
Jrl Syst S
i & Complexity (2007) ...: 1{22
Singular Spe
trum Analysis: Methodology andAppli
ation to E
onomi
s DataHossein HASSANI � Anatoly ZHIGLJAVSKYRe
eived: ........ 2006/ Revised: ....... 2008

2008 Springer S
ien
e + Business Media, In
.Abstra
t We des
ribe the methodology of Singular Spe
trum Analysis (SSA) and demonstrate thatit is a powerful method of time series analysis and fore
asting, parti
ulary for e
onomi
 time series.We 
onsider the appli
ation of SSA to the analysis and fore
asting of the Iranian national a

ountsdata as provided by the Central Bank of the Islami
 Republi
 of Iran.Key words E
onomi
 time series, Singular Spe
trum Analysis (SSA), fore
asting, Iranian nationala

ounts.1 Introdu
tionE
onometri
 methods have been widely used to fore
ast the evolution of quarterly andyearly national a

ount data sets. However, many of these stru
tural or time series fore
astingmodels have failed to a

urately predi
t the growth rate of Gross Domesti
 Produ
t (GDP) orthe turning points of business 
y
les in the industrial e
onomies (see for example, [1℄).Many fa
tors 
ould a�e
t the national e
onomies and hen
e the national a

ount data whi
hare at best ina

urate representation of the ma
roe
onomi
 variables be
ause of measurementnoise. The exogenous fa
tors that 
ause instability in ma
roe
onomies in
luding te
hnologi
al
hanges, government poli
y 
hanges, 
hanges in the preferen
es of the 
onsumers, and otherevents. These sho
ks 
ause stru
tural 
hanges in these time series making them nonstationary.Development of a methodology whi
h is robust under these 
hanges is of paramount importan
ein a

urate predi
tion of ma
roe
onomi
 time series.Moreover, many stru
tural e
onometri
 and time series models devised for fore
astingma
roe
onomi
 time series are based on restri
tive assumptions of normality and linearityof the observed data. The methods that do not depend on these assumptions 
ould be veryuseful for modeling and fore
asting e
onomi
s data.Furthermore, it is well known that noise 
an seriously limit a

ura
y of time series predi
tion.Currently there are not many e�e
tive fore
asting te
hniques available when there is signi�
antnoise in the time series data. There are two main approa
hes for fore
asting noisy time series.Hossein HASSANI1{ S
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ording to the �rst one, we ignore the presen
e of noise and �t a fore
asting model dire
tlyfrom noisy data hoping to extra
t the underlying deterministi
 dynami
s. A

ording to these
ond approa
h, whi
h is often more e�e
tive that the �rst one, we start with �ltering the noisytime series in order to redu
e the noise level and then fore
ast the new data points (see, forexample, [2, 3℄). There are several nonlinear noise redu
tion methods su
h as lo
al proje
tive,singular value de
omposition (SVD) and simple nonlinear �ltering. It is 
urrently a

eptedthat SVD-based methods are very e�e
tive for the noise redu
tion in deterministi
 time seriesand 
orrespondingly for fore
asting [3℄.Additionally, some of the previous resear
h have 
onsidered e
onomi
 and �nan
ial timeseries as deterministi
, linear dynami
al systems. In this 
ase, the linear models 
an be usedfor modeling and fore
asting. However, it has been shown that most of the �nan
ial time seriesare nonlinear (see, for example, [2, 3, 4, 5℄); in these 
ases, we should use nonlinear methods.Having a method that works well for both linear and nonlinear time series is ideal for modelingand fore
asting. The Singular Spe
trum Analysis (SSA) meets all 
onditions stated above. TheSSA te
hnique is a nonparametri
 te
hnique of time series analysis in
orporating the elements of
lassi
al time series analysis, multivariate statisti
s, multivariate geometry, dynami
al systemsand signal pro
essing.The birth of SSA is usually asso
iated with the publi
ation of papers by Broomhead andKing (e.g. [6℄) while the ideas of SSA were independently developed in Russia (St. Petersburg,Mos
ow) and in several groups in the UK and USA. A thorough des
ription of the theoreti
aland pra
ti
al foundations of the SSA te
hnique (with many examples) 
an be found in [7, 8℄.An elementary introdu
tion to the subje
t 
an be found in [9℄. Below we des
ribe severalappli
ations of SSA and provide a brief dis
ussion on the methodology used. In doing so, wemainly follow [7℄, 
hapters 1 and 2.The basi
 SSA method 
onsists of two 
omplementary stages: de
omposition and re
on-stru
tion; both stages in
lude two separate steps. At the �rst stage we de
ompose the seriesand at the se
ond stage we re
onstru
t the original series and use the re
onstru
ted series forfore
asting new data points. The main 
on
ept in studying the properties of SSA is `separa-bility', whi
h 
hara
terizes how well di�erent 
omponents 
an be separated from ea
h other.The absen
e of approximate separability is often observed in series with 
omplex stru
ture.For these series and series with spe
ial stru
ture, there are di�erent ways of modifying SSAleading to di�erent versions su
h as SSA with single and double 
entering, Toeplitz SSA, andsequential SSA, see [7℄, Se
t. 1.7.An important feature of SSA is that it 
an be used for analyzing relatively short series. Onthe other hand, asymptoti
 separation plays a very important role in the theory of SSA. Ithas been observed that in many pra
ti
al appli
ations the asymptoti
 features (whi
h hold asthe length of the series T tends to in�nity) are met for relatively small values of T ; it is notun
ommon to su

essfully apply SSA to series with T equal to 20{30. The series 
onsidered inthis paper have lengths T = 68 and T = 45.It is worth noting that although some probabilisti
 and statisti
al 
on
epts are employed inthe SSA-based methods, we do not have to make any statisti
al assumptions su
h as stationarityof the series or normality of the residuals.In addition, the method has several essential extensions. First, the multivariate versionof the method permits the simultaneous expansion of several time series; see, for example[8℄. Se
ond, the SSA ideas lead to several fore
asting pro
edures for time series; see [7, 8℄.Also, the same ideas are used in [7℄ and [10℄ for 
hange-point dete
tion in time series. For
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omparison with 
lassi
al methods, ARIMA, ARAR algorithm and Holt-Winter, see [11, 12℄.For automati
 methods of identi�
ation within the SSA framework see [13℄ and for re
ent workin `Caterpillar'-SSA software as well as new developments see [14℄.Let us mention some other areas related to SSA. A variety of te
hniques of time seriesanalysis and signal pro
essing have been suggested that use SVD of 
ertain matri
es; for surveyssee, for example, [15, 16℄. Most of these te
hniques are based on the assumption that theoriginal series is random and stationary; they in
lude some te
hniques that are famous insignal pro
essing, su
h as Karhunen-Loeve de
omposition (for signal pro
essing referen
es see,for example [17℄). Some statisti
al aspe
ts of the SVD-based methodology for stationary seriesare 
onsidered, for example, in [18℄ (Chapter 9) and [19, 20℄.In this paper we start with a brief des
ription of the methodology of SSA and apply thiste
hnique to 32 original data sets, 16 quarterly and 16 yearly, whi
h are taken from the CentralBank of the Islami
 Republi
 of Iran (CBI) [21℄. We use the series of Iranian GDP (quarterly)as the main data set for illustrating details of the pra
ti
al appli
ation of the SSA methodology.2 MethodologyThe main purpose of SSA is to de
ompose the original series into a sum of series, so that ea
h
omponent in this sum 
an be identi�ed as either a trend, periodi
 or quasi-periodi
 
