
Jrl Syst Si & Complexity (2007) ...: 1{22
Singular Spetrum Analysis: Methodology andAppliation to Eonomis DataHossein HASSANI � Anatoly ZHIGLJAVSKYReeived: ........ 2006/ Revised: ....... 20082008 Springer Siene + Business Media, In.Abstrat We desribe the methodology of Singular Spetrum Analysis (SSA) and demonstrate thatit is a powerful method of time series analysis and foreasting, partiulary for eonomi time series.We onsider the appliation of SSA to the analysis and foreasting of the Iranian national aountsdata as provided by the Central Bank of the Islami Republi of Iran.Key words Eonomi time series, Singular Spetrum Analysis (SSA), foreasting, Iranian nationalaounts.1 IntrodutionEonometri methods have been widely used to foreast the evolution of quarterly andyearly national aount data sets. However, many of these strutural or time series foreastingmodels have failed to aurately predit the growth rate of Gross Domesti Produt (GDP) orthe turning points of business yles in the industrial eonomies (see for example, [1℄).Many fators ould a�et the national eonomies and hene the national aount data whihare at best inaurate representation of the maroeonomi variables beause of measurementnoise. The exogenous fators that ause instability in maroeonomies inluding tehnologialhanges, government poliy hanges, hanges in the preferenes of the onsumers, and otherevents. These shoks ause strutural hanges in these time series making them nonstationary.Development of a methodology whih is robust under these hanges is of paramount importanein aurate predition of maroeonomi time series.Moreover, many strutural eonometri and time series models devised for foreastingmaroeonomi time series are based on restritive assumptions of normality and linearityof the observed data. The methods that do not depend on these assumptions ould be veryuseful for modeling and foreasting eonomis data.Furthermore, it is well known that noise an seriously limit auray of time series predition.Currently there are not many e�etive foreasting tehniques available when there is signi�antnoise in the time series data. There are two main approahes for foreasting noisy time series.Hossein HASSANI1{ Shool of Mathematis, Statistis Group, Cardi� University, UK. Email: HassaniH�f.a.uk.2{ Central Bank of the Islami Republi of Iran, 207/1, Pasdaran Avenue, Tehran, Islami Republi of Iran.Anatoly ZHIGLJAVSKYShool of Mathematis, Statistis Group, Cardi� University, UK. Email: ZhigljavskyAA�f.a.uk.



2 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYAording to the �rst one, we ignore the presene of noise and �t a foreasting model diretlyfrom noisy data hoping to extrat the underlying deterministi dynamis. Aording to theseond approah, whih is often more e�etive that the �rst one, we start with �ltering the noisytime series in order to redue the noise level and then foreast the new data points (see, forexample, [2, 3℄). There are several nonlinear noise redution methods suh as loal projetive,singular value deomposition (SVD) and simple nonlinear �ltering. It is urrently aeptedthat SVD-based methods are very e�etive for the noise redution in deterministi time seriesand orrespondingly for foreasting [3℄.Additionally, some of the previous researh have onsidered eonomi and �nanial timeseries as deterministi, linear dynamial systems. In this ase, the linear models an be usedfor modeling and foreasting. However, it has been shown that most of the �nanial time seriesare nonlinear (see, for example, [2, 3, 4, 5℄); in these ases, we should use nonlinear methods.Having a method that works well for both linear and nonlinear time series is ideal for modelingand foreasting. The Singular Spetrum Analysis (SSA) meets all onditions stated above. TheSSA tehnique is a nonparametri tehnique of time series analysis inorporating the elements oflassial time series analysis, multivariate statistis, multivariate geometry, dynamial systemsand signal proessing.The birth of SSA is usually assoiated with the publiation of papers by Broomhead andKing (e.g. [6℄) while the ideas of SSA were independently developed in Russia (St. Petersburg,Mosow) and in several groups in the UK and USA. A thorough desription of the theoretialand pratial foundations of the SSA tehnique (with many examples) an be found in [7, 8℄.An elementary introdution to the subjet an be found in [9℄. Below we desribe severalappliations of SSA and provide a brief disussion on the methodology used. In doing so, wemainly follow [7℄, hapters 1 and 2.The basi SSA method onsists of two omplementary stages: deomposition and reon-strution; both stages inlude two separate steps. At the �rst stage we deompose the seriesand at the seond stage we reonstrut the original series and use the reonstruted series forforeasting new data points. The main onept in studying the properties of SSA is `separa-bility', whih haraterizes how well di�erent omponents an be separated from eah other.The absene of approximate separability is often observed in series with omplex struture.For these series and series with speial struture, there are di�erent ways of modifying SSAleading to di�erent versions suh as SSA with single and double entering, Toeplitz SSA, andsequential SSA, see [7℄, Set. 1.7.An important feature of SSA is that it an be used for analyzing relatively short series. Onthe other hand, asymptoti separation plays a very important role in the theory of SSA. Ithas been observed that in many pratial appliations the asymptoti features (whih hold asthe length of the series T tends to in�nity) are met for relatively small values of T ; it is notunommon to suessfully apply SSA to series with T equal to 20{30. The series onsidered inthis paper have lengths T = 68 and T = 45.It is worth noting that although some probabilisti and statistial onepts are employed inthe SSA-based methods, we do not have to make any statistial assumptions suh as stationarityof the series or normality of the residuals.In addition, the method has several essential extensions. First, the multivariate versionof the method permits the simultaneous expansion of several time series; see, for example[8℄. Seond, the SSA ideas lead to several foreasting proedures for time series; see [7, 8℄.Also, the same ideas are used in [7℄ and [10℄ for hange-point detetion in time series. For



