here‟ 

 

Empirical selection of the parameters 

As in the identification stage case of parameteric models, such as ARMA and VAR 

models, it is necessary to select some parameters to determine a practical SSA or 

MSSA model for forecasting. Considerable guidance is provided by the examples in 

Golyandina et. al., (2001) and, in addition, Hossian and Thomakos (2010) provide 

some examples using economic and financial time series. Two essential tools in this 

part of the process are a graph of the singular spectrum and the w-correlations w
ji, . 

To illustrate the choice of L, the singular spectrum for the first vintage is shown in 

Figure 3. The window length is L = 13 and it is clear that this value is sufficient to 

enable the separation required in the second stage.  

 

„Figure 3 here‟ 

 

The next step is to calculate 
w

ji,  for pairs of reconstructed components corresponding 

to pairs of the L = 13 eigenvalues in the SVD and Figure 4 shows 
w

ji,  for the L = 13 

reconstructed components of 
)(

Y
1

 in a 20-grade grey scale from white to black 

corresponding to the absolute values of correlations from 0 to 1.  

 

„Figure 4 here‟ 

 

It is apparent that separating the eigentriples into three groups comprising 1-5, 6 and 

7, and 8-13, leads to a decomposition of the trajectory matrix into three almost 

orthogonal blocks. Therefore, in this case the system noise can be associated either 

with components 8-13 or with components 6-13. The two choices are assessed by the 

cumulative w-correlations.  

 

As noted in section 3, the existence of structure in the series is indicated by local 

minima and maxima in the w-correlations. This is shown in Figure 5 for the first 

vintage series. The first minimum occurs at point k = 5, thus we choose the 
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reconstructed series from the first 5 eigentriples as signal and the rest, components 6–

13, as noise.  

 

„Figure 5 here‟ 

 

Forecast performance 

Throughout this section, T = December, 2000; n = 63 (governed by data availability) 

and m = 12, determined by the data measurement process.  

 

Within-sample performance 

The results for the within-sample, univariate forecasts are presented in Table 4. 

(Throughout the tables +, * and ** indicate significance at the 10%, 5% and 1% levels, 

respectively.) It is evident that the SSA forecasts are superior to the ARMA
8
 forecasts 

at all but the shortest forecast horizons, and the differences are significant at the 1% 

level by the HS1  test statistic. As expected the rmse of both methods increases as h 

increases. There is a uniform rmse advantage to SSA over ARMA, which increases 

with h; for example, the rmse ratio is 83% for h = 11, to 86% for h = 6 and 97% for h 

= 1.  

 

„Table 6 here‟ 

 

The direction of change results are presented in Table 7. The SSA forecasts are better 

than the ARMA forecasts at all but the shortest horizon (h = 1), with 62% accuracy 

for h = 11 increasing to 74% for h = 2 compared to 40% to 60%, respectively, for the 

ARMA model. The results of the DC test indicate significance at at the 10% level for 

h = 11 and at the 1% level for h = 10, …, 1. 

 

„Table 7 here‟ 

 

Continuing the within-sample comparison, the MSSA forecasts are compared to the 

VAR forecasts and the appropriate preliminary vintage in Table 8 for rmse and in 

Table 9 for the direction of change. (The appendix details the nature of the VAR and 

the lag selection methods.) It is clear from Table 8 that whilst the VAR cannot 

improve upon the preliminary vintage, the MSSA is significantly better than both 

alternatives at all horizons, even very short horizons. Note, in particular, that MSSA is 

able to improve upon the preliminary vintage (and, comparing Tables 6 and 8, there is 

a substantial gain over univariate SSA). For example, the rmse gain relative to the 

preliminary vintage varies from 11% for h = 11 through to 4% for h = 1; in turn these 

represent gains of  39% and 24% relative to the VAR. The gains are significant at the 

1% level using the HS1  test except for h = 1, 2, when they are significant at the 5% 

level.  

 

„Table 8 here‟ 

 

The second half of the table shows that bias reductions for MSSA are between 25% 

and 29%, relative to the preliminary vintage, whereas whilst there are some reductions 

for the VAR these are not as great as for MSSA and there are also cases, h = 7 – 11, 
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when the bias increases. (The bias ratio is the ratio of the absolute bias for VAR or 

MSSA relative to the absolute bias of the preliminary vintage.)  

 

The force of these results is emphasised in predicting the direction of change, as 

shown in Table 9; it is clear that MSSA uniformly dominates the VAR model and 

only fails to dominate the preliminary vintage in two cases when the forecasting 

horizon is short. Thus, in general, for the „backward‟ looking task of completing the 

vector of observations for the final vintage, MSSA is to be preferred both to the VAR 

and to the preliminary vintage.  