omponent(perhaps, amplitude-modulated), or noise. This is followed by a re
onstru
tion of the originalseries. The Basi
 SSA te
hnique is performed in two stages, both of whi
h in
lude two separatesteps as follows:8>>>><>>>>: Stage 1 : De
omposition ( Step 1 : EmbeddingStep 2 : SingularValueDe
omposition(SVD)Stage 2 : Re
onstru
tion ( Step 1 : GroupingStep 2 : Diagonal Averaging2.1 De
omposition1st step: EmbeddingEmbedding 
an be regarded as a mapping that transfers a one-dimensional time series YT =(y1; : : : ; yT ) into the multidimensional series X1; : : : ; XK with ve
tors Xi = (yi; : : : ; yi+L�1)T 2RL , where K = T � L +1. Ve
tors Xi are 
alled L-lagged ve
tors (or, simply, lagged ve
tors).The single parameter of the embedding is the window length L, an integer su
h that 2 � L � T .The window length L should be suÆ
iently large. The result of this step is the traje
tory matrixX = [X1; : : : ; XK℄ = (xij)L;Ki;j=1 = 0BBBB� y1 y2 y3 : : : yky2 y3 y4 : : : yk+1... ... ... . . . ...yL yL+1 yL+2 : : : yT 1CCCCA :Note that the traje
tory matrix X is a Hankel matrix, whi
h means that all the elements alongthe diagonal i+j = 
onst are equal. Embedding is a standard pro
edure in time series analysis.With the embedding performed, future analysis depends on the aim of the investigation. Forspe
ialists in dynami
al systems, a 
ommon te
hnique is to obtain the empiri
al distributionof all pairwise distan
es between the lagged ve
tors Xi and Xj and then 
al
ulate the so-
alled
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orrelation dimension of the series. Note that in this approa
h, L must be relatively small andK must be very large (formally, K !1 ). The approximation of a stationary series with thehelp of the autoregression model 
an also be expressed in terms of embedding: if we deal withthe model yi+L�1 = aL�1yi+L�2 + � � �+ a1yi + "i+L�1; i � 1then we sear
h for ve
tor A = (a1; : : : ; aL�1;�1)T su
h that the s
alar produ
ts (Xi; A) aredes
ribed in terms of 
ertain noise series.2nd step: Singular Value De
omposition (SVD)The se
ond step, the SVD step, makes the singular value de
omposition of the traje
torymatrix and represents it as a sum of rank-one bi-orthogonal elementary matri
es. Denote by�1; : : : ; �L the eigenvalues of XXT in de
reasing order of magnitude (�1 � : : : �L � 0) and byU1; : : : ; UL the orthonormal system of the eigenve
tors of the matrix XXT 
orresponding tothese eigenvalues. Set d = max(i; su
h that�i > 0) = rankX:If we denote Vi = XTUi=p�i, then the SVD of the traje
tory matrix 
an be written as:X = X1 + � � �+Xd; (1)where Xi = p�iUiViT . The matri
es Xi have rank 1 (thus they are elementary matri
es); Ui (inSSA literature they are 
alled `fa
tor empiri
al orthogonal fun
tions' or simply EOFs) and Vi(often 
alled `prin
ipal 
omponents') are the left and right eigenve
tors of the traje
tory matrix.The 
olle
tion (p�i; Ui; Vi) is 
alled the i-th eigentriple of the matrix X, p�i (i = 1; : : : ; d) arethe singular values of the matrix X and the set fp�ig is 
alled the spe
trum of the matrix X.If all eigenvalues have multipli
ity one, then the expansion (1) is uniquely de�ned.SVD (1) is optimal in the sense that among all the matri
es X(r) of rank r < d, the matrixPri=1Xi provides the best approximation to the traje
tory matrix X, so that k X� X(r) k isminimum. Here the norm of a matrixY is de�ned as qhY;Yi, where the s
alar produ
t of twomatri
es Y = (yij)q;si;j=1 and Z = (zij)q;si;j=1 is hY;Zi = Pq;si;j=1 yijzij. Note that k X k2 = Pdi=1 �iand k Xi k2 = �i for i = 1; : : : ; d. Thus, we 
an 
onsider the ratio �i=Pdi=1 �i as the 
hara
ter-isti
 of the 
ontribution of the matrix Xi to expansion (1). Consequently, Pri=1 �i=Pdi=1 �i, thesum of the �rst r ratios, is the 
hara
teristi
 of the optimal approximation of the traje
torymatrix by the matri
es of rank r .Another optimal feature of the SVD is related to the properties of the dire
tions determinedby the eigenve
tors U1; : : : ; Ud. Spe
i�
ally, the �rst eigenve
tor U1 determines the dire
tionsu
h that the variation of the proje
tions of the lagged ve
tors into this dire
tion is maximum.Every subsequent eigenve
tor determines the dire
tion that is orthogonal to all previous di-re
tions, and the variation of the proje
tion of the lagged ve
tors onto this dire
tion is alsomaximum. Therefore, it is natural to 
all the dire
tion of the i -th eigenve
tor Ui the i-th prin-
ipal dire
tion. Note that the elementary matri
es Xi are built up from the proje
tions of thelagged ve
tors onto the i -th parti
ular dire
tions. This view on the SVD of the traje
tory ma-trix 
omposed of L-lagged ve
tors and an appeal to asso
iation with the prin
ipal 
omponentanalysis lead to the following terminology. We shall 
all the ve
tor Ui the i -th eigenve
tor,the ve
tor Vi will be 
alled the i-th fa
tor ve
tor and the ve
tor Zi = p�iVi the i-th prin
ipal
omponent.
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onstru
tion1st Step: GroupingThe grouping step 
orresponds to splitting the elementary matri
es into several groups andsumming the matri
es within ea
h group. Let I = fi1; : : : ; ipg be a group of indi
es i1; : : : ; ip.Then the matrix XI 
orresponding to the group I is de�ned as XI = Xi1 + � � � + Xip. Thespilt of the set of indi
es J = f1; : : : ; dg into disjoint subsets I1; : : : ; Im 
orresponds to therepresentation X = XI1 + � � �+XIm: (2)The pro
edure of 
hoosing the sets I1; : : : ; Im is 
alled the eigentriple grouping. For a givengroup I the 
ontribution of the 
omponent XI in the expansion (2) is measured by the shareof the 
orresponding eigenvalues: Pi2I �i=Pdi=1 �i. If the matrix XI is a Hankel matrix, thenthere exist series Y (1)T and Y (2)T su
h that YT = Y (1)T + Y (2)T and the traje
tory matri
es of theseseries are XI and XJnI , respe
tively. If the matri
es XI and XJnI are approximately Hankelmatri
es then the traje
tory matri
es of the series Y (1)T and Y (2)T are 
lose to XI and XJnI . Inthis 
ase we shall say that the series are approximately separable, see [7℄ for many more details.Therefore, the purpose of the grouping step (that is, the pro
edure of arranging the indi
es1; : : : ; d into groups) is to �nd several groups I1; : : : ; Im su
h that the matri
es XI1; : : : ;XImsatisfy (2) and are 
lose to 
ertain Hankel matri
es. The grouping step is based on the analysisof the eigenve
tors Ui and Vi, and eigenvalues �i in the SVD expansion (1). The prin
iplesand methods of identifying the SVD 
omponents for their in
lusion into di�erent groups aredes
ribed in [7℄, Se
t. 1.6. Sin
e ea
h matrix 
omponent of the SVD is 
ompletely determinedby the 
orresponding eigentriple, we shall talk about the grouping of the eigentriples ratherthan the grouping of the elementary matri
es Xi.2nd Step: Diagonal averagingThe purpose of diagonal averaging is to transform a matrix to the form of a Hankel matrixwhi
h 
an be subsequently 
onverted to a time series. If zij stands for an element of a matrixZ, then the k -th term of the resulting series is obtained by averaging zij over all i; j su
h thati + j = k + 1. This pro
edure is 
alled diagonal averaging, or Hankelization of the matrixZ. The result of the Hankelization of a matrix Z is the Hankel matrix HZ. Note that theHankelization is an optimal pro
edure in the sense that the matrix HZ is the nearest to Z(with respe
t to the matrix norm) among all Hankel matri
es of the 
orresponding size (see[7℄, Se
t. 6.2). In its turn, the Hankel matrix HZ uniquely de�nes the series by relating thevalue in the diagonals to the values in the series. By applying the Hankelization pro
edure toall matrix 
omponents of (2), we obtain another expansion:X = fXI1 + : : :+fXIm (3)where fXI1 = HX. This is equivalent to the de
omposition of the initial series YT = (y1; : : : ; yT )into a sum of m series: yt = mXk=1 ey(k)t (4)where eY (k)T = (ey(k)1 ; : : : ; ey(k)T ) 
orresponds to the matrix XIk . A sensible grouping leads to thede
omposition (2) where the resultant matri
es XIk are almost Hankel ones. This 
orresponds