Singular Spetrum Analysis for Analysis of Eonomis Data 3omparison with lassial methods, ARIMA, ARAR algorithm and Holt-Winter, see [11, 12℄.For automati methods of identi�ation within the SSA framework see [13℄ and for reent workin `Caterpillar'-SSA software as well as new developments see [14℄.Let us mention some other areas related to SSA. A variety of tehniques of time seriesanalysis and signal proessing have been suggested that use SVD of ertain matries; for surveyssee, for example, [15, 16℄. Most of these tehniques are based on the assumption that theoriginal series is random and stationary; they inlude some tehniques that are famous insignal proessing, suh as Karhunen-Loeve deomposition (for signal proessing referenes see,for example [17℄). Some statistial aspets of the SVD-based methodology for stationary seriesare onsidered, for example, in [18℄ (Chapter 9) and [19, 20℄.In this paper we start with a brief desription of the methodology of SSA and apply thistehnique to 32 original data sets, 16 quarterly and 16 yearly, whih are taken from the CentralBank of the Islami Republi of Iran (CBI) [21℄. We use the series of Iranian GDP (quarterly)as the main data set for illustrating details of the pratial appliation of the SSA methodology.2 MethodologyThe main purpose of SSA is to deompose the original series into a sum of series, so that eahomponent in this sum an be identi�ed as either a trend, periodi or quasi-periodi omponent(perhaps, amplitude-modulated), or noise. This is followed by a reonstrution of the originalseries. The Basi SSA tehnique is performed in two stages, both of whih inlude two separatesteps as follows:8>>>><>>>>: Stage 1 : Deomposition ( Step 1 : EmbeddingStep 2 : SingularValueDeomposition(SVD)Stage 2 : Reonstrution ( Step 1 : GroupingStep 2 : Diagonal Averaging2.1 Deomposition1st step: EmbeddingEmbedding an be regarded as a mapping that transfers a one-dimensional time series YT =(y1; : : : ; yT ) into the multidimensional series X1; : : : ; XK with vetors Xi = (yi; : : : ; yi+L�1)T 2RL , where K = T � L +1. Vetors Xi are alled L-lagged vetors (or, simply, lagged vetors).The single parameter of the embedding is the window length L, an integer suh that 2 � L � T .The window length L should be suÆiently large. The result of this step is the trajetory matrixX = [X1; : : : ; XK℄ = (xij)L;Ki;j=1 = 0BBBB� y1 y2 y3 : : : yky2 y3 y4 : : : yk+1... ... ... . . . ...yL yL+1 yL+2 : : : yT 1CCCCA :Note that the trajetory matrix X is a Hankel matrix, whih means that all the elements alongthe diagonal i+j = onst are equal. Embedding is a standard proedure in time series analysis.With the embedding performed, future analysis depends on the aim of the investigation. Forspeialists in dynamial systems, a ommon tehnique is to obtain the empirial distributionof all pairwise distanes between the lagged vetors Xi and Xj and then alulate the so-alled



4 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYorrelation dimension of the series. Note that in this approah, L must be relatively small andK must be very large (formally, K !1 ). The approximation of a stationary series with thehelp of the autoregression model an also be expressed in terms of embedding: if we deal withthe model yi+L�1 = aL�1yi+L�2 + � � �+ a1yi + "i+L�1; i � 1then we searh for vetor A = (a1; : : : ; aL�1;�1)T suh that the salar produts (Xi; A) aredesribed in terms of ertain noise series.2nd step: Singular Value Deomposition (SVD)The seond step, the SVD step, makes the singular value deomposition of the trajetorymatrix and represents it as a sum of rank-one bi-orthogonal elementary matries. Denote by�1; : : : ; �L the eigenvalues of XXT in dereasing order of magnitude (�1 � : : : �L � 0) and byU1; : : : ; UL the orthonormal system of the eigenvetors of the matrix XXT orresponding tothese eigenvalues. Set d = max(i; suh that�i > 0) = rankX:If we denote Vi = XTUi=p�i, then the SVD of the trajetory matrix an be written as:X = X1 + � � �+Xd; (1)where Xi = p�iUiViT . The matries Xi have rank 1 (thus they are elementary matries); Ui (inSSA literature they are alled `fator empirial orthogonal funtions' or simply EOFs) and Vi(often alled `prinipal omponents') are the left and right eigenvetors of the trajetory matrix.The olletion (p�i; Ui; Vi) is alled the i-th eigentriple of the matrix X, p�i (i = 1; : : : ; d) arethe singular values of the matrix X and the set fp�ig is alled the spetrum of the matrix X.If all eigenvalues have multipliity one, then the expansion (1) is uniquely de�ned.SVD (1) is optimal in the sense that among all the matries X(r) of rank r < d, the matrixPri=1Xi provides the best approximation to the trajetory matrix X, so that k X� X(r) k isminimum. Here the norm of a matrixY is de�ned as qhY;Yi, where the salar produt of twomatries Y = (yij)q;si;j=1 and Z = (zij)q;si;j=1 is hY;Zi = Pq;si;j=1 yijzij. Note that k X k2 = Pdi=1 �iand k Xi k2 = �i for i = 1; : : : ; d. Thus, we an onsider the ratio �i=Pdi=1 �i as the harater-isti of the ontribution of the matrix Xi to expansion (1). Consequently, Pri=1 �i=Pdi=1 �i, thesum of the �rst r ratios, is the harateristi of the optimal approximation of the trajetorymatrix by the matries of rank r .Another optimal feature of the SVD is related to the properties of the diretions determinedby the eigenvetors U1; : : : ; Ud. Spei�ally, the �rst eigenvetor U1 determines the diretionsuh that the variation of the projetions of the lagged vetors into this diretion is maximum.Every subsequent eigenvetor determines the diretion that is orthogonal to all previous di-retions, and the variation of the projetion of the lagged vetors onto this diretion is alsomaximum. Therefore, it is natural to all the diretion of the i -th eigenvetor Ui the i-th prin-ipal diretion. Note that the elementary matries Xi are built up from the projetions of thelagged vetors onto the i -th partiular diretions. This view on the SVD of the trajetory ma-trix omposed of L-lagged vetors and an appeal to assoiation with the prinipal omponentanalysis lead to the following terminology. We shall all the vetor Ui the i -th eigenvetor,the vetor Vi will be alled the i-th fator vetor and the vetor Zi = p�iVi the i-th prinipalomponent.



