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Abstract We describe the methodology of Singular Spectrum Analysis (SSA) and demonstrate that
it is a powerful method of time series analysis and forecasting, particulary for economic time series.
We consider the application of SSA to the analysis and forecasting of the Iranian national accounts
data as provided by the Central Bank of the Islamic Republic of Iran.
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1 Introduction

Econometric methods have been widely used to forecast the evolution of quarterly and
yearly national account data sets. However, many of these structural or time series forecasting
models have failed to accurately predict the growth rate of Gross Domestic Product (GDP) or
the turning points of business cycles in the industrial economies (see for example, [1]).

Many factors could affect the national economies and hence the national account data which
are at best inaccurate representation of the macroeconomic variables because of measurement
noise. The exogenous factors that cause instability in macroeconomies including technological
changes, government policy changes, changes in the preferences of the consumers, and other
events. These shocks cause structural changes in these time series making them nonstationary.
Development of a methodology which is robust under these changes is of paramount importance
in accurate prediction of macroeconomic time series.

Moreover, many structural econometric and time series models devised for forecasting
macroeconomic time series are based on restrictive assumptions of normality and linearity
of the observed data. The methods that do not depend on these assumptions could be very
useful for modeling and forecasting economics data.

Furthermore, it is well known that noise can seriously limit accuracy of time series prediction.
Currently there are not many effective forecasting techniques available when there is significant
noise in the time series data. There are two main approaches for forecasting noisy time series.
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According to the first one, we ignore the presence of noise and fit a forecasting model directly
from noisy data hoping to extract the underlying deterministic dynamics. According to the
second approach, which is often more effective that the first one, we start with filtering the noisy
time series in order to reduce the noise level and then forecast the new data points (see, for
example, [2, 3]). There are several nonlinear noise reduction methods such as local projective,
singular value decomposition (SVD) and simple nonlinear filtering. It is currently accepted
that SVD-based methods are very effective for the noise reduction in deterministic time series
and correspondingly for forecasting [3].

Additionally, some of the previous research have considered economic and financial time
series as deterministic, linear dynamical systems. In this case, the linear models can be used
for modeling and forecasting. However, it has been shown that most of the financial time series
are nonlinear (see, for example, [2, 3, 4, 5]); in these cases, we should use nonlinear methods.
Having a method that works well for both linear and nonlinear time series is ideal for modeling
and forecasting. The Singular Spectrum Analysis (SSA) meets all conditions stated above. The
SSA technique is a nonparametric technique of time series analysis incorporating the elements of
classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems
and signal processing.

The birth of SSA is usually associated with the publication of papers by Broomhead and
King (e.g. [6]) while the ideas of SSA were independently developed in Russia (St. Petersburg,
Moscow) and in several groups in the UK and USA. A thorough description of the theoretical
and practical foundations of the SSA technique (with many examples) can be found in [7, 8.
An elementary introduction to the subject can be found in [9]. Below we describe several
applications of SSA and provide a brief discussion on the methodology used. In doing so, we
mainly follow [7], chapters 1 and 2.

The basic SSA method consists of two complementary stages: decomposition and recon-
struction; both stages include two separate steps. At the first stage we decompose the series
and at the second stage we reconstruct the original series and use the reconstructed series for
forecasting new data points. The main concept in studying the properties of SSA is ‘separa-
bility’, which characterizes how well different components can be separated from each other.
The absence of approximate separability is often observed in series with complex structure.
For these series and series with special structure, there are different ways of modifying SSA
leading to different versions such as SSA with single and double centering, Toeplitz SSA, and
sequential SSA| see [7], Sect. 1.7.

An important feature of SSA is that it can be used for analyzing relatively short series. On
the other hand, asymptotic separation plays a very important role in the theory of SSA. It
has been observed that in many practical applications the asymptotic features (which hold as
the length of the series T tends to infinity) are met for relatively small values of T'; it is not
uncommon to successfully apply SSA to series with 7" equal to 20-30. The series considered in
this paper have lengths 7' = 68 and 1" = 45.

It is worth noting that although some probabilistic and statistical concepts are employed in
the SSA-based methods, we do not have to make any statistical assumptions such as stationarity
of the series or normality of the residuals.

In addition, the method has several essential extensions. First, the multivariate version
of the method permits the simultaneous expansion of several time series; see, for example
[8]. Second, the SSA ideas lead to several forecasting procedures for time series; see [7, 8].
Also, the same ideas are used in [7] and [10] for change-point detection in time series. For
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comparison with classical methods, ARIMA, ARAR algorithm and Holt-Winter, see [11, 12].
For automatic methods of identification within the SSA framework see [13] and for recent work
in ‘Caterpillar’-SSA software as well as new developments see [14].

Let us mention some other areas related to SSA. A variety of techniques of time series
analysis and signal processing have been suggested that use SVD of certain matrices; for surveys
see, for example, [15, 16]. Most of these techniques are based on the assumption that the
original series is random and stationary; they include some techniques that are famous in
signal processing, such as Karhunen-Loeve decomposition (for signal processing references see,
for example [17]). Some statistical aspects of the SVD-based methodology for stationary series
are considered, for example, in [18] (Chapter 9) and [19, 20].

In this paper we start with a brief description of the methodology of SSA and apply this
technique to 32 original data sets, 16 quarterly and 16 yearly, which are taken from the Central
Bank of the Islamic Republic of Iran (CBI) [21]. We use the series of Iranian GDP (quarterly)
as the main data set for illustrating details of the practical application of the SSA methodology.