 

„Table 9 here‟ 

 

Out-of-sample performance 

Turning to the out-of-sample forecasts, the results are reported in Tables 10 and 11. 

First note that, by definition, the preliminary vintages are now not available out of 

sample. Table 10, therefore, compares the MSSA forecasts directly with the VAR 

forecasts. The results are presented by the length of the forecast horizon, h, and the 

vintage that is combined with the final vintage in the multivariate method (either VAR 

or MSSA), see Table 10. As expected, ceteris paribus, the rmse decreases as the 

forecast horizon decreases, and decreases as the preliminary vintage (which is used in 

the bivariate models) approaches the final vintage. In all cases, the MSSA method 

outperforms the VAR model.  

 

„Tables 10 and 11 here‟ 

 

For example, when vintage 1 data is combined with the final vintage data, (see the 

first three rows of the table), MSSA gives a reduction of 19% for h = 1 and 16% for h 

= 11. This scale of reduction is typical throughout as v increases; for example, there 

are substantial gains even when the penultimate and final vintages are combined in the 

MSSA method, the exception being when the forecast is at its shortest horizon, h = 1. 

Throughout the reductions are generally significant at the 1% level; for example, all 

comparisons using v = 1 and m = 12 are significant and 9 are significant using v = 11 

and m = 12. 

 

The dominance of MSSA is confirmed by the direction of change test results, see 

Table 11. Overall, the VAR departs little from the random result of a 50% rate of 

detecting the direction of change, only improving slightly as the forecasting horizon 

shortens. On the other hand, the MSSA method often achieves a significant difference 

(at levels varying from 10% to 1%) from the random case, typically with 60-70% of 

the changes in direction correctly identified, increasing to 80% or more as the 

forecasting horizon shortens and the combining data vintage approaches the final 

vintage. 

 

Concluding remarks 

The need for timely data to enable an assessment of current economic conditions is 

ever present and in recent years has been heightened by the delegation of some policy 

tasks to central banks, such as the Bank of England in the UK. In principle it is 
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possible to wait until data is finalised and so provides, in the view of the data agency, 

the best possible guide to the underlying economic concept, in practice there is a 

continuing demand for the publication of key economic time series at the earliest 

practicable date. This gives rise to what are referred to as vintages of data on the same 

generic variable, the vintage number referring to the stage in the revisions process. 

The fact that there are different stages in the collection and subsequent publication of 

different vintages of the same generic variable has been recognised in the concept of 

the data measurement process. This stylised process applies to a large number of key 

data series. 

 

Because there is a time lapse between publication of the preliminary vintages and 

final vintage of data for revised real-time data, it seems natural to use the most 

recently available vintage of data as the best available estimate or forecast of the final 

vintage. Indeed, such a practice applies widely to components of the National Income 

and Product Accounts. However, in effect, the preliminary vintage is being taken as a 

forecast of the final vintage and from this perspective, it is not a forgone conclusion 

that it is the best forecast.  

 

The issues raised in early contributions by Mankiw et. al., (1984), Mankiw and 

Shapiro (1986) and Mork (1987), in the news versus noise debate, continue to be 

relevant see Aruoba (2008). In a policy context, the key question is whether it is 

possible to improve upon the preliminary vintages in order to provide more accurate 

forecasts of subsequent vintages? If the preliminary vintages are (fully) efficient 

forecasts as elucidated by Mankiw and Shapiro (op. cit.,), then the answer is no; 

however, there is evidence in the case of the IIP, both using the standard linear testing 

framework and the nonlinear framework of SSA, that the preliminary vintages can be 

improved upon. Typically, attempts to „beat‟ the preliminary vintages involve 

parametric models, which involve a number of assumptions, for example they 

necessarily impose a structure and usually involve a dsitributional assumption. In a 

more general approach, this study has developed the method of Multivariate Singular 

Spectrum Analysis as a nonparametric alternative to typical parametric models such 

as ARMA and VAR models.  

 

SSA is flexible enough to accommodate data generating processes that are nonlinear, 

non-Gaussian and nonstationary, in contrast to standard models that embody one or 

more of these assumptions. Our empirical results for the UK IIP strongly indicate that 

the forecasts using a bivariate version of MSSA are better than using a preliminary 

vintage as an estimate of the final vintage or basing forecasts on ARMA or VAR 

models. A consequence of this finding is that the preliminary vintages of the IIP are 

not fully efficient forecasts of the final vintage. 