Singular Spetrum Analysis for Analysis of Eonomis Data 52.2 Reonstrution1st Step: GroupingThe grouping step orresponds to splitting the elementary matries into several groups andsumming the matries within eah group. Let I = fi1; : : : ; ipg be a group of indies i1; : : : ; ip.Then the matrix XI orresponding to the group I is de�ned as XI = Xi1 + � � � + Xip. Thespilt of the set of indies J = f1; : : : ; dg into disjoint subsets I1; : : : ; Im orresponds to therepresentation X = XI1 + � � �+XIm: (2)The proedure of hoosing the sets I1; : : : ; Im is alled the eigentriple grouping. For a givengroup I the ontribution of the omponent XI in the expansion (2) is measured by the shareof the orresponding eigenvalues: Pi2I �i=Pdi=1 �i. If the matrix XI is a Hankel matrix, thenthere exist series Y (1)T and Y (2)T suh that YT = Y (1)T + Y (2)T and the trajetory matries of theseseries are XI and XJnI , respetively. If the matries XI and XJnI are approximately Hankelmatries then the trajetory matries of the series Y (1)T and Y (2)T are lose to XI and XJnI . Inthis ase we shall say that the series are approximately separable, see [7℄ for many more details.Therefore, the purpose of the grouping step (that is, the proedure of arranging the indies1; : : : ; d into groups) is to �nd several groups I1; : : : ; Im suh that the matries XI1; : : : ;XImsatisfy (2) and are lose to ertain Hankel matries. The grouping step is based on the analysisof the eigenvetors Ui and Vi, and eigenvalues �i in the SVD expansion (1). The priniplesand methods of identifying the SVD omponents for their inlusion into di�erent groups aredesribed in [7℄, Set. 1.6. Sine eah matrix omponent of the SVD is ompletely determinedby the orresponding eigentriple, we shall talk about the grouping of the eigentriples ratherthan the grouping of the elementary matries Xi.2nd Step: Diagonal averagingThe purpose of diagonal averaging is to transform a matrix to the form of a Hankel matrixwhih an be subsequently onverted to a time series. If zij stands for an element of a matrixZ, then the k -th term of the resulting series is obtained by averaging zij over all i; j suh thati + j = k + 1. This proedure is alled diagonal averaging, or Hankelization of the matrixZ. The result of the Hankelization of a matrix Z is the Hankel matrix HZ. Note that theHankelization is an optimal proedure in the sense that the matrix HZ is the nearest to Z(with respet to the matrix norm) among all Hankel matries of the orresponding size (see[7℄, Set. 6.2). In its turn, the Hankel matrix HZ uniquely de�nes the series by relating thevalue in the diagonals to the values in the series. By applying the Hankelization proedure toall matrix omponents of (2), we obtain another expansion:X = fXI1 + : : :+fXIm (3)where fXI1 = HX. This is equivalent to the deomposition of the initial series YT = (y1; : : : ; yT )into a sum of m series: yt = mXk=1 ey(k)t (4)where eY (k)T = (ey(k)1 ; : : : ; ey(k)T ) orresponds to the matrix XIk . A sensible grouping leads to thedeomposition (2) where the resultant matries XIk are almost Hankel ones. This orresponds



6 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYto approximate separability and implies that pairwise salar produts of di�erent matriesXIk in (3) are small. The proedure of omputing the time series eY (k)T (that is, building upthe group Ik plus diagonal averaging of the matrix XIk) will be alled reonstrution of aseries Y (k)T by the eigentriples with indies in Ik. In relation to the grouping method, it isworthwhile to note that if L is large enough, the eigenvetors in a sense imitate the behaviorof the orresponding time series omponents. In partiular, the trend of the series orrespondsto slowly varying eigenvetors. The harmoni omponent produes a pair of left (and right)harmoni eigenvetors with the same frequeny, et.2.3 Linear Reurrent Formulae (LRF)Foreasting by SSA an be applied to the time series that approximately satisfy linearreurrent formulae (LRF).We shall say that the series YT satis�es an LRF of order d if there are numbers a1; : : : ; adsuh that yi+d = dXk=1 akyi+d�k; 1 � i � T � d: (5)The fat that the series yt satis�es an LRF (5) is equivalent to its representability as a sumof produts of exponentials, polynomials and harmonis; that is,yt = qXk=1�k(t) e�kt sin (2�!kt+ 'k): (6)Here �k(t) are polynomials, �k; !k and 'k are arbitrary parameters. The number of linearlyindependent terms q in (6) is less than or equal to d. The lass of series that an be approximatedby the series satisfying LRFs of the form (5) (or, equivalently, by the time series of the form(6) with a small number of terms) is very broad.3 Appliation of SSA to the analysis of Iranian GDPThe SSA tehnique an be applied to various time series. Using SSA for analyzing eonomistime series an be advantageous as these series typially ontain periodi omponents thatare diÆult to handle with lassial tehniques. As our main example, let us onsider theappliation of SSA for analyzing and foreasting the quarterly Iranian Gross Domesti Produt(GDP) in detail. Fig. 1 shows this series in basi pries (at urrent prie). Visual analysisof Fig. 1 indiates that the depited series has a trend and this trend an be approximatedby a funtion inreasing exponentially fast. A harmoni seasonal omponent with inreasingamplitude is also learly seen.3.1 Deomposition: trend, seasonality and residualsA general desriptive model of the series that is onsidered in SSA is an additive modelwhere the omponents of the series are trend, osillation and noise. In addition, the osillatoryomponents are subdivided into periodi and quasi-periodi omponents, while noise ompo-nents are, as a rule, aperiodi series. The sum of all additive omponents exept for the noise



Singular Spetrum Analysis for Analysis of Eonomis Data 7

Figure 1: Quarterly Iranian GDP (billion Rials).will be alled the signal. So we deompose the series into the signal (trend and osillations) andnoise. Note that SSA does not require an a priori parametri model for trend and osillations.The hoie of window length: as was mentioned earlier, the window length L is the onlyparameter at the deomposition stage. Seletion of the proper window length depends on theproblem in hand and on preliminarily information about the time series. Theoretial resultsadvise us to hoose L large enough but not greater than T=2. Knowing that the time seriesmay have a periodi omponent with an integer period, to ahieve a better separability of thisperiodi omponent it is advisable to take the window length proportional to that period. Forexample, the assumption that there is an annual periodiity in the series suggests that we mustpay attention to the frequenies k=12 (k = 1; :::; 12). For quarterly data the period of theseasonal omponent is equal to 4. Using these reommendations, we take L = 32 (in our aseT=68). So, based on this window length and on the SVD of the trajetory matrix, we have32 eigentriples, ordered by their ontributions (shares) into the deomposition. The leadingeigentriple desribes the general tendeny of the series. Sine in most ases the eigentripleswith small shares are related to the noise omponent of the series, we need to identify the setof leading eigentriples. Let us onsider the result of the SVD step. Fig. 2 represents prinipalomponents (left eigenvetors) related to the �rst 9 eigentriples. Note that the form of the fa-tor vetors (right eigenvetors) is almost the same as the form of prinipal omponents beauseL=32 is lose to K=37.

Figure 2: Prinipal omponents related to the �rst 9 eigentriples.



8 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYSeparability : SSA deomposition of the series YT an be suessful only if the resultingadditive omponents of the series are approximately separable from eah other. The followingquantity (alled the weighted orrelation or w-orrelation) is a natural measure of dependenebetween two series Y (1)T and Y (2)T : �(w)12 = �Y (1)T ; Y (2)T �wk Y (1)T kwk Y (2)T kwwhere k Y (i)T kw = r�Y (i)T ; Y (i)T �w ; �Y (i)T ; Y (j)T �w = PTk=1wky(i)k y(j)k , (i; j = 1; 2)wk=minfk; L; T � kg (here we assume L � T=2).