2 Methodology

The main purpose of SSA is to decompose the original series into a sum of series, so that each
component in this sum can be identified as either a trend, periodic or quasi-periodic component
(perhaps, amplitude-modulated), or noise. This is followed by a reconstruction of the original
series. The Basic SSA technique is performed in two stages, both of which include two separate
steps as follows:

Step 1 : Embedding

Step 2 : Singular Value Decomposition (SVD)
Step 1 : Grouping

Step 2 : Diagonal Averaging

Stage 1 : Decomposition

Stage 2 : Reconstruction

2.1 Decomposition

1st step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time series Y, =
(y1,...,yr) into the multidimensional series X1, ..., Xx with vectors X; = (y;,...,yir-1)7 €
RE | where K =T — L +1. Vectors X; are called L-lagged vectors (or, simply, lagged vectors).
The single parameter of the embedding is the window length L, an integer such that 2 < L < T.
The window length L should be sufficiently large. The result of this step is the trajectory matrix

n Y2 ys .. Yk
LK Y2 Us Ya oo Ykt

X = [Xl,...,XK] = (xi]')i,jzl - . . . . .
Yr. Yr+1 Yr+2 .- YT

Note that the trajectory matrix X is a Hankel matrix, which means that all the elements along
the diagonal i+ j = const are equal. Embedding is a standard procedure in time series analysis.
With the embedding performed, future analysis depends on the aim of the investigation. For
specialists in dynamical systems, a common technique is to obtain the empirical distribution
of all pairwise distances between the lagged vectors X; and X; and then calculate the so-called
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correlation dimension of the series. Note that in this approach, L must be relatively small and
K must be very large (formally, K — oo ). The approximation of a stationary series with the
help of the autoregression model can also be expressed in terms of embedding: if we deal with
the model

YirL-1 = 0r 1YitL2 + -+ Q1Y + Eiyp 1, 1 >1

then we search for vector A = (aq,...,a,_1, —l)T such that the scalar products (X;, A) are

described in terms of certain noise series.

2nd step: Singular Value Decomposition (SVD)

The second step, the SVD step, makes the singular value decomposition of the trajectory
matrix and represents it as a sum of rank-one bi-orthogonal elementary matrices. Denote by
AL, ..., Ay the eigenvalues of XX in decreasing order of magnitude (A, > ...\, > 0) and by
Ui,...,Up the orthonormal system of the eigenvectors of the matrix XX’ corresponding to
these eigenvalues. Set

d = max(7, such that \; > 0) = rank X.

If we denote V; = XTUi/\/Xi, then the SVD of the trajectory matrix can be written as:
X = X; 4o+ Xo, (1)

where X; = v \;U;Vi'. The matrices X; have rank 1 (thus they are elementary matrices); U; (in
SSA literature they are called ‘factor empirical orthogonal functions’ or simply EOFs) and V;
(often called ‘principal components’) are the left and right eigenvectors of the trajectory matrix.
The collection (v/);, Us, V;) is called the i-th eigentriple of the matrix X, v/A; (i = 1,...,d) are
the singular values of the matrix X and the set {v/)\;} is called the spectrum of the matrix X.
If all eigenvalues have multiplicity one, then the expansion (1) is uniquely defined.
SVD (1) is optimal in the sense that among all the matrices X of rank r < d, the matrix
", X, provides the best approximation to the trajectory matrix X, so that || X — X () | is

minimum. Here the norm of a matrix Y is defined as 1/(Y,Y), where the scalar product of two
matrices Y = (yij)gjzl and Z = (Zij)g:;zl is <Y, Z> = Z;-I:;ZI YijZij- Note that || X ||2 = ;-121 )\z
and || X; || =\ fori=1,...,d. Thus, we can consider the ratio \;/ >%, A; as the character-
istic of the contribution of the matrix X; to expansion (1). Consequently, 37 A;/ 3¢ | A, the
sum of the first r ratios, is the characteristic of the optimal approximation of the trajectory
matrix by the matrices of rank 7.

Another optimal feature of the SVD is related to the properties of the directions determined
by the eigenvectors Uy, ..., U,. Specifically, the first eigenvector U; determines the direction
such that the variation of the projections of the lagged vectors into this direction is maximum.
Every subsequent eigenvector determines the direction that is orthogonal to all previous di-
rections, and the variation of the projection of the lagged vectors onto this direction is also
maximum. Therefore, it is natural to call the direction of the i-th eigenvector U; the i-th prin-
cipal direction. Note that the elementary matrices X; are built up from the projections of the
lagged vectors onto the i-th particular directions. This view on the SVD of the trajectory ma-
trix composed of L-lagged vectors and an appeal to association with the principal component
analysis lead to the following terminology. We shall call the vector U; the i-th eigenvector,
the vector V; will be called the i-th factor vector and the vector Z; = VA,V the i-th principal
component.
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2.2 Reconstruction
1st Step: Grouping

The grouping step corresponds to splitting the elementary matrices into several groups and
summing the matrices within each group. Let I = {iy,...,4,} be a group of indices iy, ..., 1,.
Then the matrix X; corresponding to the group I is defined as X; = X; + ---+ X; . The
spilt of the set of indices J = {1,...,d} into disjoint subsets I1,..., I, corresponds to the
representation

X=X+ - +X,. (2)

The procedure of choosing the sets Iy,..., [, is called the eigentriple grouping. For a given
group I the contribution of the component X; in the expansion (2) is measured by the share
of the corresponding eigenvalues: > ;c; A\;/ Zle A;. If the matrix X; is a Hankel matrix, then
there exist series YT(I) and YT(Z) such that Y, = Y:ﬁl) + YT(Z) and the trajectory matrices of these
series are X; and X, respectively. If the matrices X; and X ; are approximately Hankel

matrices then the trajectory matrices of the series YT(I) and YT(Z) are close to Xy and X ;. In
this case we shall say that the series are approximately separable, see [7] for many more details.
Therefore, the purpose of the grouping step (that is, the procedure of arranging the indices
1,...,d into groups) is to find several groups Iy,..., I, such that the matrices Xy,,..., Xy,
satisfy (2) and are close to certain Hankel matrices. The grouping step is based on the analysis
of the eigenvectors U; and V;, and eigenvalues A; in the SVD expansion (1). The principles
and methods of identifying the SVD components for their inclusion into different groups are
described in [7], Sect. 1.6. Since each matrix component of the SVD is completely determined
by the corresponding eigentriple, we shall talk about the grouping of the eigentriples rather
than the grouping of the elementary matrices X;.