 

One of the merits of the nonparametric approach of MSSA is its flexibility. We 

anticipate, therefore, that it would perform well across the range of series for which 

data revisions are standard practice and that the gains shown here are likely to occur 

in other applications. Of course, such a statement has to be supported by empirical 

results and, as part of further research on this topic, we are considering the 

applicability of MSSA to a number of series other than the IIP and we hope to report 
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our results at a later stage. We are also undertaking an exercise comparing 

developments of the state space approach, see, for example, Patterson (1995b, 1995c,) 

and Jacobs and van Norden (2010), with MSSA. An alternative modelling framework 

is that of a cointegrated set of revisions as suggested by Patterson and Heravi (2004a) 

and further developed by Hecq and Mazzi (2008). The most ambitious application in 

this context would be to link multiple revisions and multiple variables, thus exploiting 

possible data revision relations between variables, for example, consumption and 

income or GDP and industrial production. Such an extension necessarily leads to an 

increase in the dimension of the system being considered, but offers gains by 

exploiting the correlations between revisions and between variables; the advantage of 

MSSA over both the state space approach and (standard) cointegration modelling, is 

that it is able to exploit nonlinear correlations automatically if they are present in the 

data and its extension to high-dimensional systems is straightforward both 

theoretically and practically. 
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Endnotes 
1
For an excellent reference source for articles and working papers on data revisions see, for example, 

Croushore (2008). Recent work includes Knetsch and Reimers (2009) and Ghosh (2009) and earlier 

references of interest include Conrad and Corrado (1979), Howrey (1984), Harvey et. al., (1983) and 

Patterson (1995b), Patterson (2002) and Garratt and Vahey (2006); on forecasting with data subject to 

revision see, for example, Mariano and Tanizaki (1995), Patterson (1995c), Ghosh and Lien (1997), 

Stark and Croushore (2002), Busetti (2006) and Croushore (2006). 

 
2The SSA method, which is widely applied in other sciences, incorporates elements of classical time 

series analysis, multivariate statistics, multivariate geometry, dynamic systems and signal processing. 

The genesis of SSA is usually associated with Broomhead and King (1986), and a thorough description 

of the theoretical and practical foundations of the SSA method, with many examples, can be found in 

Danilov and Zhigljavsky (1997) and Golyandina et. al. (2001). For a more elementary treatment see 

Elsner and Tsonis (1996); and for a comparison between SSA and other techniques for forecasting time 

series, see Hassani (2007), Hassani and Zhigljavsky (2008). For an example of the flexibility of SSA in 

other areas see Aldrich and Barkhuizen (2003) and Salgado and Alonso (2006). For extensions to the 

multivariate case, several forecasting procedures and change-point detection problems see Golyandina 

et. al., (2001) and Moskvina and Zhigljavsky (2003). Also, Hassani et. al., (2009) show that the results 

obtained by the SSA method are more accurate than those obtained by ARIMA and GARCH models.  

 
3The terms „within-sample‟ and „out-of-sample‟ are intended to distinguish two quite distinct 

forecasting and practical problems best seen in terms of the data matrix that is constructed from a 

typical DMP involving revised data, see equation (1): within-sample means „filling in‟ a data matrix; 

out-of-sample means extending the data matrix. There is another distinction that is relevant for 

univariate models, which involves the sample used for estimation. This is necessarily within the sample 

as defined here, but will not coincide with it except for the first vintage of data. 

 
4The test for chaotic dynamics was implemented in the form suggested by Saïda (2007), who also 

provides a MATLAB routine for implementation. The test is based on the Lyapunov exponent of a 

series, with a positive value indicating divergence and chaos and a negative value indicating stability. 

For example, in the case of the final vintage we obtained a Lyapunov exponent of –0.044, with 

rejection of chaotic dynamics; similar results were obtained for the other vintages; further details of the 

test and results can be provided on request. 

 
5As noted by Patterson and Heravi (2004b), there are other ways of organising data subject to revision. 

They introduce the distinction between definitions of vintage based on revision-stage and, alternatively, 

real-time. The analysis here follows the literature on the empirical analysis of data revisions that 

defines vintage as relating to the stage of revision of the DMP, see, for example, Howrey (1978), Mork 

(1987) and, Akritidis (2003) and Richardson (2002, 2003). The revision-stage definition of a vintage 

relates to the (approximate) consistency of the successive and progressive stages of the measurement 

process. For example, in the context of GDP, there are flash estimates, 75-day estimates and so on 

through to the (conditionally) final estimate; each represents a different stage in the DMP, largely as a 

result of incremental information that becomes available to the data collection agency. Another use of 

the word vintage in this general context is to capture the idea of a real-time vintage, see, for example, 

Croushore and Stark (2001), rather than a revision-stage vintage. A real-time vintage is simply the run 

of data available, in a particular publication, at a particular point in time. Overall, the data is the same, 

but it is organised differently. 
 