6 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYto approximate separability and implies that pairwise s
alar produ
ts of di�erent matri
esXIk in (3) are small. The pro
edure of 
omputing the time series eY (k)T (that is, building upthe group Ik plus diagonal averaging of the matrix XIk) will be 
alled re
onstru
tion of aseries Y (k)T by the eigentriples with indi
es in Ik. In relation to the grouping method, it isworthwhile to note that if L is large enough, the eigenve
tors in a sense imitate the behaviorof the 
orresponding time series 
omponents. In parti
ular, the trend of the series 
orrespondsto slowly varying eigenve
tors. The harmoni
 
omponent produ
es a pair of left (and right)harmoni
 eigenve
tors with the same frequen
y, et
.2.3 Linear Re
urrent Formulae (LRF)Fore
asting by SSA 
an be applied to the time series that approximately satisfy linearre
urrent formulae (LRF).We shall say that the series YT satis�es an LRF of order d if there are numbers a1; : : : ; adsu
h that yi+d = dXk=1 akyi+d�k; 1 � i � T � d: (5)The fa
t that the series yt satis�es an LRF (5) is equivalent to its representability as a sumof produ
ts of exponentials, polynomials and harmoni
s; that is,yt = qXk=1�k(t) e�kt sin (2�!kt+ 'k): (6)Here �k(t) are polynomials, �k; !k and 'k are arbitrary parameters. The number of linearlyindependent terms q in (6) is less than or equal to d. The 
lass of series that 
an be approximatedby the series satisfying LRFs of the form (5) (or, equivalently, by the time series of the form(6) with a small number of terms) is very broad.3 Appli
ation of SSA to the analysis of Iranian GDPThe SSA te
hnique 
an be applied to various time series. Using SSA for analyzing e
onomi
stime series 
an be advantageous as these series typi
ally 
ontain periodi
 
omponents thatare diÆ
ult to handle with 
lassi
al te
hniques. As our main example, let us 
onsider theappli
ation of SSA for analyzing and fore
asting the quarterly Iranian Gross Domesti
 Produ
t(GDP) in detail. Fig. 1 shows this series in basi
 pri
es (at 
urrent pri
e). Visual analysisof Fig. 1 indi
ates that the depi
ted series has a trend and this trend 
an be approximatedby a fun
tion in
reasing exponentially fast. A harmoni
 seasonal 
omponent with in
reasingamplitude is also 
learly seen.3.1 De
omposition: trend, seasonality and residualsA general des
riptive model of the series that is 
onsidered in SSA is an additive modelwhere the 
omponents of the series are trend, os
illation and noise. In addition, the os
illatory
omponents are subdivided into periodi
 and quasi-periodi
 
omponents, while noise 
ompo-nents are, as a rule, aperiodi
 series. The sum of all additive 
omponents ex
ept for the noise
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Figure 1: Quarterly Iranian GDP (billion Rials).will be 
alled the signal. So we de
ompose the series into the signal (trend and os
illations) andnoise. Note that SSA does not require an a priori parametri
 model for trend and os
illations.The 
hoi
e of window length: as was mentioned earlier, the window length L is the onlyparameter at the de
omposition stage. Sele
tion of the proper window length depends on theproblem in hand and on preliminarily information about the time series. Theoreti
al resultsadvise us to 
hoose L large enough but not greater than T=2. Knowing that the time seriesmay have a periodi
 
omponent with an integer period, to a
hieve a better separability of thisperiodi
 
omponent it is advisable to take the window length proportional to that period. Forexample, the assumption that there is an annual periodi
ity in the series suggests that we mustpay attention to the frequen
ies k=12 (k = 1; :::; 12). For quarterly data the period of theseasonal 
omponent is equal to 4. Using these re
ommendations, we take L = 32 (in our 
aseT=68). So, based on this window length and on the SVD of the traje
tory matrix, we have32 eigentriples, ordered by their 
ontributions (shares) into the de
omposition. The leadingeigentriple des
ribes the general tenden
y of the series. Sin
e in most 
ases the eigentripleswith small shares are related to the noise 
omponent of the series, we need to identify the setof leading eigentriples. Let us 
onsider the result of the SVD step. Fig. 2 represents prin
ipal
omponents (left eigenve
tors) related to the �rst 9 eigentriples. Note that the form of the fa
-tor ve
tors (right eigenve
tors) is almost the same as the form of prin
ipal 
omponents be
auseL=32 is 
lose to K=37.