2nd Step: Diagonal averaging

The purpose of diagonal averaging is to transform a matrix to the form of a Hankel matrix
which can be subsequently converted to a time series. If z;; stands for an element of a matrix
Z, then the k-th term of the resulting series is obtained by averaging z;; over all ¢, j such that
i+ 7 = k+ 1. This procedure is called diagonal averaging, or Hankelization of the matrix
Z. The result of the Hankelization of a matrix Z is the Hankel matrix HZ. Note that the
Hankelization is an optimal procedure in the sense that the matrix HZ is the nearest to Z
(with respect to the matrix norm) among all Hankel matrices of the corresponding size (see
[7], Sect. 6.2). In its turn, the Hankel matrix HZ uniquely defines the series by relating the
value in the diagonals to the values in the series. By applying the Hankelization procedure to
all matrix components of (2), we obtain another expansion:

X=X, +...+X;, (3)

where ih = HX. This is equivalent to the decomposition of the initial series Yr = (y1,...,yr)
into a sum of m series:

ye=3 0" (4)

where )N/:ﬁk) = (g%’“), L gjp) corresponds to the matrix X;,. A sensible grouping leads to the
decomposition (2) where the resultant matrices X;, are almost Hankel ones. This corresponds
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to approximate separability and implies that pairwise scalar products of different matrices
Xy, in (3) are small. The procedure of computing the time series }N/T(k) (that is, building up
the group I plus diagonal averaging of the matrix X, ) will be called reconstruction of a
series YT(k) by the eigentriples with indices in [;. In relation to the grouping method, it is
worthwhile to note that if L is large enough, the eigenvectors in a sense imitate the behavior
of the corresponding time series components. In particular, the trend of the series corresponds
to slowly varying eigenvectors. The harmonic component produces a pair of left (and right)

harmonic eigenvectors with the same frequency, etc.

2.3 Linear Recurrent Formulae (LRF)

Forecasting by SSA can be applied to the time series that approximately satisfy linear
recurrent formulae (LRF).

We shall say that the series Y satisfies an LRF of order d if there are numbers aq, ..., a4
such that .
Yird = Y Wlitd—k 1<:<T—d. (5)
k=1

The fact that the series y, satisfies an LRF (5) is equivalent to its representability as a sum
of products of exponentials, polynomials and harmonics; that is,

q
ye = Y ag(t) e sin (2mwyt + @y). (6)
k=1

Here «y(t) are polynomials, py,wy and ¢y are arbitrary parameters. The number of linearly
independent terms ¢ in (6) is less than or equal to d. The class of series that can be approximated
by the series satisfying LRFs of the form (5) (or, equivalently, by the time series of the form
(6) with a small number of terms) is very broad.

3 Application of SSA to the analysis of Iranian GDP

The SSA technique can be applied to various time series. Using SSA for analyzing economics
time series can be advantageous as these series typically contain periodic components that
are difficult to handle with classical techniques. As our main example, let us consider the
application of SSA for analyzing and forecasting the quarterly Iranian Gross Domestic Product
(GDP) in detail. Fig. 1 shows this series in basic prices (at current price). Visual analysis
of Fig. 1 indicates that the depicted series has a trend and this trend can be approximated
by a function increasing exponentially fast. A harmonic seasonal component with increasing
amplitude is also clearly seen.

3.1 Decomposition: trend, seasonality and residuals

A general descriptive model of the series that is considered in SSA is an additive model
where the components of the series are trend, oscillation and noise. In addition, the oscillatory
components are subdivided into periodic and quasi-periodic components, while noise compo-
nents are, as a rule, aperiodic series. The sum of all additive components except for the noise
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Figure 1: Quarterly Iranian GDP (billion Rials).

will be called the signal. So we decompose the series into the signal (trend and oscillations) and
noise. Note that SSA does not require an a priori parametric model for trend and oscillations.

The choice of window length: as was mentioned earlier, the window length L is the only
parameter at the decomposition stage. Selection of the proper window length depends on the
problem in hand and on preliminarily information about the time series. Theoretical results
advise us to choose L large enough but not greater than 7'/2. Knowing that the time series
may have a periodic component with an integer period, to achieve a better separability of this
periodic component it is advisable to take the window length proportional to that period. For
example, the assumption that there is an annual periodicity in the series suggests that we must
pay attention to the frequencies k/12 (k = 1,...,12). For quarterly data the period of the
seasonal component is equal to 4. Using these recommendations, we take L = 32 (in our case
T=68). So, based on this window length and on the SVD of the trajectory matrix, we have
32 eigentriples, ordered by their contributions (shares) into the decomposition. The leading
eigentriple describes the general tendency of the series. Since in most cases the eigentriples
with small shares are related to the noise component of the series, we need to identify the set
of leading eigentriples. Let us consider the result of the SVD step. Fig. 2 represents principal
components (left eigenvectors) related to the first 9 eigentriples. Note that the form of the fac-
tor vectors (right eigenvectors) is almost the same as the form of principal components because
L=32 is close to K=37.

1(98.450%) 2(0.643%) 3(0.533%)
1129484 110832 104619
x:\i\f\f\ﬂhf‘\hl" Ahl\hhf\hhh
131944 | -113984 L -101345 L
1 12 37 1 12 37 1 19 37
4(0.100%06) 5{0.061%) 6{0.049%)
29033 24389 18584
st AR aNANTa
v'\rvv\fﬂ'l"r]'ll.n"'.'l"v ]'[ ] J o
-38392 v 14633 \\—/ -30566
1 13 25 37 1 13 25 37 1 13 25 37
T{0.041°%) 8(0.033%) 9(0.023%)
21004 15238 18617
A /\\ Fi — )'(\\ P — /\\
RV N —/ g
-30740 . ] -21888 L L -16083 . . \/

1 13 25 37 1 13 25 37 1 13 25 37

Figure 2: Principal components related to the first 9 eigentriples.
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Separability: SSA decomposition of the series Y7 can be successful only if the resulting
additive components of the series are approximately separable from each other. The following
quantity (called the weighted correlation or w-correlation) is a natural measure of dependence

between two series YT(1> and YT(Z) :

1 2
37,35,
1 2
1Y Y2

Py =

where || Y77 ||, = /(¥v7).37") L (v ¥7) = S el (07=1.2)
wr=min{k, L, T — k} (here we assume L < T/2).

-[0.00, 0.05]
-{0.05,0.10]
-{0.10,0.14]
-(0.14,0.19]
-{0.19,0.24]
-{0.24,0.29]
-(0.29,0.33]
-(0.33,0.38]
-{0.38,0.43]
-{0.43,0.48]
-(0.48,052]
-(0.52,057]
-{0.57 ,0.62]
-(0.62,067]
-(0.67,0.71]
-{0.71,0.76]
-(0.76,0.81]
-(0.81,0.86]
-(0.86,0.80]
-{0.90,0.95]
-{0.95,1.00]
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Figure 3: Matrix of w-correlations for 32 reconstructed components.