6This test takes the following form: denote the forecast errors for two forecasting methods, i = 1, 2, for 

T + h = j as jie , . Typically, forecast evaluation takes a function of these errors, such as the squared 

error or root squared error, over T or h, to evaluate their relative performance; this function is 

generically denoted )( , jief  and the difference jd  = )()( ,2,1 jj efef   is considered. Diebold and 

Mariano (1995) suggested the test statistic 1S  = ddV 2/1)(ˆ  , where d  =  

n

j jd
1

 and )(ˆ dV  is an 

estimator of the variance of d  based on the autocovariances of jd . Harvey et. al., (1997, equation 9) 

modify this statistic using an approximately unbiased estimator of the variance of d . The resulting test 

statistic is HS1  = 1SC , where C = 2/11 ]/)}1(21[{ ThhThT   ; additionally they suggest using 

critical values from the „t‟ distribution, with (T – 1)  degrees of freedom. Our forceast evaluation is, as 

in Harvey et. al., (ibid), based on )( , jief  defined as the squared error. 
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7The DHO statistic is DHO(p) = 
1

'
1ZZ  + 2

'
2ZZ  where p is the number of series, '

1Z  = )z,,z( p111   

and '
2Z  = )z,,z( p221  ; i1z  is a transformation of the standard univariate skewness coefficient 1b , 

applied to the i-th series, due to D'Agostino (1970), and i2z  is a transformation of the standard kurtosis 

coefficient 2b , from a gamma distribution to 2  and then to standard normal, applied to the i-th 

series; see Doornik and Hansen (ibid, Appendix) for details.  

 
8As noted, preliminary tests strongly suggested a unit root in each vintage of the IIP, confirming the 

results of  Patterson (2002); a unit root was, therefore, imposed in the ARMA and VAR modelling, 

with the remaining orders selected alternately by AIC/BIC with BIC producing the better forecasts; a 

constant was included to capture the drift in the data series. See aslo the appendix 
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Appendix: parametric models, selection procedure 

In order that the parametric models were considered equally with the SSA and MSSA 

models, careful consideration was given to the selection of the lag lengths, since as 

noted by Lütkepohl (2005, section 4.3) this is likely to be a critical issue in forecasting 

performance. Lütkepohl (op. cit.,) suggested that the lag selection criterion should be 

one that reflects the purpose of the model, which, in this case, is to provide a good 

model for forecasting, and he suggests AIC (which differs from the final prediction 

error, FPE only by a term of order )T(O 2 ). In addition, Raffalovich et. al., (2008) 

have suggested that BIC performs well (and better than AIC) in bivariate VARs, 

which are used here as the parameteric specification. We selected the lag length 

alternately by AIC and BIC and found that selection by BIC resulted in better 

performance and, therefore, it is these that are reported in the text. 

 

The comparison VAR is specified to put it on an equal footing, in terms of 

information dating, with MSSA. For example, the within-sample forecasts are based 

on the information set ),( mv
vt  = )',,(;)',,( )()(

1
)()(

1
m
mt

mv
vt

v
yyyy   , see equation (18) 

in the text. To illustrate the VAR specification, consider the simplest case with lag 

length = 1, then the bivariate VAR is given by: 
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Where )v(
vtz    )v(

vty  ,  is the first difference operator and the inclusion of a constant 

allows for drift. It is more informative to write this specification making the lead 

transparent, so that the time index is shifted by m periods, which gives: 
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where s = m – v. For example, for s = 1 and hence v = 11, then  )m(
tz  and 

)v(
1stz   are 

contemporaneous; that is for the one-step ahead within-sample forecast, the 

preliminary vintage in the same row is (linearly) combined with the preceding value 

of the final vintage, that is 
)m(

1tz  . In contrast an ARMA model just uses the latter. 
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Figure captions 

Figure 1. First and final vintages of IIP 

Figure 2. First differences of first and final vintages of IIP 

Figure 3. Logarithm of the 13 eigenvalues for 
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Y
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Figure 4. Matrix of w-correlations for the 13 reconstructed components of 
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Y
1

 

Figure 5. Cumulative w-correlations for the first vintage series 
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Figure 3. Logarithm of the 13 eigenvalues for )1(
Y  
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Figure 4. Matrix of w-correlations for the 13 reconstructed components of 
)1(
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Figure 5. Cumulative w-correlations for the first vintage series 