Figure 3: Matrix of w -orrelations for 32 reonstruted omponents.A useful tool for de�ning the groups of eigentriples is the matrix of the absolute values ofthe w -orrelations, orresponding to the full deomposition (in this deomposition eah grouporresponds to only one matrix omponent of the SVD). If two reonstruted omponents havezero w -orrelation it means that these two omponents are separable. If the absolute value ofa w -orrelation is small, then the orresponding series are almost w -orthogonal; if it is large,then the two series are far from being w -orthogonal and are therefore badly separable. Largevalues of orrelations between reonstruted omponents indiate that they should possibly begathered into one group and orrespond to the same omponent in SSA deomposition [7℄. InFig. 3 w -orrelations for 32 reonstruted omponents are shown in the 20-grade grey sale fromwhite to blak orresponding to the absolute values of orrelations from 0 to 1. Fig. 3 on�rmsthat the �rst four eigentriples are well separated from a blok of the remaining eigentriples(5{32) whih we onsider as noise.Components C1 C2 C3 C4 C5C2 0.002C3 0.001 0.960C4 0.000 0.001 0.028C5 0.001 0.001 0.001 0.015C(6�32) 0.001 0.020 0.016 0.026 0.186Table 1: w -orrelations for omponents C1; : : : ; C5 and C(6�32):



Singular Spetrum Analysis for Analysis of Eonomis Data 9The form of the matrix of w -orrelations gives an indiation of how to make the propergrouping: the leading eigentriple de�nitely orresponds to the trend (this situation is veryommon in pratie), the three subsequent eigentriples orrespond to the harmonis, and thelarge sparking square (after the �fth or sixth eigentriple) indiates the noise omponent. We aninterpret the �fth omponent (and omponents 6{9 as well) as a part of either a trend or noise.Inspetion of the matrix of w -orrelations (see Table 1) and the quality of the approximationand foreast indiate that we get more stable results if we onsider eigentriples above 4 asomponents of noise.The omponents 5{9 are slowly varying and may perhaps be assoiated with business yles.For example, the periodograms of these omponents show that there is de�nitely a periodiomponent with period 16 quarters = 4 years. However, the time series we analyze are tooshort (and too noisy) for reliable identi�ation of the business yles.Trend identi�ation: Trend is the slowly varying omponent of a time series whih doesnot ontain osillatory omponents. Assume that the time series itself is suh a omponentalone. Pratie shows that in this ase, one or more of the leading eigenvetors will be slowlyvarying as well. Exponential and polynomial sequenes are good examples of this situation.We know that eigenvetors have a form similar to the form of the orresponding omponentsof the initial time series, thus we should �nd slowly varying eigenvetors. This an be ahievedby the inspetion of one-dimensional plots of the eigenvetors.In our ase, the leading eigenvetor is de�nitely of the required form but the eigentriples2{4 are de�nitely not. Sine we have deided that the eigentriples 5{32 orrespond to thenoise, the trend is desribed by the �rst eigentriple only. This diretly implies that the trend ofthe original series is approximated by an exponential funtion. Note again, that we an builda more ompliated approximation of the trend if we use some other eigentriples. However,the gain in preision will be very small and the model of the trend will beome muh moreompliated. Fig. 4 shows the original series and the extrated trend (whih is obtained fromthe �rst eigentriple).
Figure 4: Trend extration.Identi�ation of the harmoni omponents: The general problem here is the identi�ationand separation of the osillatory omponents of the series that do not onstitute parts of thetrend. In parametri form, this problem is extensively studied in lassial spetral analysistheory. The statement of the problem in SSA is spei�ed mostly by the model-free natureof the method. In pratie, the singular values of two eigentriples of a harmoni series areoften very lose to eah other, and this fat simpli�es the visual identi�ation of the harmoniomponents. An analysis of the pairwise satterplots of the eigenvetors also helps to visuallyidentify those eigentriples that orrespond to the harmoni omponents of the series, providedthese omponents are separable from the residual omponent. Fig. 5 depits satterplots ofpaired fator vetors from the Iranian GDP data, orresponding to the harmonis with a small



10 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYnumber of frequenies. This �gure shows two-dimensional graphs whih form two-dimensionaltrajetories with verties in a spiral-shaped urve. This indiates that these pairs of eigenvetorsare produed by the modulated harmoni omponents of the initial time series. In that way,the eigentriples 2{3 orrespond to the period 4 or frequeny 3/12=1/4.

Figure 5: Satterplots (with lines onneting onseutive points) of the �rst eight pairs ofeigenvetors.Let us desribe additional information, whih an help us to identify eigentriples and on�rmthe grouping of the omponents. Logarithms of eigenvalues provide suh information in thefollowing way: a pair of eigentriples orresponding to a harmoni omponent produes a plateauin this graph. Analysis of the matrix of w -orrelation between reonstruted omponents ofthe initial time series is also useful for identi�ation. Certainly, auxiliary information aboutthe initial series always makes the situation learer and helps in hoosing the parameters ofthe methods. For example, the assumption that there might be a quarterly periodiity in theIranian GDP data set suggests that the analyst must pay speial attention to the frequeny 1/4.As shown in Fig. 5, eigentriples 2{4 orrespond to some harmonis, sine their eigenvetors havea regular periodial form. Fig. 6 shows the osillation of our data set whih is obtained fromeigentriples 2{4. Obviously, we do not have osillation with equal amplitude, it has an inreasingrate, similar to what we visually observed earlier for the original series. Also, Fig. 6 on�rmsthat the eigentriple seletion for the identi�ation of osillation of the original series seemsorret as eigentriples 2{4 adequately reet the osillation behavior of the original series.
Figure 6: Osillation extration.The omponents 2{4 orrespond to the seasonality omponents of the series. Looking atthe periodorgams of the omponents 5{9 we may suggest that these omponents reet slowly-varying eonomi yles. However, the time series we analyze are too short for a onlusion likethat and for reliable foreasting of the eonomi yles; therefore, we have preferred to omitthe orresponding eigentriples on the stage of foreasting.