A useful tool for defining the groups of eigentriples is the matrix of the absolute values of
the w-correlations, corresponding to the full decomposition (in this decomposition each group
corresponds to only one matrix component of the SVD). If two reconstructed components have
zero w-correlation it means that these two components are separable. If the absolute value of
a w-correlation is small, then the corresponding series are almost w-orthogonal; if it is large,
then the two series are far from being w-orthogonal and are therefore badly separable. Large
values of correlations between reconstructed components indicate that they should possibly be
gathered into one group and correspond to the same component in SSA decomposition [7]. In
Fig. 3 w-correlations for 32 reconstructed components are shown in the 20-grade grey scale from
white to black corresponding to the absolute values of correlations from 0 to 1. Fig. 3 confirms
that the first four eigentriples are well separated from a block of the remaining eigentriples
(5-32) which we consider as noise.

Components | C} C, C4 Cy Cs
Cy 0.002
Csy 0.001 0.960
Cy 0.000 0.001 0.028
Cs 0.001 0.001 0.001 0.015
C6—32) 0.001 0.020 0.016 0.026 0.186

Table 1: w-correlations for components C1,...,Csand Cg_3y).
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The form of the matrix of w-correlations gives an indication of how to make the proper
grouping: the leading eigentriple definitely corresponds to the trend (this situation is very
common in practice), the three subsequent eigentriples correspond to the harmonics, and the
large sparking square (after the fifth or sixth eigentriple) indicates the noise component. We can
interpret the fifth component (and components 6-9 as well) as a part of either a trend or noise.
Inspection of the matrix of w-correlations (see Table 1) and the quality of the approximation
and forecast indicate that we get more stable results if we consider eigentriples above 4 as
components of noise.

The components 5-9 are slowly varying and may perhaps be associated with business cycles.
For example, the periodograms of these components show that there is definitely a periodic
component with period 16 quarters = 4 years. However, the time series we analyze are too
short (and too noisy) for reliable identification of the business cycles.

Trend identification: Trend is the slowly varying component of a time series which does
not contain oscillatory components. Assume that the time series itself is such a component
alone. Practice shows that in this case, one or more of the leading eigenvectors will be slowly
varying as well. Exponential and polynomial sequences are good examples of this situation.
We know that eigenvectors have a form similar to the form of the corresponding components
of the initial time series, thus we should find slowly varying eigenvectors. This can be achieved
by the inspection of one-dimensional plots of the eigenvectors.

In our case, the leading eigenvector is definitely of the required form but the eigentriples
2-4 are definitely not. Since we have decided that the eigentriples 5-32 correspond to the
noise, the trend is described by the first eigentriple only. This directly implies that the trend of
the original series is approximated by an exponential function. Note again, that we can build
a more complicated approximation of the trend if we use some other eigentriples. However,
the gain in precision will be very small and the model of the trend will become much more
complicated. Fig. 4 shows the original series and the extracted trend (which is obtained from
the first eigentriple).

388277

4322 - ‘ : ‘
1988 1992 1996 2000 2004

Figure 4: Trend extraction.

Identification of the harmonic components: The general problem here is the identification
and separation of the oscillatory components of the series that do not constitute parts of the
trend. In parametric form, this problem is extensively studied in classical spectral analysis
theory. The statement of the problem in SSA is specified mostly by the model-free nature
of the method. In practice, the singular values of two eigentriples of a harmonic series are
often very close to each other, and this fact simplifies the visual identification of the harmonic
components. An analysis of the pairwise scatterplots of the eigenvectors also helps to visually
identify those eigentriples that correspond to the harmonic components of the series, provided
these components are separable from the residual component. Fig. 5 depicts scatterplots of
paired factor vectors from the Iranian GDP data, corresponding to the harmonics with a small
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number of frequencies. This figure shows two-dimensional graphs which form two-dimensional
trajectories with vertices in a spiral-shaped curve. This indicates that these pairs of eigenvectors
are produced by the modulated harmonic components of the initial time series. In that way,
the eigentriples 2-3 correspond to the period 4 or frequency 3/12=1/4.

1(98.444%) - 2(0.644% 2(0.644%) - 3(0.534%) 3(0.534%) - 4(0.099%) 4(0.099%) - 5(0.061%)

'J\M\VAA/\/\/\
] VVV v \

5(0.061%) - 6{0.047%) 6(0.047%) - 7{0.043%) 7({0.043%) - 8(0.033%) 8(0.033%) - 9(0.024%)

{
wsﬂzé?4£>

Figure 5: Scatterplots (with lines connecting consecutive points) of the first eight pairs of
eigenvectors.

Let us describe additional information, which can help us to identify eigentriples and confirm
the grouping of the components. Logarithms of eigenvalues provide such information in the
following way: a pair of eigentriples corresponding to a harmonic component produces a plateau
in this graph. Analysis of the matrix of w-correlation between reconstructed components of
the initial time series is also useful for identification. Certainly, auxiliary information about
the initial series always makes the situation clearer and helps in choosing the parameters of
the methods. For example, the assumption that there might be a quarterly periodicity in the
[ranian GDP data set suggests that the analyst must pay special attention to the frequency 1/4.
As shown in Fig. 5, eigentriples 2—4 correspond to some harmonics, since their eigenvectors have
a regular periodical form. Fig. 6 shows the oscillation of our data set which is obtained from
eigentriples 2-4. Obviously, we do not have oscillation with equal amplitude, it has an increasing
rate, similar to what we visually observed earlier for the original series. Also, Fig. 6 confirms
that the eigentriple selection for the identification of oscillation of the original series seems
correct as eigentriples 2—4 adequately reflect the oscillation behavior of the original series.

53026

A AAAAAA A\J/\\J/\ /\ /\ /\ /\
YT

1988 1992 1996 2000 2004

Figure 6: Oscillation extraction.