Figure 2: Prin
ipal 
omponents related to the �rst 9 eigentriples.
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omposition of the series YT 
an be su

essful only if the resultingadditive 
omponents of the series are approximately separable from ea
h other. The followingquantity (
alled the weighted 
orrelation or w-
orrelation) is a natural measure of dependen
ebetween two series Y (1)T and Y (2)T : �(w)12 = �Y (1)T ; Y (2)T �wk Y (1)T kwk Y (2)T kwwhere k Y (i)T kw = r�Y (i)T ; Y (i)T �w ; �Y (i)T ; Y (j)T �w = PTk=1wky(i)k y(j)k , (i; j = 1; 2)wk=minfk; L; T � kg (here we assume L � T=2).

Figure 3: Matrix of w -
orrelations for 32 re
onstru
ted 
omponents.A useful tool for de�ning the groups of eigentriples is the matrix of the absolute values ofthe w -
orrelations, 
orresponding to the full de
omposition (in this de
omposition ea
h group
orresponds to only one matrix 
omponent of the SVD). If two re
onstru
ted 
omponents havezero w -
orrelation it means that these two 
omponents are separable. If the absolute value ofa w -
orrelation is small, then the 
orresponding series are almost w -orthogonal; if it is large,then the two series are far from being w -orthogonal and are therefore badly separable. Largevalues of 
orrelations between re
onstru
ted 
omponents indi
ate that they should possibly begathered into one group and 
orrespond to the same 
omponent in SSA de
omposition [7℄. InFig. 3 w -
orrelations for 32 re
onstru
ted 
omponents are shown in the 20-grade grey s
ale fromwhite to bla
k 
orresponding to the absolute values of 
orrelations from 0 to 1. Fig. 3 
on�rmsthat the �rst four eigentriples are well separated from a blo
k of the remaining eigentriples(5{32) whi
h we 
onsider as noise.Components C1 C2 C3 C4 C5C2 0.002C3 0.001 0.960C4 0.000 0.001 0.028C5 0.001 0.001 0.001 0.015C(6�32) 0.001 0.020 0.016 0.026 0.186Table 1: w -
orrelations for 
omponents C1; : : : ; C5 and C(6�32):
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trum Analysis for Analysis of E
onomi
s Data 9The form of the matrix of w -
orrelations gives an indi
ation of how to make the propergrouping: the leading eigentriple de�nitely 
orresponds to the trend (this situation is very
ommon in pra
ti
e), the three subsequent eigentriples 
orrespond to the harmoni
s, and thelarge sparking square (after the �fth or sixth eigentriple) indi
ates the noise 
omponent. We 
aninterpret the �fth 
omponent (and 
omponents 6{9 as well) as a part of either a trend or noise.Inspe
tion of the matrix of w -
orrelations (see Table 1) and the quality of the approximationand fore
ast indi
ate that we get more stable results if we 
onsider eigentriples above 4 as
omponents of noise.The 
omponents 5{9 are slowly varying and may perhaps be asso
iated with business 
y
les.For example, the periodograms of these 
omponents show that there is de�nitely a periodi

omponent with period 16 quarters = 4 years. However, the time series we analyze are tooshort (and too noisy) for reliable identi�
ation of the business 
y
les.Trend identi�
ation: Trend is the slowly varying 
omponent of a time series whi
h doesnot 
ontain os
illatory 
omponents. Assume that the time series itself is su
h a 
omponentalone. Pra
ti
e shows that in this 
ase, one or more of the leading eigenve
tors will be slowlyvarying as well. Exponential and polynomial sequen
es are good examples of this situation.We know that eigenve
tors have a form similar to the form of the 
orresponding 
omponentsof the initial time series, thus we should �nd slowly varying eigenve
tors. This 
an be a
hievedby the inspe
tion of one-dimensional plots of the eigenve
tors.In our 
ase, the leading eigenve
tor is de�nitely of the required form but the eigentriples2{4 are de�nitely not. Sin
e we have de
ided that the eigentriples 5{32 
orrespond to thenoise, the trend is des
ribed by the �rst eigentriple only. This dire
tly implies that the trend ofthe original series is approximated by an exponential fun
tion. Note again, that we 
an builda more 
ompli
ated approximation of the trend if we use some other eigentriples. However,the gain in pre
ision will be very small and the model of the trend will be
ome mu
h more
ompli
ated. Fig. 4 shows the original series and the extra
ted trend (whi
h is obtained fromthe �rst eigentriple).
Figure 4: Trend extra
tion.Identi�
ation of the harmoni
 
omponents: The general problem here is the identi�
ationand separation of the os
illatory 
omponents of the series that do not 
onstitute parts of thetrend. In parametri
 form, this problem is extensively studied in 
lassi
al spe
tral analysistheory. The statement of the problem in SSA is spe
i�ed mostly by the model-free natureof the method. In pra
ti
e, the singular values of two eigentriples of a harmoni
 series areoften very 
lose to ea
h other, and this fa
t simpli�es the visual identi�
ation of the harmoni

omponents. An analysis of the pairwise s
atterplots of the eigenve
tors also helps to visuallyidentify those eigentriples that 
orrespond to the harmoni
 
omponents of the series, providedthese 
omponents are separable from the residual 
omponent. Fig. 5 depi
ts s
atterplots ofpaired fa
tor ve
tors from the Iranian GDP data, 
orresponding to the harmoni
s with a small
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ies. This �gure shows two-dimensional graphs whi
h form two-dimensionaltraje
tories with verti
es in a spiral-shaped 
urve. This indi
ates that these pairs of eigenve
torsare produ
ed by the modulated harmoni
 
omponents of the initial time series. In that way,the eigentriples 2{3 
orrespond to the period 4 or frequen
y 3/12=1/4.

Figure 5: S
atterplots (with lines 
onne
ting 
onse
utive points) of the �rst eight pairs ofeigenve
tors.Let us des
ribe additional information, whi
h 
an help us to identify eigentriples and 
on�rmthe grouping of the 
omponents. Logarithms of eigenvalues provide su
h information in thefollowing way: a pair of eigentriples 
orresponding to a harmoni
 
omponent produ
es a plateauin this graph. Analysis of the matrix of w -
orrelation between re
onstru
ted 
omponents ofthe initial time series is also useful for identi�
ation. Certainly, auxiliary information aboutthe initial series always makes the situation 
learer and helps in 
hoosing the parameters ofthe methods. For example, the assumption that there might be a quarterly periodi
ity in theIranian GDP data set suggests that the analyst must pay spe
ial attention to the frequen
y 1/4.As shown in Fig. 5, eigentriples 2{4 
orrespond to some harmoni
s, sin
e their eigenve
tors havea regular periodi
al form. Fig. 6 shows the os
illation of our data set whi
h is obtained fromeigentriples 2{4. Obviously, we do not have os
illation with equal amplitude, it has an in
reasingrate, similar to what we visually observed earlier for the original series. Also, Fig. 6 
on�rmsthat the eigentriple sele
tion for the identi�
ation of os
illation of the original series seems
orre
t as eigentriples 2{4 adequately re
e
t the os
illation behavior of the original series.
Figure 6: Os
illation extra
tion.The 
omponents 2{4 
orrespond to the seasonality 
omponents of the series. Looking atthe periodorgams of the 
omponents 5{9 we may suggest that these 
omponents re
e
t slowly-varying e
onomi
 
y
les. However, the time series we analyze are too short for a 
on
lusion likethat and for reliable fore
asting of the e
onomi
 
y
les; therefore, we have preferred to omitthe 
orresponding eigentriples on the stage of fore
asting.