Singular Spetrum Analysis for Analysis of Eonomis Data 11Separation of the noise from the signal : The problem of �nding a re�ned struture of a seriesby SSA is equivalent to the identi�ation of the eigentriples of the SVD of the trajetory matrixof this series, whih orrespond to trend, various osillatory omponents, and noise. From thepratial point of view, a natural way of noise extration is the grouping of the eigentriples,whih do not seemingly ontain elements of trend or osillation.Let us make a few remarks onerning the separation of the omponents orrespondingto noise. First, irregular behavior of eigenvetors an indiate that they are part of noise.This irregularity should be distinguished from omponent mixture, whih is aused by lakof separability between these omponents. The noise omponent an often be identi�ed as ittypially reates a long tail of eigenvalues whih are slowly dereasing (almost without jumps).Seondly, the large set of eigentriples whih are highly orrelated with eah other is quite likelyto belong to a noise. (Fig. 3 ontains suh a blok of eigentriples with numbers 5{32). Theinterpretation of the eigentriple 5 (and perhaps 6{9 as well) is unlear. This is a border-linease disussed above; we lassify these eigentriples as examples of noise. The fat that thew-orrelation between the reonstruted series (the eigentriples 1{4) and the residuals (theeigentriples 5{32) is equal to 0.005 on�rms that this grouping is very reasonable. Fig. 7 showsthe residuals after extrating the trend and the seasonal omponent. If we add together thetrend and the residuals we ome to the original series adjusted for seasonal variations and if weadd the series of Figs 4, 6 and 7 we will obtain the original series (Fig. 1).
Figure 7: Residual series (eigentriples 5{32.)3.2 ForeastingA foreast an be made only if a ertain model is built. The model an either be derivedfrom the data or at least heked against the data. In SSA foreasting, this model an bedesribed with the help of a linear reurrent formula. The lass of series governed by linearreurrent formula (LRF s) is rather wide and important for pratial impliation.Assume that we have a series YT = fytg = Y (1)T + Y (2)T and the problem of foreasting itsomponent Y (1)T . If Y (2)T an be regarded as noise, then the problem is that of foreasting thesignal Y (1)T in the presene of a noise Y (2)T . The main assumptions are:(a) the series Y (1)T admits a reurrent ontinuation with the help of an LRF of a relatively smalldimension d, and(b) there exists a number L suh that the series Y (1)T and Y (2)T are approximately separable forthe window length L.The assumption (b) is important as any time series Y (1)T is an adaptive omponent of YTin the sense that YT = Y (1)T + Y (2)T with Y (2)T = YT � Y (1)T . The assumption of (approximate)



12 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYseparability means that Y (1)T is a natural additive omponent from the viewpoint of the SSAmethod.To hek the foreast quality, several methods an be applied. The main way is to trunateseveral last points of the original series, make the analysis of the redued series and omparetrunated values with the foreasted ones. We ut o� the last 4 points of the series and foreastthem (that is, we will foreast the Iranian GDP for all quarters of 2004). We used the windowlength of 32, four leading eigengtriples to deompose the initial series and the so-alled vetoralgorithm (see [7℄, p. 107) to foreast the most reent data. Fig. 8 shows the initial seriesand its foreast for the four quarters of 2004. The foreast is basially idential to the data.The vertial line shows the trunation between the last point of original series and the foreaststarting point. This foreast is performed using the full LRF produed by the subspae, whihis generated by the leading 4 eigentriples.

Figure 8: Approximation and Foreasting.Con�dene intervals for the foreastsCon�dene intervals for the foreasts an be alulated by two methods: the empirialmethod and the bootstrap method. They are alulated using the residuals of the reonstru-tion.Aording to the main SSA foreasting assumption, the omponent Y (1)T of the series YT hasto satisfy an LRF of a relatively small dimension, and the residual series Y (2)T = YT � Y (1)T hasto be approximately separable from Y (1)T . In partiular, Y (1)t is assumed to be a �nite subseriesof an in�nite series Y (1), whih is a reurrent ontinuation of Y (1)T . These assumptions are oftenhold in pratie with high auray.There are two problems related to the onstrution of the on�dene intervals for the fore-ast. The �rst problem is to onstrut a on�dene interval for the original series YT = fytgat some future point in time. The seond problem is onstrution of on�dene intervals forthe signal Y (1)T = fy(1)t g at some future point in time. These two problems an be solved indi�erent ways. The seond requires additional information about the model governing the serieseY (2)T = fey(2)t g to perform a bootstrap simulation of the series YT . Bootstrap on�dene intervalsare built for the ontinuation of the signal Y (1)T (for more information see [22℄).Let us onsider a method of onstruting intervals for the signal Y (1)T+M at the moment T+M.In the unrealisti situation, when we know both the signal Y (1)T and the true model of the noiseY (2)T , a Monte Carlo simulation an be applied to hek the statistial properties of the foreastvalue ey(1)T+M relative to the atual term y(1)T+M .Indeed, assuming that the rules for the eigentriple seletion are �xed, we an simulate Nindependent opies Y (2)T;i (i = 1; : : : ; N) of the proess Y (2)T and apply the foreasting proedure