The components 2-4 correspond to the seasonality components of the series. Looking at
the periodorgams of the components 5-9 we may suggest that these components reflect slowly-
varying economic cycles. However, the time series we analyze are too short for a conclusion like
that and for reliable forecasting of the economic cycles; therefore, we have preferred to omit
the corresponding eigentriples on the stage of forecasting.
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Separation of the noise from the signal: The problem of finding a refined structure of a series
by SSA is equivalent to the identification of the eigentriples of the SVD of the trajectory matrix
of this series, which correspond to trend, various oscillatory components, and noise. From the
practical point of view, a natural way of noise extraction is the grouping of the eigentriples,
which do not seemingly contain elements of trend or oscillation.

Let us make a few remarks concerning the separation of the components corresponding
to noise. First, irregular behavior of eigenvectors can indicate that they are part of noise.
This irregularity should be distinguished from component mixture, which is caused by lack
of separability between these components. The noise component can often be identified as it
typically creates a long tail of eigenvalues which are slowly decreasing (almost without jumps).
Secondly, the large set of eigentriples which are highly correlated with each other is quite likely
to belong to a noise. (Fig. 3 contains such a block of eigentriples with numbers 5-32). The
interpretation of the eigentriple 5 (and perhaps 6-9 as well) is unclear. This is a border-line
case discussed above; we classify these eigentriples as examples of noise. The fact that the
w-correlation between the reconstructed series (the eigentriples 1-4) and the residuals (the
eigentriples 5-32) is equal to 0.005 confirms that this grouping is very reasonable. Fig. 7 shows
the residuals after extracting the trend and the seasonal component. If we add together the
trend and the residuals we come to the original series adjusted for seasonal variations and if we
add the series of Figs 4, 6 and 7 we will obtain the original series (Fig. 1).

18415

N n/\ N
T N Y
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Figure 7: Residual series (eigentriples 5-32.)

3.2 Forecasting

A forecast can be made only if a certain model is built. The model can either be derived
from the data or at least checked against the data. In SSA forecasting, this model can be
described with the help of a linear recurrent formula. The class of series governed by linear
recurrent formula (LRF's) is rather wide and important for practical implication.

Assume that we have a series Y = {y;} = YT(I) + YT(2> and the problem of forecasting its

component Yél). If Yf) can be regarded as noise, then the problem is that of forecasting the
signal YT(I) in the presence of a noise Yf). The main assumptions are:
(a) the series YT(l) admits a recurrent continuation with the help of an LRF' of a relatively small
dimension d, and
(b) there exists a number L such that the series YT(1> and YT(2> are approximately separable for
the window length L.

The assumption (b) is important as any time series YT(l) is an adaptive component of Y

in the sense that Yy = YV + V% with V2 = v; — Y. The assumption of (approximate)
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separability means that YT(1> is a natural additive component from the viewpoint of the SSA
method.

To check the forecast quality, several methods can be applied. The main way is to truncate
several last points of the original series, make the analysis of the reduced series and compare
truncated values with the forecasted ones. We cut off the last 4 points of the series and forecast
them (that is, we will forecast the Iranian GDP for all quarters of 2004). We used the window
length of 32, four leading eigengtriples to decompose the initial series and the so-called vector
algorithm (see [7], p. 107) to forecast the most recent data. Fig. 8 shows the initial series
and its forecast for the four quarters of 2004. The forecast is basically identical to the data.
The vertical line shows the truncation between the last point of original series and the forecast
starting point. This forecast is performed using the full LRF' produced by the subspace, which
is generated by the leading 4 eigentriples.

395590

199956

4322 . . .
1988 1992 1996 2000 2004

Figure 8: Approximation and Forecasting.

Confidence intervals for the forecasts

Confidence intervals for the forecasts can be calculated by two methods: the empirical
method and the bootstrap method. They are calculated using the residuals of the reconstruc-
tion.

According to the main SSA forecasting assumption, the component YT(1> of the series Y has
to satisfy an LRF of a relatively small dimension, and the residual series YT(Q) =Yr— YT(l) has

) is assumed to be a finite subseries

to be approximately separable from YT(l). In particular, Y,
of an infinite series YY", which is a recurrent continuation of YT(1>. These assumptions are often
hold in practice with high accuracy.

There are two problems related to the construction of the confidence intervals for the fore-
cast. The first problem is to construct a confidence interval for the original series Yr = {y;}
at some future point in time. The second problem is construction of confidence intervals for
the signal YT(1> = {yt(1>} at some future point in time. These two problems can be solved in
different ways. The second requires additional information about the model governing the series
ffT@) = {§§2)} to perform a bootstrap simulation of the series Y. Bootstrap confidence intervals
are built for the continuation of the signal Y\ (for more information see [22]).

Let us consider a method of constructing intervals for the signal YZ(“}i-)M at the moment T+ M.
In the unrealistic situation, when we know both the signal YT(l) and the true model of the noise
YT(2>, a Monte Carlo simulation can be applied to check the statistical properties of the forecast
value 3753 a relative to the actual term y(Tl}r M-

Indeed, assuming that the rules for the eigentriple selection are fixed, we can simulate N

independent copies Y:ﬁi-) (¢=1,...,N) of the process Yﬁ) and apply the forecasting procedure
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Bootstrap Lower Upper

Quarter | Original data | Forecast | Relative | Average | Confidence | Confidence
2004 Error Forecast Interval Interval
Q1 310880 313735 0.017 314052 300528 314052
Q2 388277 395591 0.012 396032 384484 396032
Q3 349674 348191 0.005 348933 331456 348933
Q4 335988 335783 0.002 340786 326411 340786

Table 2: Original, forecast, average, lower and upper 95 % bootstrap confidence intervals.

to N independent time series Yp; = YT(l) + YT(?). Then the forecasting result will form a sample

i
(1) (1)

745> Which should be compared against y;;,,. In this way the Monte Carlo average series

for the forecast can be built up. Since in practice we do not know the signal Y}l), we can not
apply this procedure. Let us describe the bootstrap variant of the simulation for constructing
the confidence intervals for the forecast.

Under a suitable choice of the window length L and the corresponding eigentriples, we have
the representation Y = ?T(l) + ?T(Q), where f{ﬁl) (the reconstructed series) approximates YT(l),
and ?T(Z) is the residual series. Suppose now that we have a (stochastic) model for the residual

?T(Z) (for instance, we can postulate some model for Yf) and, since }7%1) R Y}l), we apply the

same model for YT(Q) with the estimated parameters). Then, simulating N independent copies

YT(? of the series )7%2), we obtain N series Y ; = )7%1) + ?T(ZZ) and produce M forecasting results

~(1 . . . . .
y(TJ)r u,; in the same manner as in the Monte Carlo simulation variant.