Singular Spe
trum Analysis for Analysis of E
onomi
s Data 11Separation of the noise from the signal : The problem of �nding a re�ned stru
ture of a seriesby SSA is equivalent to the identi�
ation of the eigentriples of the SVD of the traje
tory matrixof this series, whi
h 
orrespond to trend, various os
illatory 
omponents, and noise. From thepra
ti
al point of view, a natural way of noise extra
tion is the grouping of the eigentriples,whi
h do not seemingly 
ontain elements of trend or os
illation.Let us make a few remarks 
on
erning the separation of the 
omponents 
orrespondingto noise. First, irregular behavior of eigenve
tors 
an indi
ate that they are part of noise.This irregularity should be distinguished from 
omponent mixture, whi
h is 
aused by la
kof separability between these 
omponents. The noise 
omponent 
an often be identi�ed as ittypi
ally 
reates a long tail of eigenvalues whi
h are slowly de
reasing (almost without jumps).Se
ondly, the large set of eigentriples whi
h are highly 
orrelated with ea
h other is quite likelyto belong to a noise. (Fig. 3 
ontains su
h a blo
k of eigentriples with numbers 5{32). Theinterpretation of the eigentriple 5 (and perhaps 6{9 as well) is un
lear. This is a border-line
ase dis
ussed above; we 
lassify these eigentriples as examples of noise. The fa
t that thew-
orrelation between the re
onstru
ted series (the eigentriples 1{4) and the residuals (theeigentriples 5{32) is equal to 0.005 
on�rms that this grouping is very reasonable. Fig. 7 showsthe residuals after extra
ting the trend and the seasonal 
omponent. If we add together thetrend and the residuals we 
ome to the original series adjusted for seasonal variations and if weadd the series of Figs 4, 6 and 7 we will obtain the original series (Fig. 1).
Figure 7: Residual series (eigentriples 5{32.)3.2 Fore
astingA fore
ast 
an be made only if a 
ertain model is built. The model 
an either be derivedfrom the data or at least 
he
ked against the data. In SSA fore
asting, this model 
an bedes
ribed with the help of a linear re
urrent formula. The 
lass of series governed by linearre
urrent formula (LRF s) is rather wide and important for pra
ti
al impli
ation.Assume that we have a series YT = fytg = Y (1)T + Y (2)T and the problem of fore
asting its
omponent Y (1)T . If Y (2)T 
an be regarded as noise, then the problem is that of fore
asting thesignal Y (1)T in the presen
e of a noise Y (2)T . The main assumptions are:(a) the series Y (1)T admits a re
urrent 
ontinuation with the help of an LRF of a relatively smalldimension d, and(b) there exists a number L su
h that the series Y (1)T and Y (2)T are approximately separable forthe window length L.The assumption (b) is important as any time series Y (1)T is an adaptive 
omponent of YTin the sense that YT = Y (1)T + Y (2)T with Y (2)T = YT � Y (1)T . The assumption of (approximate)



12 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYseparability means that Y (1)T is a natural additive 
omponent from the viewpoint of the SSAmethod.To 
he
k the fore
ast quality, several methods 
an be applied. The main way is to trun
ateseveral last points of the original series, make the analysis of the redu
ed series and 
omparetrun
ated values with the fore
asted ones. We 
ut o� the last 4 points of the series and fore
astthem (that is, we will fore
ast the Iranian GDP for all quarters of 2004). We used the windowlength of 32, four leading eigengtriples to de
ompose the initial series and the so-
alled ve
toralgorithm (see [7℄, p. 107) to fore
ast the most re
ent data. Fig. 8 shows the initial seriesand its fore
ast for the four quarters of 2004. The fore
ast is basi
ally identi
al to the data.The verti
al line shows the trun
ation between the last point of original series and the fore
aststarting point. This fore
ast is performed using the full LRF produ
ed by the subspa
e, whi
his generated by the leading 4 eigentriples.

Figure 8: Approximation and Fore
asting.Con�den
e intervals for the fore
astsCon�den
e intervals for the fore
asts 
an be 
al
ulated by two methods: the empiri
almethod and the bootstrap method. They are 
al
ulated using the residuals of the re
onstru
-tion.A

ording to the main SSA fore
asting assumption, the 
omponent Y (1)T of the series YT hasto satisfy an LRF of a relatively small dimension, and the residual series Y (2)T = YT � Y (1)T hasto be approximately separable from Y (1)T . In parti
ular, Y (1)t is assumed to be a �nite subseriesof an in�nite series Y (1), whi
h is a re
urrent 
ontinuation of Y (1)T . These assumptions are oftenhold in pra
ti
e with high a

ura
y.There are two problems related to the 
onstru
tion of the 
on�den
e intervals for the fore-
ast. The �rst problem is to 
onstru
t a 
on�den
e interval for the original series YT = fytgat some future point in time. The se
ond problem is 
onstru
tion of 
on�den
e intervals forthe signal Y (1)T = fy(1)t g at some future point in time. These two problems 
an be solved indi�erent ways. The se
ond requires additional information about the model governing the serieseY (2)T = fey(2)t g to perform a bootstrap simulation of the series YT . Bootstrap 
on�den
e intervalsare built for the 
ontinuation of the signal Y (1)T (for more information see [22℄).Let us 
onsider a method of 
onstru
ting intervals for the signal Y (1)T+M at the moment T+M.In the unrealisti
 situation, when we know both the signal Y (1)T and the true model of the noiseY (2)T , a Monte Carlo simulation 
an be applied to 
he
k the statisti
al properties of the fore
astvalue ey(1)T+M relative to the a
tual term y(1)T+M .Indeed, assuming that the rules for the eigentriple sele
tion are �xed, we 
an simulate Nindependent 
opies Y (2)T;i (i = 1; : : : ; N) of the pro
ess Y (2)T and apply the fore
asting pro
edure