Singular Spetrum Analysis for Analysis of Eonomis Data 13Bootstrap Lower UpperQuarter Original data Foreast Relative Average Con�dene Con�dene2004 Error Foreast Interval IntervalQ 1 310880 313735 0.017 314052 300528 314052Q 2 388277 395591 0.012 396032 384484 396032Q 3 349674 348191 0.005 348933 331456 348933Q 4 335988 335783 0.002 340786 326411 340786Table 2: Original, foreast, average, lower and upper 95 % bootstrap on�dene intervals.to N independent time series YT;i = Y (1)T +Y (2)T;i . Then the foreasting result will form a sampleey(1)T+M;i, whih should be ompared against y(1)T+M . In this way the Monte Carlo average seriesfor the foreast an be built up. Sine in pratie we do not know the signal Y (1)T , we an notapply this proedure. Let us desribe the bootstrap variant of the simulation for onstrutingthe on�dene intervals for the foreast.Under a suitable hoie of the window length L and the orresponding eigentriples, we havethe representation YT = eY (1)T + eY (2)T , where eY (1)T (the reonstruted series) approximates Y (1)T ,and eY (2)T is the residual series. Suppose now that we have a (stohasti) model for the residualeY (2)T (for instane, we an postulate some model for Y (2)T and, sine eY (1)T � Y (1)T , we apply thesame model for eY (2)T with the estimated parameters). Then, simulating N independent opiesY (2)T;i of the series eY (2)T , we obtain N series YT;i = eY (1)T + eY (2)T;i and produe M foreasting resultsey(1)T+M;i in the same manner as in the Monte Carlo simulation variant.More preisely, any time series YT;i produes its own eY (1)T;i reonstruted series and its ownforeasting linear reurrent formula LRFi for the same window length L and the same setsof eigentriples. Starting at the last L { 1 terms of the series eY (1)T;i , we perform M steps offoreasting with the help of its LRFi, to obtain ey(1)T+M;i.From the sample ey(1)T+M;i (1 � i � N) we an alulate its (empirial) lower and upperquintiles for a �xed level  and obtain the orresponding on�dene interval for the foreast.This interval (alled bootstrap on�dene interval) an be ompared with the foreast valueey(1)T+M obtained from the initial foreasting proedure. We an also build average bootstrapseries. This average an then be ompared with the value ey(1)T+M obtained by Basi SSA foreast.Large disrepany between these two foreast would typially indiate that the original SSAforeast is not reliable.The simplest model for eY (2)T is the Gaussian white noise model. The orresponding hypoth-esis an be heked with the help of the standard test for randomness and normality. Table 2presents the original and foreasted data, relative error and the 95 % bootstrap on�deneinterval, inluding the average and the lower and upper on�dene intervals, of the foreasteddata. Con�dene intervals are obtained by simulation under the hypothesis that the residualsof the reonstrution form a Gaussian white noise series. This table shows that the foreastedvalues are very lose to the original data and the on�dene intervals are narrow.The Iranian GDP series (thin line) is depited in Fig. 9 together with its bootstrap on�-dene interval (dashed line) for both the original (thin line) and foreasted data and the basivetor foreast (thik line). The vertial line orresponds to the trunation point.
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Figure 9: Bootstrap on�dene intervals for the original and foreasted data.4 Analysis of Iranian National AountIn this setion we demonstrate the apability of SSA by applying it to the analysis andforeasts of the Iranian national aount data. The data sets desribe the main eonomifeatures of the Islami Republi of Iran and is provided on the web-site of the Central Bank ofthe Islami Republi of Iran, see [21℄. The sets of data are quarterly and yearly. There are 16quarterly data sets eah ontaining 68 data points over the period of 1988 to 2004 (measuredin billion rails, the oÆial urreny of Iran).These sets of data are: 1 { Agriulture, 2 { Oil and Gas, 3 { Industries and Mines, 4 { Man-ufaturing, 5 { Mining, 6 { Eletriity, Gas and Water Supply, 7 { Constrution, 8 { Servies, 9{ Trade, Restaurants and Hotels, 10 { Transportation, Warehousing and Communiation, 11 {Finanial Servies, 12 { Real Estate and Professional Servies, 13 { Publi Servie, 14 { Soial,Personal and Domesti Servies, 15 { Imputed Bank Servies Charge and 16 { Gross Domes-ti Produt (GDP) in Basi Prie. We shall refer to these data sets as Series 1 to Series 16,respetively.Fig. 10 displays Series 1 { 16. In this �gure, the series in row i and olumn j is Series4(i�1)+j (i; j = 1; : : : ; 4).It is ustomary in eonometris to take the logarithms of the data desribing eonomifeatures. Therefore, we make a parallel analysis of the data taken in the logarithmi sale.Fig. 11 displays Series 1 { 16 in the logarithmi sale (the arrangement of the series is the sameas in Fig. 10).We also onsider 16 yearly data sets whih ontain 45 observations eah overing the periodof 1959 to 2003 (measured in billion rails). These data desribe exatly the same eonomifeatures as Series 1{16. We shall refer to these data as Series 17 { Series 32. Fig. 12 displaysthese series. In this �gure, the series in row i and olumn j is Series 16+4(i�1)+j (i; j = 1; : : : ; 4).Fig. 13 displays Series 17 { 32 in the logarithmi sale.On the website [21℄ one an �nd the Iranian national aounts quarterly data adjusted toseasonal e�ets. However, we use the original, non-adjusted data sine one of our aims is toillustrate the apability of the SSA tehnique for extrating trend and osillations from thedata. We then use the approximated trend and osillations for foreasting the data.4.1 Analysis of quarterly data setsFor eah series, we have performed SSA analysis and foreast. Similarly to what we havedone with the GDP data in Set. 2, we have removed the last four points of eah series (Q1{ Q4 of 2004), made an SSA approximation for the period 1988 to 2003 and foreasted thedata for the four quarters of 2004. In eah analysis, we hoose the SSA parameters (whih are
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Figure 10: Series 1{16.

Figure 11: Series 1{16 in the logarithmi sale.the window length and the number of eigentriples hosen for approximation) to optimize theapproximation of the series keeping the window length L large enough.For eah foreasted value (Q1 { Q4 of 2004), we have omputed the relative error of theforeast (in perent). To summarize the quality of the foreast, we provide the Mean RelativeError (MRE) whih is simply the average of the four relative errors (in perent) for eah series.In parallel, we have performed SSA analysis and foreast for the data taken in the loga-rithmi sale. All the orresponding results are presented in Table 3 (in brakets). When the
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Figure 12: Series 17{32.

Figure 13: Series 17{32 in the logarithmi sale.SSA analysis was performed in the log-sale, for omputing the relative error of the foreast,we have transformed the foreasted data bak to the original sale. We needed to do this inorder to be able to ompare these results with the results of the original analysis.Table 3 shows the results. Columns 2 and 3 show the parameters of the SSA algorithm (thewindow length L, see Stage 1 of the algorithm, and the eigentriples hosen E, see Stage 3).Note that using this information and the SSA-Caterpillar software [14℄, anyone an repeat theresults presented in the table).