121110987654321

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

k

C
(k
)

 



 38 

Table 1. Revisions to IIP: summary statistics, )v(
tpr  

v =  1 2 3 4 5 6 7 8 9 10 11 

Mean -0.46 -0.42 -0.37 -0.34 -0.28 -0.23 -0.17 -0.14 -0.11 -0.08 -0.06 

 

Mean 

absolute 

 

0.83 

 

0.73 

 

0.65 

 

0.59 

 

0.52 

 

0.45 

 

0.38 

 

0.33 

 

0.27 

 

0.22 

 

0.17 

 

Standard 

deviation 

 

1.04 

 

0.94 

 

0.85 

 

0.78 

 

0.71 

 

0.65 

 

0.58 

 

0.52 

 

0.45 

 

0.40 

 

0.35 

 

Table 2. Unit root test statistics for IIP 

Testing for two unit roots 

v =  1 2 3 4 5 6 7 8 9 10 11 final 

ADF(AIC) -16.23 -16.78 -16.23 -23.67 -24.23 -16.57 -16.62 -16.59 -16.77 -16.54 -16.86 -16.35 

ADF(BIC) -22.28 -16.78 -22.61 -23.67 -24.23 -24.00 -23.47 -23.85 -23.85 -23.89 -23.73 -23.32 

SF(AIC) -17.83 -18.02 -16.42 -16.77 -16.66 -16.21 -16.05 -16.09 -16.07 -16.28 -16.03 -16.31 

SF(BIC) -16.03 -15.55 -16.42 -16.77 -16.66 -16.21 -16.05 -16.09 -16.07 -16.28 -16.03 -16.31 

Testing for a single root 

ADF(AIC) -2.38 -2.37 -2.52 -2.37 -2.30 -2.31 -2.12 -2.27 -2.09 -2.28 -2.14 -2.33 

ADF(BIC) -2.32 -2.11 -2.29 -2.22 -2.16 -2.15 -2.21 -2.18 -2.17 -2.15 -2.20 -2.20 

ERS(AIC) -2.17 -2.16 -2.34 -2.22 -2.15 -2.18 -2.00 -2.14 -1.99 -2.17 -2.02 -2.19 

ERS(BIC) -1.89 -1.90 -1.90 -1.97 -1.90 -1.84 -1.86 -1.84 -1.82 -1.80 -1.83 -1.87 

SF(AIC) -2.49 -2.54 -2.49 -2.34 -2.29 -2.26 -2.29 -2.24 -2.24 -2.21 -2.29 -2.31 

SF(BIC) -2.33 -2.37 -2.31 -2.22 -2.13 -2.12 -2.14 -2.11 -2.10 -2.11 -2.14 -2.19 

Notes: the table entries are for the appropriate pseudo-t test, with lag lengths selected 

alternately by AIC and BIC, each case being indicated in parentheses. ADF is the 

standard augmented DF test, and ERS and SF are the Elliott, Rothenberg and Stock 

(1996) and maximum likelihood versions of this test, respectively. The tests for two 

unit roots allow for an intercept whereas the test statistics for a single unit root, allow 

for a linear trend. The 1%, 5% and 10% critical values for each of the tests are given 

below: 

Critical values trend intercept 

 1% 5% 10% 1% 5% 10% 

ADF –3.96 –3.41 –3.13 –3.43 –2.86 –2.57 

SF –3.88 –3.31 –3.02 –3.36 –2.70 –2.40 

ERS –3.48 –2.89 –2.57    
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Table 3. News or noise? 

v =  1 2 3 4 5 6 7 8 9 10 11 

EFH 33.62 48.04 26.82 23.86 19.87 18.58 15.03 9.49 5.87 3.44 1.53 

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.22 

MEH 1.09 1.49 0.83 0.69 0.89 1.92 1.14 1.57 1.73 1.70 1.82 

p-val. 0.34 0.23 0.43 0.50 0.42 0.15 0.32 0.21 0.18 0.18 0.16 

Note: table entries are values of the F statistics for testing 0H , with p-value in the second 

row. 