Singular Spe
trum Analysis for Analysis of E
onomi
s Data 13Bootstrap Lower UpperQuarter Original data Fore
ast Relative Average Con�den
e Con�den
e2004 Error Fore
ast Interval IntervalQ 1 310880 313735 0.017 314052 300528 314052Q 2 388277 395591 0.012 396032 384484 396032Q 3 349674 348191 0.005 348933 331456 348933Q 4 335988 335783 0.002 340786 326411 340786Table 2: Original, fore
ast, average, lower and upper 95 % bootstrap 
on�den
e intervals.to N independent time series YT;i = Y (1)T +Y (2)T;i . Then the fore
asting result will form a sampleey(1)T+M;i, whi
h should be 
ompared against y(1)T+M . In this way the Monte Carlo average seriesfor the fore
ast 
an be built up. Sin
e in pra
ti
e we do not know the signal Y (1)T , we 
an notapply this pro
edure. Let us des
ribe the bootstrap variant of the simulation for 
onstru
tingthe 
on�den
e intervals for the fore
ast.Under a suitable 
hoi
e of the window length L and the 
orresponding eigentriples, we havethe representation YT = eY (1)T + eY (2)T , where eY (1)T (the re
onstru
ted series) approximates Y (1)T ,and eY (2)T is the residual series. Suppose now that we have a (sto
hasti
) model for the residualeY (2)T (for instan
e, we 
an postulate some model for Y (2)T and, sin
e eY (1)T � Y (1)T , we apply thesame model for eY (2)T with the estimated parameters). Then, simulating N independent 
opiesY (2)T;i of the series eY (2)T , we obtain N series YT;i = eY (1)T + eY (2)T;i and produ
e M fore
asting resultsey(1)T+M;i in the same manner as in the Monte Carlo simulation variant.More pre
isely, any time series YT;i produ
es its own eY (1)T;i re
onstru
ted series and its ownfore
asting linear re
urrent formula LRFi for the same window length L and the same setsof eigentriples. Starting at the last L { 1 terms of the series eY (1)T;i , we perform M steps offore
asting with the help of its LRFi, to obtain ey(1)T+M;i.From the sample ey(1)T+M;i (1 � i � N) we 
an 
al
ulate its (empiri
al) lower and upperquintiles for a �xed level 
 and obtain the 
orresponding 
on�den
e interval for the fore
ast.This interval (
alled bootstrap 
on�den
e interval) 
an be 
ompared with the fore
ast valueey(1)T+M obtained from the initial fore
asting pro
edure. We 
an also build average bootstrapseries. This average 
an then be 
ompared with the value ey(1)T+M obtained by Basi
 SSA fore
ast.Large dis
repan
y between these two fore
ast would typi
ally indi
ate that the original SSAfore
ast is not reliable.The simplest model for eY (2)T is the Gaussian white noise model. The 
orresponding hypoth-esis 
an be 
he
ked with the help of the standard test for randomness and normality. Table 2presents the original and fore
asted data, relative error and the 95 % bootstrap 
on�den
einterval, in
luding the average and the lower and upper 
on�den
e intervals, of the fore
asteddata. Con�den
e intervals are obtained by simulation under the hypothesis that the residualsof the re
onstru
tion form a Gaussian white noise series. This table shows that the fore
astedvalues are very 
lose to the original data and the 
on�den
e intervals are narrow.The Iranian GDP series (thin line) is depi
ted in Fig. 9 together with its bootstrap 
on�-den
e interval (dashed line) for both the original (thin line) and fore
asted data and the basi
ve
tor fore
ast (thi
k line). The verti
al line 
orresponds to the trun
ation point.
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Figure 9: Bootstrap 
on�den
e intervals for the original and fore
asted data.4 Analysis of Iranian National A

ountIn this se
tion we demonstrate the 
apability of SSA by applying it to the analysis andfore
asts of the Iranian national a

ount data. The data sets des
ribe the main e
onomi
features of the Islami
 Republi
 of Iran and is provided on the web-site of the Central Bank ofthe Islami
 Republi
 of Iran, see [21℄. The sets of data are quarterly and yearly. There are 16quarterly data sets ea
h 
ontaining 68 data points over the period of 1988 to 2004 (measuredin billion rails, the oÆ
ial 
urren
y of Iran).These sets of data are: 1 { Agri
ulture, 2 { Oil and Gas, 3 { Industries and Mines, 4 { Man-ufa
turing, 5 { Mining, 6 { Ele
tri
ity, Gas and Water Supply, 7 { Constru
tion, 8 { Servi
es, 9{ Trade, Restaurants and Hotels, 10 { Transportation, Warehousing and Communi
ation, 11 {Finan
ial Servi
es, 12 { Real Estate and Professional Servi
es, 13 { Publi
 Servi
e, 14 { So
ial,Personal and Domesti
 Servi
es, 15 { Imputed Bank Servi
es Charge and 16 { Gross Domes-ti
 Produ
t (GDP) in Basi
 Pri
e. We shall refer to these data sets as Series 1 to Series 16,respe
tively.Fig. 10 displays Series 1 { 16. In this �gure, the series in row i and 
olumn j is Series4(i�1)+j (i; j = 1; : : : ; 4).It is 
ustomary in e
onometri
s to take the logarithms of the data des
ribing e
onomi
features. Therefore, we make a parallel analysis of the data taken in the logarithmi
 s
ale.Fig. 11 displays Series 1 { 16 in the logarithmi
 s
ale (the arrangement of the series is the sameas in Fig. 10).We also 
onsider 16 yearly data sets whi
h 
ontain 45 observations ea
h 
overing the periodof 1959 to 2003 (measured in billion rails). These data des
ribe exa
tly the same e
onomi
features as Series 1{16. We shall refer to these data as Series 17 { Series 32. Fig. 12 displaysthese series. In this �gure, the series in row i and 
olumn j is Series 16+4(i�1)+j (i; j = 1; : : : ; 4).Fig. 13 displays Series 17 { 32 in the logarithmi
 s
ale.On the website [21℄ one 
an �nd the Iranian national a

ounts quarterly data adjusted toseasonal e�e
ts. However, we use the original, non-adjusted data sin
e one of our aims is toillustrate the 
apability of the SSA te
hnique for extra
ting trend and os
illations from thedata. We then use the approximated trend and os
illations for fore
asting the data.4.1 Analysis of quarterly data setsFor ea
h series, we have performed SSA analysis and fore
ast. Similarly to what we havedone with the GDP data in Se
t. 2, we have removed the last four points of ea
h series (Q1{ Q4 of 2004), made an SSA approximation for the period 1988 to 2003 and fore
asted thedata for the four quarters of 2004. In ea
h analysis, we 
hoose the SSA parameters (whi
h are
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Figure 10: Series 1{16.

Figure 11: Series 1{16 in the logarithmi
 s
ale.the window length and the number of eigentriples 
hosen for approximation) to optimize theapproximation of the series keeping the window length L large enough.For ea
h fore
asted value (Q1 { Q4 of 2004), we have 
omputed the relative error of thefore
ast (in per
ent). To summarize the quality of the fore
ast, we provide the Mean RelativeError (MRE) whi
h is simply the average of the four relative errors (in per
ent) for ea
h series.In parallel, we have performed SSA analysis and fore
ast for the data taken in the loga-rithmi
 s
ale. All the 
orresponding results are presented in Table 3 (in bra
kets). When the
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Figure 12: Series 17{32.

Figure 13: Series 17{32 in the logarithmi
 s
ale.SSA analysis was performed in the log-s
ale, for 
omputing the relative error of the fore
ast,we have transformed the fore
asted data ba
k to the original s
ale. We needed to do this inorder to be able to 
ompare these results with the results of the original analysis.Table 3 shows the results. Columns 2 and 3 show the parameters of the SSA algorithm (thewindow length L, see Stage 1 of the algorithm, and the eigentriples 
hosen E, see Stage 3).Note that using this information and the SSA-Caterpillar software [14℄, anyone 
an repeat theresults presented in the table).