Singular Spetrum Analysis for Analysis of Eonomis Data 17In eah ell in olumns 4{7, there are two numbers: the �rst one is the relative error of theforeast (in perent) for the original series for a given quarter of 2004 and the seond one (inbrakets) is the value of the relative error of the orresponding foreast when the analysis wasperformed after taking the logarithms of the series. In the last olumn, the bold font indiatesthe lower of the two values. Table 3 learly demonstrates that taking logarithms of the datadoes not improve the quality of the SSA foreast (on the opposite, it typially leads to itsdeterioration). This is related to the fat that the quarterly data have periodi omponentswhih are easier to extrat when the data are onsidered in the original sale (taking logarithmsprodues additional smoothing and makes extration of periodi omponents more diÆult).We onsider the SSA foreasts for all 16 series as very good (an exeption is Series 5 andpartly Series 7 and 11). The suess of the analysis means that in most ases, SSA was able toapproximate both the trends and the periodi omponents with high auray. Of ourse, thisis also related to the fat that the eonomy of Iran was developed steadily during the period1988 { 2004 (the Iran-Iraq War ended in 1988).Relative Error% MRE %Ser. L E Q1 Q2 Q3 Q41 17 (32) 1-4 (1-10) 3.55 (6.03) 0.87 (2.50) 4.32 (4.50) 0.81 (12.60) 2.39 (6.41)2 32 (5) 1,6-7 (1) 0.06 (2.23) 1.24 (.021) 5.77 (0.62) 4.32 (17.0) 2.99 (5.05)3 32 (32) 1-7 (1-7) 1.47 (0.35) 2.16 (1.54) 0.98 (0.68) 5.38 (17.4) 2.50 (5.01)4 32 (32) 1-7 (1-7) 2.06 (1.66) 0.73 (4.03) 7.17 (9.56) 1.78 (4.22) 2.93 (4.85)5 12 (12) 1,2 (1,2) 3.75 (19.1) 6.01 (19.3) 2.95 (12.2) 13.3 (8.63) 6.51 (14.8)6 16 (16) 1,2,4-7 (1-4) 1.96 (0.72) 0.02 (9.04) 2.25 (1.22) 1.92 (4.81) 1.54 (3.95)7 32 (8) 1-5 (1-4) 10.4 (15.7) 11.9 (9.02) 1.44 (6.17) 0.34 (5.46) 6.05 (9.09)8 32 (32) 1-10 (1-4) 0.44 (1.46) 0.06 (0.25) 0.63 (0.07) 1.10 (5.22) 0.56 (1.75)9 32 (32) 1-5 (1-5) 1.02 (3.23) 0.74 (3.75) 4.58 (5.83) 0.60 (3.72) 1.74 (4.13)10 32 (32) 1,4-7(1-3) 1.35 (1.24) 0.00 (0.71) 4.78 (6.39) 0.22 (2.20) 1.59 (2.63)11 5 (10) 1,2 (1,2) 0.32 (0.17) 3.95 (3.40) 4.40 (2.12) 5.24 (8.22) 3.48 (3.65)12 12 (10) 1-4,6 (1,2) 4.29 (0.54) 0.30 (5.88) 0.55 (5.84) 2.01 (8.92) 1.79 (5.20)13 32 (32) 1-7 (1-5) 0.77 (2.84) 2.69 (3.04) 1.56 (8.67) 2.21 (1.13) 1.79 (3.92)14 32 (32) 1-5 (1-5) 4.10 (2.15) 2.83 (0.81) 2.64 (2.31) 1.29 (0.57) 2.72 (1.46)15 8 (5) 1 (1) 1.12 (6.34) 1.04 (2.29) 0.60 (3.30) 8.17 (0.22) 2.73 (3.11)16 32 (24) 1-4 (1-4) 0.91 (0.55) 1.88 (0.03) 0.42 (6.49) 0.06 (0.15) 0.82 (1.81)Table 3: Relative Error and Mean Relative Error for Series 1 { 16 before and after taking thelogarithm.



18 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYRelative Error%Ser. L E 2001-2 2002-3 2003-4 MRE %17 5 (5) 1,2 (1,2) 8.59 (8.48) 1.13 (1.58) 0.86(0.28) 3.52 (3.45)18 3 (12) 1 (1) 24.8 (17.5) 15.9 (19.5) 2.06 (1.51) 14.2 (12.8)19 7 (5) 1,2 (1,2) 1.43 (5.75) 1.64 (6.35) 6.84 (2.35) 3.30 (4.05)20 5 (5) 1,2 (1,2) 11.3 (0.12) 3.80 (3.42) 4.83 (6.80) 6.66 (3.45)21 7 (11) 1 (1,2) 3.13 (5.25) 1.50 (1.00) 7.34 (3.20) 3.99 (3.15)22 21 (9) 1 (1-4) 3.77 (4.51) 3.25 (2.68) 20.2 (3.01) 9.09 (3.40)23 21 (3) 1-3 (1,2) 15.1 (0.08) 5.85 (13.8) 3.16 (0.25) 8.04 (4.71)24 6 (4) 1,2 (1,2) 2.25 (0.00) 0.13 (3.64) 0.32 (7.11) 0.90 (3.58)25 5 (3) 1,2 (1,2) 3.17 (2.87) 0.98 (0.15) 0.56 (1.16) 1.57 (1.39)26 4 (14) 1,2 (1-5) 13.7 (0.40) 4.18 (3.86) 2.80 (5.51) 6.92 (3.25)27 12 (9) 1,2 (1,2) 4.33 (11.0) 2.44 (1.22) 6.31 (5.27) 4.36 (5.84)28 3 (6) 1 (1,2) 1.65 (4.29) 1.18 (1.05) 3.47 (3.56) 2.31 (2.97)29 21 (6) 1,2 (1,2) 2.38 (1.90) 1.66 (0.18) 6.31 (2.30) 3.45 (1.46)30 10 (10) 1 (1-3) 1.43 (0.60) 1.32 (2.42) 7.55 (5.23) 3.43 (2.75)31 21 (15) 1-5,7 (1) 16.5 (19.6) 2.35 (0.92) 9.27 (16.6) 9.38 (12.4)32 11 (11) 1 (1-3) 0.27 (0.59) 7.20 (8.61) 0.96 (82.16) 2.81 (3.78)Table 4: Relative Error and Mean Relative Error for Series 17 { 32 before and after taking thelogarithm.4.2 Yearly data setsIn this setion we show the results of the appliation of the SSA tehnique to 16 yearlydata sets (Series 17 {32) desribed in Set. 4.1. These data sets over the period 1959 to2003. These series ontain 45 points and are shorter than the quarterly series. Moreover, theeonomi features exhibit lear non-stationary behaviour in this period and therefore it is muhmuh harder to foreast the yearly series than the quarterly series.We ut o� the last 3 years of eah series and foreast it to onsider the preision of thetehnique (that is, we will foreast the values for 2001{2003). Here we do not have seasonalomponents so we only need to extrat the trend of these data sets.Table 4 shows the parameters of the SSA algorithm and the results of the foreasts (thestruture of this table is the same as that of Table 3). The foreast results for the yearlydata are generally worse than that for the quarterly data sets. The main reason for this is thefat that during the period 1959 to 2003 there were signi�ant hanges in the dynamis of theIranian eonomi features, see Fig. 12 and espeially Fig. 13. These hanges an be assoiatedwith the start and the end of the Iran-Iraq War (1980 { 1988). Note that the hanges an easilybe deteted by SSA, see [23℄ for information about using SSA for detetion of hanges in timeseries.One may note from Table 4, that ontrary to the ase of the quarterly data, the foreastbased on the analysis of the series in the logarithmi sale often gives better results. This isperhaps related to the fat that the yearly series do not have seasonal omponents whih areeasier to extrat when the data is in the original sale.