 

Table 4. Correlations between the revisions )v(
tr  and the preliminary vintage, )v(

ty , 

and between )v(
tr  and the final vintage, )m(

ty  of IIP 

Vintage: 

)v(
tr  

  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

  Preliminary 

Vintage  

 

0.434* 

 

0.450* 

 

0.423* 

 

0.422* 

 

0.402* 

 

0.398* 

 

0.405* 

 

0.359* 

 

0.313* 

 

0.297* 

 

0.296* 

 Final 

vintage 

 

0.423* 

 

0.435* 

 

0.403* 

 

0.403* 

 

0.404* 

 

0.368* 

 

0.344* 

 

0.317* 

 

0.303* 

 

0.296* 

 

0.292* 

 

Linear  

Correlation 

Preliminary 

vintage 

 

0.157* 

 

0.137* 

 

0.128* 

 

0.123* 

 

0.143* 

 

0.145* 

 

0.142* 

 

0.132* 

 

0.132* 

 

0.100* 

 

0.081* 

 Final 

vintage 

 

0.253* 

 

0.225* 

 

0.209* 

 

0.198* 

 

0.211* 

 

0.207* 

 

0.198* 

 

0.183* 

 

0.176* 

 

0.139* 

 

0.114* 

 

Note: * indicates significance at the 5%  level. 

 

Table 5. Results of the DHO test for pairwise normality: )v(
tr  and the preliminary 

vintage, )v(
ty ; and )v(

tr  and the final vintage, )m(
ty  of IIP 

Vintage:

)v(
tr  

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

Preliminary 

Vintage 

 

102.9** 

 

116.1** 

 

122.3** 

 

135.7** 

 

 

202.3** 

 

 

239.3** 

 

 

332.7** 

 

 

384.9** 

 

 

306.4** 

 

 

349.0** 

 

 

289.7** 

 

 

 

Final 

Vintage 

 

107.1** 

 

 

117.8** 

 

 

 

122.2** 

 

 

134.4** 

 

 

199.9** 

 

 

234.5** 

 

 

 

324.6** 

 

 

377.3** 

 

 

301.4** 

 

 

 

344.0** 

 

 

287.3** 

 

Note: ** indicates table entries significant at the 1%  level (or better): )(. 42
990  = 13.28. 
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Table 6. RRMSE: ARMA and SSA (within-sample) 

Method                                                                                     h 

 11 10 9 8 7 6 5 4 3 2 1 

ARMA 2.44 2.37 2.26 2.10 1.94 1.82 1.64 1.51 1.40 1.22 1.01 

SSA 2.02 1.95 1.78 1.77 1.73 1.56 1.53 1.41 1.38 1.17 0.98 

RRMSE 0.83** 0.82** 0.79** 0.84** 0.89** 0.86** 0.93** 0.93** 0.99 0.96 0.97 

 

Table 7. Direction of Change: ARMA vs SSA (within-sample) 

Method                                                                                   h 

 11 10 9 8 7 6 5 4 3 2 1 

ARMA 0.40 0.35 0.44 0.48 0.51 0.59 0.59 0.55 0.57 0.60 0.75** 

SSA 0.62


 0.63** 0.63** 0.66** 0.65* 0.69** 0.71** 0.72** 0.71** 0.74** 0.78** 

 

Table 8. RRMSE: preliminary vintage, VAR and MSSA (within-sample) 

Horizon                                                                                    h 

 11 10 9 8 7 6 5 4 3 2 1 

  Vintage                                                                            v 

 1 2 3 4 5 6 7 8 9 10 11 

Method            

PV 1.71 1.60 1.48 1.37 1.28 1.14 1.02 0.92 0.79 0.66 0.54 

VAR 2.50 2.44 2.24 2.04 1.91 1.71 1.59 1.42 1.20 0.98 0.68 

RRMSE 1.46 1.53 1.51 1.49 1.49 1.50 1.56 1.54 1.52 1.48 1.26 

MSSA 1.53 1.43 1.33 1.23 1.16 1.06 0.97 0.86 0.76 0.65 0.52 

RRMSE 0.89** 0.89** 0.90** 0.90** 0.91** 0.93** 0.95** 0.93** 0.96** 0.98* 0.96* 

L: r 13: 5 12: 5 11: 5 10: 5 9: 5 8: 4 7: 4 6: 3 5: 3 4: 3 3: 2 

 Bias 

 1 2 3 4 5 6 7 8 9 10 11 

PV -0.75 -0.71 -0.63 -0.56 -0.49 -0.40 -0.33 -0.27 -0.21 -0.16 -0.11 

VAR 0.57 0.56 0.45 0.47 0.43 0.39 0.34 0.29 0.23 0.18 0.13 

Bias ratio 0.76 0.79 0.71 0.84 0.88 0.98 1.03 1.07 1.10 1.13 1.18 

MSSA -0.55 -0.52 -0.46 -0.42 -0.35 -0.29 -0.25 -0.20 -0.16 -0.12 -0.08 

Bias ratio 0.73 0.73 0 0.75 0.71 0.72 0.76 0.74 0.76 0.75 0.73 

 