Singular Spe
trum Analysis for Analysis of E
onomi
s Data 17In ea
h 
ell in 
olumns 4{7, there are two numbers: the �rst one is the relative error of thefore
ast (in per
ent) for the original series for a given quarter of 2004 and the se
ond one (inbra
kets) is the value of the relative error of the 
orresponding fore
ast when the analysis wasperformed after taking the logarithms of the series. In the last 
olumn, the bold font indi
atesthe lower of the two values. Table 3 
learly demonstrates that taking logarithms of the datadoes not improve the quality of the SSA fore
ast (on the opposite, it typi
ally leads to itsdeterioration). This is related to the fa
t that the quarterly data have periodi
 
omponentswhi
h are easier to extra
t when the data are 
onsidered in the original s
ale (taking logarithmsprodu
es additional smoothing and makes extra
tion of periodi
 
omponents more diÆ
ult).We 
onsider the SSA fore
asts for all 16 series as very good (an ex
eption is Series 5 andpartly Series 7 and 11). The su

ess of the analysis means that in most 
ases, SSA was able toapproximate both the trends and the periodi
 
omponents with high a

ura
y. Of 
ourse, thisis also related to the fa
t that the e
onomy of Iran was developed steadily during the period1988 { 2004 (the Iran-Iraq War ended in 1988).Relative Error% MRE %Ser. L E Q1 Q2 Q3 Q41 17 (32) 1-4 (1-10) 3.55 (6.03) 0.87 (2.50) 4.32 (4.50) 0.81 (12.60) 2.39 (6.41)2 32 (5) 1,6-7 (1) 0.06 (2.23) 1.24 (.021) 5.77 (0.62) 4.32 (17.0) 2.99 (5.05)3 32 (32) 1-7 (1-7) 1.47 (0.35) 2.16 (1.54) 0.98 (0.68) 5.38 (17.4) 2.50 (5.01)4 32 (32) 1-7 (1-7) 2.06 (1.66) 0.73 (4.03) 7.17 (9.56) 1.78 (4.22) 2.93 (4.85)5 12 (12) 1,2 (1,2) 3.75 (19.1) 6.01 (19.3) 2.95 (12.2) 13.3 (8.63) 6.51 (14.8)6 16 (16) 1,2,4-7 (1-4) 1.96 (0.72) 0.02 (9.04) 2.25 (1.22) 1.92 (4.81) 1.54 (3.95)7 32 (8) 1-5 (1-4) 10.4 (15.7) 11.9 (9.02) 1.44 (6.17) 0.34 (5.46) 6.05 (9.09)8 32 (32) 1-10 (1-4) 0.44 (1.46) 0.06 (0.25) 0.63 (0.07) 1.10 (5.22) 0.56 (1.75)9 32 (32) 1-5 (1-5) 1.02 (3.23) 0.74 (3.75) 4.58 (5.83) 0.60 (3.72) 1.74 (4.13)10 32 (32) 1,4-7(1-3) 1.35 (1.24) 0.00 (0.71) 4.78 (6.39) 0.22 (2.20) 1.59 (2.63)11 5 (10) 1,2 (1,2) 0.32 (0.17) 3.95 (3.40) 4.40 (2.12) 5.24 (8.22) 3.48 (3.65)12 12 (10) 1-4,6 (1,2) 4.29 (0.54) 0.30 (5.88) 0.55 (5.84) 2.01 (8.92) 1.79 (5.20)13 32 (32) 1-7 (1-5) 0.77 (2.84) 2.69 (3.04) 1.56 (8.67) 2.21 (1.13) 1.79 (3.92)14 32 (32) 1-5 (1-5) 4.10 (2.15) 2.83 (0.81) 2.64 (2.31) 1.29 (0.57) 2.72 (1.46)15 8 (5) 1 (1) 1.12 (6.34) 1.04 (2.29) 0.60 (3.30) 8.17 (0.22) 2.73 (3.11)16 32 (24) 1-4 (1-4) 0.91 (0.55) 1.88 (0.03) 0.42 (6.49) 0.06 (0.15) 0.82 (1.81)Table 3: Relative Error and Mean Relative Error for Series 1 { 16 before and after taking thelogarithm.



18 HOSSEIN HASSANI � ANATOLY ZHIGLJAVSKYRelative Error%Ser. L E 2001-2 2002-3 2003-4 MRE %17 5 (5) 1,2 (1,2) 8.59 (8.48) 1.13 (1.58) 0.86(0.28) 3.52 (3.45)18 3 (12) 1 (1) 24.8 (17.5) 15.9 (19.5) 2.06 (1.51) 14.2 (12.8)19 7 (5) 1,2 (1,2) 1.43 (5.75) 1.64 (6.35) 6.84 (2.35) 3.30 (4.05)20 5 (5) 1,2 (1,2) 11.3 (0.12) 3.80 (3.42) 4.83 (6.80) 6.66 (3.45)21 7 (11) 1 (1,2) 3.13 (5.25) 1.50 (1.00) 7.34 (3.20) 3.99 (3.15)22 21 (9) 1 (1-4) 3.77 (4.51) 3.25 (2.68) 20.2 (3.01) 9.09 (3.40)23 21 (3) 1-3 (1,2) 15.1 (0.08) 5.85 (13.8) 3.16 (0.25) 8.04 (4.71)24 6 (4) 1,2 (1,2) 2.25 (0.00) 0.13 (3.64) 0.32 (7.11) 0.90 (3.58)25 5 (3) 1,2 (1,2) 3.17 (2.87) 0.98 (0.15) 0.56 (1.16) 1.57 (1.39)26 4 (14) 1,2 (1-5) 13.7 (0.40) 4.18 (3.86) 2.80 (5.51) 6.92 (3.25)27 12 (9) 1,2 (1,2) 4.33 (11.0) 2.44 (1.22) 6.31 (5.27) 4.36 (5.84)28 3 (6) 1 (1,2) 1.65 (4.29) 1.18 (1.05) 3.47 (3.56) 2.31 (2.97)29 21 (6) 1,2 (1,2) 2.38 (1.90) 1.66 (0.18) 6.31 (2.30) 3.45 (1.46)30 10 (10) 1 (1-3) 1.43 (0.60) 1.32 (2.42) 7.55 (5.23) 3.43 (2.75)31 21 (15) 1-5,7 (1) 16.5 (19.6) 2.35 (0.92) 9.27 (16.6) 9.38 (12.4)32 11 (11) 1 (1-3) 0.27 (0.59) 7.20 (8.61) 0.96 (82.16) 2.81 (3.78)Table 4: Relative Error and Mean Relative Error for Series 17 { 32 before and after taking thelogarithm.4.2 Yearly data setsIn this se
tion we show the results of the appli
ation of the SSA te
hnique to 16 yearlydata sets (Series 17 {32) des
ribed in Se
t. 4.1. These data sets 
over the period 1959 to2003. These series 
ontain 45 points and are shorter than the quarterly series. Moreover, thee
onomi
 features exhibit 
lear non-stationary behaviour in this period and therefore it is mu
hmu
h harder to fore
ast the yearly series than the quarterly series.We 
ut o� the last 3 years of ea
h series and fore
ast it to 
onsider the pre
ision of thete
hnique (that is, we will fore
ast the values for 2001{2003). Here we do not have seasonal
omponents so we only need to extra
t the trend of these data sets.Table 4 shows the parameters of the SSA algorithm and the results of the fore
asts (thestru
ture of this table is the same as that of Table 3). The fore
ast results for the yearlydata are generally worse than that for the quarterly data sets. The main reason for this is thefa
t that during the period 1959 to 2003 there were signi�
ant 
hanges in the dynami
s of theIranian e
onomi
 features, see Fig. 12 and espe
ially Fig. 13. These 
hanges 
an be asso
iatedwith the start and the end of the Iran-Iraq War (1980 { 1988). Note that the 
hanges 
an easilybe dete
ted by SSA, see [23℄ for information about using SSA for dete
tion of 
hanges in timeseries.One may note from Table 4, that 
ontrary to the 
ase of the quarterly data, the fore
astbased on the analysis of the series in the logarithmi
 s
ale often gives better results. This isperhaps related to the fa
t that the yearly series do not have seasonal 
omponents whi
h areeasier to extra
t when the data is in the original s
ale.
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trum Analysis for Analysis of E
onomi
s Data 194.3 In
ation rate seriesNext, we present the fore
asting results for in
ation rate based on the monthly IranianConsumer Pri
e Index (CPI) series for the short and long horizons h = 1; 3; 6 and 12. In fa
t,we used monthly CPI data for the period Mar. 1990 - Sep. 2007. We used Jan. 1990 to Aug.2004 CPI observations as training set and Sep. 2004 to Sep. 2007 observations for out-of-samplepredi
tion. We sele
t the window length L = 60 and the �rst 19 eigenvalues for re
onstru
tingthe original series and 
onsider remaining eigentriples (20{60) as noise for fore
asting in
ationrate based on the CPI pri
e index over period Sep. 2004 to Sep. 2007. We also use the RWmodel as a ben
hmark model in the 
omparative analyses. The use of the random walk modelas a ben
hmark model should not imply that we believe the model is an optimal fore
astingmethod. We use this model be
ause it is a naive model. The point here is that a superiorperforman
e of random walk model would render the analyst's method useless. As a measureof predi
tion a