Singular Spetrum Analysis for Analysis of Eonomis Data 194.3 Ination rate seriesNext, we present the foreasting results for ination rate based on the monthly IranianConsumer Prie Index (CPI) series for the short and long horizons h = 1; 3; 6 and 12. In fat,we used monthly CPI data for the period Mar. 1990 - Sep. 2007. We used Jan. 1990 to Aug.2004 CPI observations as training set and Sep. 2004 to Sep. 2007 observations for out-of-samplepredition. We selet the window length L = 60 and the �rst 19 eigenvalues for reonstrutingthe original series and onsider remaining eigentriples (20{60) as noise for foreasting inationrate based on the CPI prie index over period Sep. 2004 to Sep. 2007. We also use the RWmodel as a benhmark model in the omparative analyses. The use of the random walk modelas a benhmark model should not imply that we believe the model is an optimal foreastingmethod. We use this model beause it is a naive model. The point here is that a superiorperformane of random walk model would render the analyst's method useless. As a measureof predition auray, we use the following ratio of root-mean-square errors (RMSE):RMSE =  Pni=1(yT+i � eyT+i)2Pni=1(yT+i � byT+i)2!1=2 :Here n represents the number of foreasted points, eyT+i are the foreasted values of yT+i ob-tained by SSA and byT+i is the foreasted values of yT+i obtained by RW. Note that eyT+i forRW model is yT+i�h for any h-step ahead foreasting. If RMSE < 1, then SSA proedureoutperforms alternative predition method. Alternatively, RMSE > 1 would indiate that theperformane of the orresponding SSA proedure is worse than the preditions of the ompetingmethod.Fig. 15 shows the CPI series and also ination rate series based on the CPI series. Visualanalysis of Fig. 15 indiates that the CPI series has a trend and this trend an be approximatedby a funtion inreasing exponentially fast. A harmoni seasonal omponent with dereasingamplitude is also learly seen in Ination rate series. In the following, we only onsider Inationrate series.

Figure 14: CPI series (left) and ination rate series based on the CPI series (right) Mar. 1990- Sep. 2007.Table 5 shows the RMSEs for SSA/random walk for h-step ahead foreasts of ination ratebased on the CPI series for N foreasted data points. Without exeption, SSA outperformsthe random walk preditions in all h-step ahead foreasts. In fat, SSA method is up to 27%more eÆient ompared to the RW method. Table 5 also presents the results of Diebold andMariano test [24℄ indiating whether the disrepanies between SSA and RW model foreasting



20 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYproedures are statistially signi�ant. ** and * imply signi�ane at 1% and 10% on�denelevels, respetively. The results of this table on�rm that, for all ases, the di�erenes aresigni�ant at 1% on�dene level.Additionally, Table 5 presents test results for the null hypothesis of whether the perentagesof the diretion of hanges (DC) are greater than the pure hane (50%). The table shows thatall results are statistially signi�ant at 1% and 10% on�dene levels. The results of this tablealso show that MSSA predits diretion of hange for 12-step as aurately as it an predit1-step ahead.Fig. 15 (left) shows the Iranian GDP deator series (yearly); the data are taken fromhttp://data.un.org. One an see that this series looks very similar to the GDP series. SSAanalysis and foreasting results for these two series are also very similar (the results of SSAanalysis for the GDP deator series are not reported here).Fig. 15 (right) shows the Iranian GDP series normalized to the Iranian GDP deator. Theresults of SSA foreasting (not reported here) show that it is generally more advantageousto analyze and foreast the two series (namely, Iranian GDP series and Iranian GDP deatorseries) separately and then ompute the ratio of the foreasts rather than to analyze and foreastthe ratio only.h = 1 h = 3 h = 6 h = 12N RMSE DC N RMSE DC N RMSE DC N RMSE DC36 0.81** 0.69** 34 0.78** 0.68* 31 0.73** 0.74** 25 0.84** 0.67*Table 5: RMSE of SSA foreast results with respet to the RW method, Diebold-Marinosigni�ane test results and diretion of hange test for ination rate based on the CPI series.

Figure 15: Iranian GDP deator (left side) and Iranian GDP/Iranian GDP deator (right side).5 ConlusionIn this paper we have desribed the methodology of SSA (Singular-Spetrum Analysis) anddemonstrated that SSA an be suessfully applied to the analysis and foreasting of eonomitime series. We have used 32 Iranian national aount data sets desribing the main eonomifeatures of the Islami Republi of Iran, as provided on the web-site of the Central Bank of theIslami Republi of Iran [21℄. The data are given in a quarterly and yearly format and havedi�erent types of non-stationarity. All the data sets are rather short.



Singular Spetrum Analysis for Analysis of Eonomis Data 21The results show that SSA an be suessfully used for the analysis and foreasting of shorteonomi time series with di�erent types of non-stationarity. In partiular, many quarterlyseries have periodi omponents with non-stationary amplitudes but SSA has been able toextrat and foreast these periodi omponents very aurately. Most of the yearly data havelear strutural hanges whih makes the appliation of standard methods of analysis almostimpossible.Unlike standard methods used for analysis of eonomis time series, SSA does not requireparametri models or transformation of the data into the logarithmi sale. Moreover, ourstudy has shown that in most ases, the transformation of the quarterly series into logarithmisale has lead to the deterioration of the preision of the foreasts.AknowledgementThe authors are grateful to their olleagues Nina Golyandina and Vladimir Nekrutkin (Uni-versity of St.Petersburg) for onstrutive remarks and to the referee for useful suggestions. The�rst author would also like to thank the Central Bank of the Islami Republi of Iran for itssupport during his researh study at Cardi� University.Referenes[1℄ S. D. Krane, An evaluation of real GDP foreasts: 1996-2001, Eonomi Perspetives, 2003,http://www.hiagofed.org/publiations/eonomiperspetives/2003/1qeppart1.pdf.[2℄ L. Y. Cao, and A. Soo�, Nonlinear deterministi foreasting of daily dollar exhange rates,International Journal of Foreasting, 1999, 15(4): 421{430.[3℄ A. Soo�, and L. Y. Cao, Nonlinear Foreasting of Noisy Finanial Data, in Soo� and Cao(eds.), Modeling and Foreasting Finanial Data: Tehniques of Nonlinear Dynamis, KluwerAademi Publishers, Boston, 2002.[4℄ D. A. Hsieh, Chaos and nonlinear Dynamis: Appliation to Finanial Markets, Journal ofFinane, 1991, 46: 1839{1877.[5℄ J. Sheinkman, and B. LeBaron, Nonlinear Dynamis and Stok Returns, Journal of Busi-ness, 1989, 62: 311{337.[6℄ D. S. Broomhead, and G. P. King, Extrating Qualitative Dynamis from ExperimentalData, Physia D, 1986, 20: 217{236.[7℄ N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Struture: SSAand related tehniques, Chapman & Hall/CRC, New York - London, 2001.[8℄ D. Danilov and A. Zhigljavsky (Eds.). Prinipal Components of Time Series: the `Cater-pillar' method, University of St. Petersburg, St. Petersburg. (In Russian.), 1997.[9℄ J. B. Elsner and A. A. Tsonis, Singular Spetral Analysis, A New Tool in Time SeriesAnalysis, Plenum Press, New York and London, 1996.
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