More precisely, any time series Y7 ; produces its own f{ﬁlz) reconstructed series and its own
forecasting linear recurrent formula LRF; for the same window length L and the same sets

of eigentriples. Starting at the last L — 1 terms of the series YT(}i), we perform M steps of

forecasting with the help of its LRF;, to obtain gjg}lMl

From the sample Q}EFIJ)FMZ (1 < ¢ < N) we can calculate its (empirical) lower and upper
quintiles for a fixed level v and obtain the corresponding confidence interval for the forecast.
This interval (called bootstrap confidence interval) can be compared with the forecast value

gg}iM obtained from the initial forecasting procedure. We can also build average bootstrap

series. This average can then be compared with the value g(Tll s obtained by Basic SSA forecast.
Large discrepancy between these two forecast would typically indicate that the original SSA
forecast is not reliable.

The simplest model for 17%2) is the Gaussian white noise model. The corresponding hypoth-
esis can be checked with the help of the standard test for randomness and normality. Table 2
presents the original and forecasted data, relative error and the 95 % bootstrap confidence
interval, including the average and the lower and upper confidence intervals, of the forecasted
data. Confidence intervals are obtained by simulation under the hypothesis that the residuals
of the reconstruction form a Gaussian white noise series. This table shows that the forecasted
values are very close to the original data and the confidence intervals are narrow.

The Iranian GDP series (thin line) is depicted in Fig. 9 together with its bootstrap confi-
dence interval (dashed line) for both the original (thin line) and forecasted data and the basic
vector forecast (thick line). The vertical line corresponds to the truncation point.
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Figure 9: Bootstrap confidence intervals for the original and forecasted data.

4 Analysis of Iranian National Account

In this section we demonstrate the capability of SSA by applying it to the analysis and
forecasts of the Iranian national account data. The data sets describe the main economic
features of the Islamic Republic of Iran and is provided on the web-site of the Central Bank of
the Islamic Republic of Iran, see [21]. The sets of data are quarterly and yearly. There are 16
quarterly data sets each containing 68 data points over the period of 1988 to 2004 (measured
in billion rails, the official currency of Iran).

These sets of data are: 1 — Agriculture, 2 — Oil and Gas, 3 — Industries and Mines, 4 — Man-
ufacturing, 5 — Mining, 6 — Electricity, Gas and Water Supply, 7 — Construction, 8 — Services, 9
— Trade, Restaurants and Hotels, 10 — Transportation, Warehousing and Communication, 11 —
Financial Services, 12 — Real Estate and Professional Services, 13 — Public Service, 14 — Social,
Personal and Domestic Services, 15 — Imputed Bank Services Charge and 16 — Gross Domes-
tic Product (GDP) in Basic Price. We shall refer to these data sets as Series 1 to Series 16,
respectively.

Fig. 10 displays Series 1 — 16. In this figure, the series in row ¢ and column j is Series
4i—=1)+7 (4,5 =1,...,4).

It is customary in econometrics to take the logarithms of the data describing economic
features. Therefore, we make a parallel analysis of the data taken in the logarithmic scale.
Fig. 11 displays Series 1 — 16 in the logarithmic scale (the arrangement of the series is the same
as in Fig. 10).

We also consider 16 yearly data sets which contain 45 observations each covering the period
of 1959 to 2003 (measured in billion rails). These data describe exactly the same economic
features as Series 1-16. We shall refer to these data as Series 17 — Series 32. Fig. 12 displays
these series. In this figure, the series in row i and column j is Series 16+4(i—1+j (4,5 = 1,...,4).
Fig. 13 displays Series 17 — 32 in the logarithmic scale.

On the website [21] one can find the Iranian national accounts quarterly data adjusted to
seasonal effects. However, we use the original, non-adjusted data since one of our aims is to
illustrate the capability of the SSA technique for extracting trend and oscillations from the
data. We then use the approximated trend and oscillations for forecasting the data.

4.1 Analysis of quarterly data sets

For each series, we have performed SSA analysis and forecast. Similarly to what we have
done with the GDP data in Sect. 2, we have removed the last four points of each series (Q1
— Q4 of 2004), made an SSA approximation for the period 1988 to 2003 and forecasted the
data for the four quarters of 2004. In each analysis, we choose the SSA parameters (which are
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Figure 10: Series 1-16.
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Figure 11: Series 1-16 in the logarithmic scale.

the window length and the number of eigentriples chosen for approximation) to optimize the
approximation of the series keeping the window length L large enough.

For each forecasted value (Q1 — Q4 of 2004), we have computed the relative error of the
forecast (in percent). To summarize the quality of the forecast, we provide the Mean Relative
Error (MRE) which is simply the average of the four relative errors (in percent) for each series.

In parallel, we have performed SSA analysis and forecast for the data taken in the loga-
rithmic scale. All the corresponding results are presented in Table 3 (in brackets). When the
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Figure 12: Series 17-32.
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Figure 13: Series 17-32 in the logarithmic scale.

SSA analysis was performed in the log-scale, for computing the relative error of the forecast,
we have transformed the forecasted data back to the original scale. We needed to do this in
order to be able to compare these results with the results of the original analysis.

Table 3 shows the results. Columns 2 and 3 show the parameters of the SSA algorithm (the
window length L, see Stage 1 of the algorithm, and the eigentriples chosen E, see Stage 3).
Note that using this information and the SSA-Caterpillar software [14], anyone can repeat the
results presented in the table).
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In each cell in columns 4-7, there are two numbers: the first one is the relative error of the
forecast (in percent) for the original series for a given quarter of 2004 and the second one (in
brackets) is the value of the relative error of the corresponding forecast when the analysis was
performed after taking the logarithms of the series. In the last column, the bold font indicates
the lower of the two values. Table 3 clearly demonstrates that taking logarithms of the data
does not improve the quality of the SSA forecast (on the opposite, it typically leads to its
deterioration). This is related to the fact that the quarterly data have periodic components
which are easier to extract when the data are considered in the original scale (taking logarithms
produces additional smoothing and makes extraction of periodic components more difficult).