ura
y, we use the following ratio of root-mean-square errors (RMSE):RMSE =  Pni=1(yT+i � eyT+i)2Pni=1(yT+i � byT+i)2!1=2 :Here n represents the number of fore
asted points, eyT+i are the fore
asted values of yT+i ob-tained by SSA and byT+i is the fore
asted values of yT+i obtained by RW. Note that eyT+i forRW model is yT+i�h for any h-step ahead fore
asting. If RMSE < 1, then SSA pro
edureoutperforms alternative predi
tion method. Alternatively, RMSE > 1 would indi
ate that theperforman
e of the 
orresponding SSA pro
edure is worse than the predi
tions of the 
ompetingmethod.Fig. 15 shows the CPI series and also in
ation rate series based on the CPI series. Visualanalysis of Fig. 15 indi
ates that the CPI series has a trend and this trend 
an be approximatedby a fun
tion in
reasing exponentially fast. A harmoni
 seasonal 
omponent with de
reasingamplitude is also 
learly seen in In
ation rate series. In the following, we only 
onsider In
ationrate series.

Figure 14: CPI series (left) and in
ation rate series based on the CPI series (right) Mar. 1990- Sep. 2007.Table 5 shows the RMSEs for SSA/random walk for h-step ahead fore
asts of in
ation ratebased on the CPI series for N fore
asted data points. Without ex
eption, SSA outperformsthe random walk predi
tions in all h-step ahead fore
asts. In fa
t, SSA method is up to 27%more eÆ
ient 
ompared to the RW method. Table 5 also presents the results of Diebold andMariano test [24℄ indi
ating whether the dis
repan
ies between SSA and RW model fore
asting
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edures are statisti
ally signi�
ant. ** and * imply signi�
an
e at 1% and 10% 
on�den
elevels, respe
tively. The results of this table 
on�rm that, for all 
ases, the di�eren
es aresigni�
ant at 1% 
on�den
e level.Additionally, Table 5 presents test results for the null hypothesis of whether the per
entagesof the dire
tion of 
hanges (DC) are greater than the pure 
han
e (50%). The table shows thatall results are statisti
ally signi�
ant at 1% and 10% 
on�den
e levels. The results of this tablealso show that MSSA predi
ts dire
tion of 
hange for 12-step as a

urately as it 
an predi
t1-step ahead.Fig. 15 (left) shows the Iranian GDP de
ator series (yearly); the data are taken fromhttp://data.un.org. One 
an see that this series looks very similar to the GDP series. SSAanalysis and fore
asting results for these two series are also very similar (the results of SSAanalysis for the GDP de
ator series are not reported here).Fig. 15 (right) shows the Iranian GDP series normalized to the Iranian GDP de
ator. Theresults of SSA fore
asting (not reported here) show that it is generally more advantageousto analyze and fore
ast the two series (namely, Iranian GDP series and Iranian GDP de
atorseries) separately and then 
ompute the ratio of the fore
asts rather than to analyze and fore
astthe ratio only.h = 1 h = 3 h = 6 h = 12N RMSE DC N RMSE DC N RMSE DC N RMSE DC36 0.81** 0.69** 34 0.78** 0.68* 31 0.73** 0.74** 25 0.84** 0.67*Table 5: RMSE of SSA fore
ast results with respe
t to the RW method, Diebold-Marinosigni�
an
e test results and dire
tion of 
hange test for in
ation rate based on the CPI series.

Figure 15: Iranian GDP de
ator (left side) and Iranian GDP/Iranian GDP de
ator (right side).5 Con
lusionIn this paper we have des
ribed the methodology of SSA (Singular-Spe
trum Analysis) anddemonstrated that SSA 
an be su

essfully applied to the analysis and fore
asting of e
onomi
time series. We have used 32 Iranian national a

ount data sets des
ribing the main e
onomi
features of the Islami
 Republi
 of Iran, as provided on the web-site of the Central Bank of theIslami
 Republi
 of Iran [21℄. The data are given in a quarterly and yearly format and havedi�erent types of non-stationarity. All the data sets are rather short.
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trum Analysis for Analysis of E
onomi
s Data 21The results show that SSA 
an be su

essfully used for the analysis and fore
asting of shorte
onomi
 time series with di�erent types of non-stationarity. In parti
ular, many quarterlyseries have periodi
 
omponents with non-stationary amplitudes but SSA has been able toextra
t and fore
ast these periodi
 
omponents very a

urately. Most of the yearly data have
lear stru
tural 
hanges whi
h makes the appli
ation of standard methods of analysis almostimpossible.Unlike standard methods used for analysis of e
onomi
s time series, SSA does not requireparametri
 models or transformation of the data into the logarithmi
 s
ale. Moreover, ourstudy has shown that in most 
ases, the transformation of the quarterly series into logarithmi
s
ale has lead to the deterioration of the pre
ision of the fore
asts.A
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