Table 9. Direction of change: preliminary vintage, VAR and MSSA (within-sample) 

Horizon                                                                                   h 

 11 10 9 8 7 6 5 4 3 2 1 

Vintage                                                                                   v 

 1 2 3 4 5 6 7 8 9 10 11 

Method            

PV 0.75** 0.76** 0.76** 0.73** 0.81** 0.86** 0.89** 0.92** 0.92** 0.94** 0.97** 

VAR 0.57 0.49 0.53 0.54 0.61* 0.64* 0.53 0.63* 0.64* 0.70** 0.92** 

MSSA 0.79** 0.84** 0.84** 0.79** 0.87** 0.87** 0.92** 0.89** 0.90** 0.94** 0.97** 
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Table 10. RRMSE: VAR and MSSA (out-of-sample) 

Method                                                                             h 

 11 10 9 8 7 6 5 4 3 2 1 

Vintage: 1 

VAR 3.46 3.44 3.37 3.26 3.25 3.13 3.01 2.88 2.74 2.64 2.54 

MSSA 2.89 2.79 2.71 2.59 2.59 2.51 2.42 2.31 2.22 2.10 2.07 

RRMSE 0.84** 0.81** 0.80** 0.79** 0.80** 0.80** 0.80** 0.80** 0.81** 0.80** 0.81** 

Vintage: 2            

VAR 3.50 3.47 3.36 3.33 3.24 3.10 2.97 2.82 2.71 2.61 2.51 

MSSA 2.85 2.71 2.67 2.55 2.51 2.44 2.34 2.25 2.15 2.06 20.1 

RRMSE 0.81** 0.78** 0.79** 0.77** 0.77** 0.79** 0.79** 0.80** 0.79** 0.79** 0.80** 

Vintage: 3            

VAR 3.47 3.42 3.31 3.28 3.18 3.04 2.91 2.75 2.65 2.54 2.44 

MSSA 2.80 2.67 2.64 2.43 2.42 2.37 2.29 2.18 2.08 2.01 1.95 

RRMSE 0.81** 0.78** 0.80** 0.74** 0.76** 0.78** 0.79** 0.79** 0.78** 0.79** 0.80** 

Vintage: 4            

VAR 3.44 3.40 3.33 3.19 3.05 2.89 2.75 2.63 2.51 2.41 2.27 

MSSA 2.72 2.62 2.60 2.37 2.35 2.30 2.20 2.09 2.00 1.95 1.87 

RRMSE 0.79** 0.77** 0.78** 0.74** 0.77** 0.80** 0.80** 0.79** 0.80** 0.81** 0.82** 

Vintage: 5            

VAR 3.41 3.35 3.23 3.08 2.95 2.78 2.65 2.54 2.41 2.28 2.08 

MSSA 2.67 2.56 2.53 2.30 2.28 2.20 2.10 2.01 1.97 1.85 1.79 

RRMSE 0.78** 0.76** 0.78** 0.75** 0.77** 0.79** 0.79** 0.79** 0.82** 0.81** 0.86** 

Vintage: 6            

VAR 3.39 3.30 3.17 3.01 2.86 2.72 2.60 2.48 2.31 2.11 1.95 

MSSA 2.60 2.49 2.47 2.44 2.25 2.12 2.06 1.95 1.89 1.79 1.73 

RRMSE 0.77** 0.75** 0.78** 0.81** 0.79** 0.78** 0.79** 0.79** 0.82** 0.85** 0.89** 

Vintage: 7            

VAR 3.28 3.18 3.03 2.88 2.74 2.61 2.49 2.32 2.12 1.95 1.75 

MSSA 2.55 2.42 2.40 2.38 2.20 2.05 1.99 1.88 1.81 1.69 1.65 

RRMSE 0.78** 0.76** 0.79** 0.83** 0.80** 0.79** 0.80** 0.81** 0.85** 0.87** 0.94* 

Vintage: 8            

VAR 3.15 3.03 2.90 2.75 2.63 2.49 2.33 2.12 1.95 1.75 1.60 

MSSA 2.48 2.35 2.33 2.24 2.13 1.94 1.89 1.77 1.72 1.62 1.53 

RRMSE 0.79** 0.78** 0.80** 0.81** 0.81** 0.78** 0.81** 0.83** 0.88** 0.93* 0.96 

Vintage: 9            