We consider the SSA forecasts for all 16 series as very good (an exception is Series 5 and
partly Series 7 and 11). The success of the analysis means that in most cases, SSA was able to
approximate both the trends and the periodic components with high accuracy. Of course, this
is also related to the fact that the economy of Iran was developed steadily during the period
1988 — 2004 (the Iran-Iraq War ended in 1988).

Relative Error% MRE %
Ser. L E Q1 Q2 Q3 Q4
1 [ 17 (32) | 1-4 (1-10) | 3.55 (6.03) | 0.87 (2.50) | 4.32 (4.50) | 0.81 (12.60) | 2.39 (6.41)
2 | 32(5) | 16-7(1) |0.06(223) | 1.24 (.021) | 5.77 (0.62) | 4.32 (17.0) | 2.99 (5.05)
3 132(32) | 1-7(17) | 147 (0.35) | 2.16 (1.54) | 0.98 (0.68) | 5.38 (17.4) | 2.50 (5.01)
4 |32(32) | 1-7(17) | 2.06 (166) | 0.73 (4.03) | 7.17 (9.56) | 1.78 (4.22) | 2.93 (4.85)
5 | 12(12) | 12(1,2) |3.75(19.1) | 6.01 (19.3) | 2.95 (12.2) | 13.3 (8.63) | 6.51 (14.8)
6 | 16 (16) | 1,2,4-7 (1-4) | 1.96 (0.72) | 0.02 (9.04) | 2.25 (1.22) | 1.92 (4.81) | 1.54 (3.95)
7 | 32(®) | 1-5(14) |10.4 (15.7) | 11.9 (9.02) | 1.44 (6.17) | 0.34 (5.46) | 6.05 (9.09)
8 |32(32) | 110 (14) | 0.44 (146) | 0.06 (0.25) | 0.63 (0.07) | 1.10 (5.22) | 0.56 (1.75)
9 |32(32) | 15(15) |1.02(3.23) | 0.74 (3.75) | 4.58 (5.83) | 0.60 (3.72) | 1.74 (4.13)
10 |32(32) | 1,4-7(1-3) | 1.35 (1.24) | 0.00 (0.71) | 4.78 (6.39) | 0.22 (2.20) | 1.59 (2.63)
11 | 510) | 1,2(1,2) |0.32(0.17) | 3.95 (3.40) | 4.40 (2.12) | 5.24 (8.22) | 3.48 (3.65)
12 | 12(10) | 1-4.6 (1,2) | 4.29 (0.54) | 0.30 (5.88) | 0.55 (5.84) | 2.01 (8.92) | 1.79 (5.20)
13 [ 32(32) | 17(1-5) | 0.77 (2.84) | 2.69 (3.04) | 1.56 (8.67) | 2.21 (1.13) | 1.79 (3.92)
14 | 32(32) | 1-5(1-5) |4.10(2.15) | 2.83 (0.81) | 2.64 (2.31) | 1.29 (0.57) | 2.72 (1.46)
15 | 8(5) 1(1) 1.12 (6.34) | 1.04 (2.29) | 0.60 (3.30) | 8.17 (0.22) | 2.73 (3.11)
16 | 32(24) | 1-4(1-4) | 0.91(0.55) | 1.88 (0.03) | 0.42 (6.49) | 0.06 (0.15) | 0.82 (1.81)

Table 3: Relative Error and Mean Relative Error for Series 1 — 16 before and after taking the
logarithm.
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Relative Error%

Ser. L E 2001-2 2002-3 2003-4 MRE %

17 | 5() | 1,2 (1,2) | 8.59 (3.48) | 1.13 (1.58) | 0.86(0.28) | 3.52 (3.45)
18 | 3(12) | 1(1) |24.8(17.5) | 15.9 (19.5) | 2.06 (1.51) | 14.2 (12.8)
19 | 7(5) | 1,2(1,2) | 1.43 (5.75) | 1.64 (6.35) | 6.84 (2.35) | 3.30 (4.05)
20 | 5(5) | 1,2(1,2) | 11.3 (0.12) | 3.80 (3.42) | 4.83 (6.80) | 6.66 (3.45)
o1 | 7(11) | 1(1,2) |3.13 (5.25) | 1.50 (1.00) | 7.34 (3.20) | 3.99 (3.15)
22 | 21 (9) | 1(1-4) | 3.77 (4.51) | 3.25 (2.68) | 20.2 (3.01) | 9.09 (3.40)
23 | 21 (3) | 1-3 (1,2) | 15.1 (0.08) | 5.85 (13.8) | 3.16 (0.25) | 8.04 (4.71)
24 | 6(4) | 1,2(1,2) | 2.25 (0.00) | 0.13 (3.64) | 0.32 (7.11) | 0.90 (3.58)
25 | 5(3) | 1,2(1.2) | 3.17 (2.87) | 0.98 (0.15) | 0.56 (1.16) | 1.57 (1.39)
26 | 4 (14) | 1,2 (1-5) | 13.7 (0.40) | 4.18 (3.86) | 2.80 (5.51) | 6.92 (3.25)
27 | 12 (9) | 1,2 (1,2) | 4.33 (11.0) | 2.44 (1.22) | 6.31 (5.27) | 4.36 (5.84)
28 | 3(6) | 1(1,2) |1.65 (4.29) | 1.18 (1.05) | 3.47 (3.56) | 2.31 (2.97)
20 | 21 (6) | 1,2 (1,2) | 2.38 (1.90) | 1.66 (0.18) | 6.31 (2.30) | 3.45 (1.46)
30 | 10 (10) | 1 (1-3) | 1.43 (0.60) | 1.32 (2.42) | 7.55 (5.23) | 3.43 (2.75)
31 | 21 (15) | 1-5,7 (1) | 16.5 (19.6) | 2.35 (0.92) | 9.27 (16.6) | 9.38 (12.4)
32 | 11 (11) | 1 (1-3) | 0.27 (0.59) | 7.20 (8.61) | 0.96 (82.16) | 2.81 (3.78)

Table 4: Relative Error and Mean Relative Error for Series 17 — 32 before and after taking the
logarithm.

4.2 Yearly data sets

In this section we show the results of the application of the SSA technique to 16 yearly
data sets (Series 17 —32) described in Sect. 4.1. These data sets cover the period 1959 to
2003. These series contain 45 points and are shorter than the quarterly series. Moreover, the
economic features exhibit clear non-stationary behaviour in this period and therefore it is much
much harder to forecast the yearly series than the quarterly series.

We cut off the last 3 years of each series and forecast it to consider the precision of the
technique (that is, we will forecast the values for 2001-2003). Here we do not have seasonal
components so we only need to extract the trend of these data sets.

Table 4 shows the parameters of the SSA algorithm and the results of the forecasts (the
structure of this table is the same as that of Table 3). The forecast results for the yearly
data are generally worse than that for the quarterly data sets. The main reason for this is the
fact that during the period 1959 to 2003 there were significant changes in the dynamics of the
Iranian economic features, see Fig. 12 and especially Fig. 13. These changes can be associated
with the start and the end of the Iran-Iraq War (1980 — 1988). Note that the changes can easily
be detected by SSA, see [23] for information about using SSA for detection of changes in time
series.

One may note from Table 4, that contrary to the case of the quarterly data, the forecast
based on the analysis of the series in the logarithmic scale often gives better results. This is
perhaps related to the fact that the yearly series do not have seasonal components which are
easier to extract when the data is in the original scale.



Singular Spectrum Analysis for Analysis of Economics Data 19

4.3 Inflation rate series

Next, we present the forecasting results for inflation rate based on the monthly Iranian
Consumer Price Index (CPI) series for the short and long horizons h = 1, 3,6 and 12. In fact,
we used monthly CPI data for the period Mar. 1990 - Sep. 2007. We used Jan. 1990 to Aug.
2004 CPI observations as training set and Sep. 2004 to Sep. 2007 observations for out-of-sample
prediction. We select the window length L = 60 and the first 19 eigenvalues for reconstructing
the original series and consider remaining eigentriples (20-60) as noise for forecasting inflation
rate based on the CPI price index over period Sep. 2004 to Sep. 2007. We also use the RW
model as a benchmark model in the comparative analyses. The use of the random walk model
as a benchmark model should not imply that we believe the model is an optimal forecasting
method. We use this model because it is a naive model. The point here is that a superior
performance of random walk model would render the analyst’s method useless. As a measure
of prediction accuracy, we use the following ratio of root-mean-square errors (RMSE):

~ 1/2
Z?:1(?JT+1' - yT+z')2> /
Yo (Yr4i — Urti)?

RMSE = (

Here n represents the number of forecasted points, y,4; are the forecasted values of y;; ob-
tained by SSA and yry; is the forecasted values of yr.; obtained by RW. Note that g, for
RW model is yr.; 5 for any h-step ahead forecasting. If RMSE < 1, then SSA procedure
outperforms alternative prediction method. Alternatively, RMSE > 1 would indicate that the
performance of the corresponding SSA procedure is worse than the predictions of the competing
method.

Fig. 15 shows the CPI series and also inflation rate series based on the CPI series. Visual
analysis of Fig. 15 indicates that the CPI series has a trend and this trend can be approximated
by a function increasing exponentially fast. A harmonic seasonal component with decreasing
amplitude is also clearly seen in Inflation rate series. In the following, we only consider Inflation
rate series.

141 0.072
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74
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Figure 14: CPI series (left) and inflation rate series based on the CPI series (right) Mar. 1990
- Sep. 2007.

Table 5 shows the RMSEs for SSA /random walk for h-step ahead forecasts of inflation rate
based on the CPI series for N forecasted data points. Without exception, SSA outperforms
the random walk predictions in all h-step ahead forecasts. In fact, SSA method is up to 27%
more efficient compared to the RW method. Table 5 also presents the results of Diebold and
Mariano test [24] indicating whether the discrepancies between SSA and RW model forecasting
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procedures are statistically significant. ** and * imply significance at 1% and 10% confidence
levels, respectively. The results of this table confirm that, for all cases, the differences are
significant at 1% confidence level.

Additionally, Table 5 presents test results for the null hypothesis of whether the percentages
of the direction of changes (DC) are greater than the pure chance (50%). The table shows that
all results are statistically significant at 1% and 10% confidence levels. The results of this table
also show that MSSA predicts direction of change for 12-step as accurately as it can predict
1-step ahead.

Fig. 15 (left) shows the Iranian GDP deflator series (yearly); the data are taken from
http://data.un.org. One can see that this series looks very similar to the GDP series. SSA
analysis and forecasting results for these two series are also very similar (the results of SSA
analysis for the GDP deflator series are not reported here).

Fig. 15 (right) shows the Iranian GDP series normalized to the Iranian GDP deflator. The
results of SSA forecasting (not reported here) show that it is generally more advantageous
to analyze and forecast the two series (namely, Iranian GDP series and Iranian GDP deflator
series) separately and then compute the ratio of the forecasts rather than to analyze and forecast
the ratio only.

h=1 h=3 h=6 h=12
N|RMSE] DC | N[RMSE| DC | N RMSE] DC | N [RMSE]| DC
36 | 0.81% | 0.60™* | 34 | 0.78" | 0.68% | 31 | 0.73** | 0.74™* | 25 | 0.84™ | 0.67

Table 5: RMSE of SSA forecast results with respect to the RW method, Diebold-Marino
significance test results and direction of change test for inflation rate based on the CPI series.
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Figure 15: Iranian GDP deflator (left side) and Iranian GDP /Iranian GDP deflator (right side).

5 Conclusion

In this paper we have described the methodology of SSA (Singular-Spectrum Analysis) and
demonstrated that SSA can be successfully applied to the analysis and forecasting of economic
time series. We have used 32 Iranian national account data sets describing the main economic
features of the Islamic Republic of Iran, as provided on the web-site of the Central Bank of the
I[slamic Republic of Iran [21]. The data are given in a quarterly and yearly format and have
different types of non-stationarity. All the data sets are rather short.
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The results show that SSA can be successfully used for the analysis and forecasting of short
economic time series with different types of non-stationarity. In particular, many quarterly
series have periodic components with non-stationary amplitudes but SSA has been able to
extract and forecast these periodic components very accurately. Most of the yearly data have
clear structural changes which makes the application of standard methods of analysis almost
impossible.

Unlike standard methods used for analysis of economics time series, SSA does not require
parametric models or transformation of the data into the logarithmic scale. Moreover, our
study has shown that in most cases, the transformation of the quarterly series into logarithmic
scale has lead to the deterioration of the precision of the forecasts.
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