VAR 2.99 2.88 2.76 2.63 2.50 2.33 2.13 1.97 1.83 1.61 1.44 

MSSA 2.43 2.27 2.24 2.10 2.03 1.84 1.81 1.69 1.64 1.53 1.45 

RRMSE 0.81** 0.79** 0.81** 0.80** 0.81** 0.79** 0.85** 0.86** 0.90** 0.95* 0.99 

Vintage: 10            

VAR 2.87 2.77 2.66 2.51 2.36 2.16 2.01 1.80 1.62 1.46 1.37 

MSSA 2.36 2.19 2.16 1.95 1.83 1.77 1.69 1.56 1.53 1.39 1.35 

RRMSE 0.82** 0.79** 0.81** 0.78** 0.78** 0.82** 0.84** 0.87** 0.94* 0.95* 0.99 

Vintage: 11            

VAR 2.68 2.60 2.51 2.33 2.20 2.02 1.84 1.68 1.53 1.36   1.22 

MSSA 2.28 2.11 2.11 1.85 1.77 1.67 1.60   1.45   1.42   1.25 1.21 

RRMSE 0.85** 0.81** 0.84** 0.79** 0.80** 0.83** 0.87** 0.86* 0.93* 0.95   1.00 
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Table 11. Direction of change: VAR and MSSA (out-of-sample) 

Method                                                                             h 

 11 10 9 8 7 6 5 4 3 2 1 

Vintage: 1 

VAR 0.47 0.48 0.47 0.50 0.47 0.53 0.58 0.47 0.48 0.53 0.60 

MSSA 0.55 0.56 0.58 0.59 0.59 0.60 0.60 0.59 0.60 0.58 0.59 

Vintage: 2            

VAR 0.53 0.52 0.49 0.54 0.47 0.55 0.58 0.52 0.51 0.59 0.60 

MSSA 0.56 0.55 0.56 0.59 0.59 0.61


 0.60 0.59 0.62


 0.60 0.61


 

Vintage: 3            

VAR 0.49 0.48 0.47 0.52 0.47 0.55 0.58 0.48 0.49 0.54 0.60 

MSSA 0.57 0.57 0.56 0.60 0.60 0.62


 0.59 0.60 0.62


 0.62


 0.63* 

Vintage: 4            

VAR 0.49 0.48 0.45 0.50 0.46 0.52 0.53 0.47 0.49 0.51 0.59 

MSSA 0.59 0.58 0.57 0.60 0.62


 0.61


 0.61


 0.61


 0.63* 0.65** 0.64* 

Vintage: 5            

VAR 0.44 0.46 0.45 0.48 0.44 0.52 0.54 0.52 0.52 0.51 0.59 

MSSA 0.59 0.58 0.58 0.61


 0.63* 0.64* 0.63* 0.62


 0.64* 0.67** 0.68** 

Vintage: 6            

VAR 0.47 0.44 0.45 0.46 0.47 0.52 0.51 0.50 0.49 0.51 0.59 

MSSA 0.61 0.59 0.60 0.62


 0.65* 0.65* 0.64* 0.63* 0.66** 0.69** 0.70** 

Vintage: 7            

VAR 0.48 0.49 0.49 0.51 0.50 0.49 0.50 0.52 0.54 0.53 0.55 

MSSA 0.61 0.60 0.61


 0.64* 0.67** 0.67** 0.67** 0.64** 0.67** 0.72** 0.73** 

Vintage: 8            

VAR 0.49 0.50 0.51 0.50 0.51 0.53 0.52 0.53 0.53 0.57 0.56 

MSSA 0.63


 0.62


 0.64* 0.66* 0.69** 0.69** 0.68** 0.66** 0.69** 0.74** 0.75** 

Vintage: 9            

VAR 0.52 0.50 0.52 0.51 0.51 0.53 0.54 0.55 0.54 0.57 0.57 

MSSA 0.65* 0.64* 0.66* 0.68** 0.71** 0.71** 0.69** 0.67** 0.71** 0.77** 0.78** 

Vintage: 10            

VAR 0.51 0.53 0.53 0.50 0.53 0.57 0.56 0.55 0.57 0.59 0.59 

MSSA 0.68** 0.66* 0.67** 0.70** 0.72** 0.72** 0.71** 0.68** 0.73** 0.80** 0.81** 

Vintage: 11            

VAR 0.51 0.50 0.51 0.54 0.54 0.60 0.59 0.55 059 0.60 0.75** 

MSSA 0.70** 0.69** 0.71** 0.73** 0.75** 0.74** 0.73** 0.72** 0.75** 0.84** 0.86* 

 

 


