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a b s t r a c t

Singular Spectrum Analysis (SSA) has been exploited in different applications. It is well
known that perturbations from various sources can seriously degrade the performance of
the methods and techniques. In this paper, we consider the SSA technique based on the
perturbation theory and examine its performance in both reconstructing and forecasting
noisy series. We also consider the sensitivity of the technique to different window lengths,
noise levels and series lengths. To cover a broad application range, various simulated series,
from dynamic to chaotic, are used to verify the proposed algorithm. We then evaluate
the performance of the technique using two real well-known series, namely, monthly
accidental deaths in the USA, and the daily closing prices of several stock market indices.
The results are compared with several classical methods namely, Box–Jenkins SARIMA
models, the ARAR algorithm, GARCH model and the Holt–Winter algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a noisy signal vector YN = (y1, . . . ,yN)T of length N , where T denotes the transpose. Let us add the additive
noise δYN to the noise free series (signal) YN and assume that the noise δYN is uncorrelated with the signal:YN = YN + δYN . (1)

Let K = N − L + 1, where L is some integer called the window length (we can assume L ≤ N/2). Define the so-called
‘trajectory matrix’X = (xij)L,Ki,j=1, wherexij =yi+j−1. Note thatX is a Hankel matrix (by the definition, these are the matrices
such that their (i, j)-th entries depend only on the sum i + j).

We then considerX as a multivariate data with L rows and K columns. The columnsXj ofX, considered as vectors, lie in
an L-dimensional space RL. It is obvious that:X = X + δX, (2)

whereX and δX represent Hankel matrices of the signal YN and noise δYN , respectively.We stress that the perturbation term
δX is not assumed to be small and does not tend to be zero. We assume that the perturbation term δX is small relative to X.

The existence of noise in the series can seriously limit the performance of the methods and techniques (see, for
example, [1]). In general, there are two main approaches for either fitting a model or forecasting new data points of noisy
time seriesYN . According to the first one, ignoring δYN (or δX), we fit a model directly from noisy data (such as ARIMA type
models [2]) and use the fitted model for forecasting. According to the second approach, we start by filtering the noisy time
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series in order to reduce the noise level δYN (or δX) (such as SSA [3]) and fit a model to noise-reduced data and then use
the fitted model for forecasting new data points. In the case of the former approach, the fitted model and therefore the
forecasting performance are often poor if the noise level is relatively high, especially for the economics and financial time
series.

In the ideal case of noise reduction we completely remove δX from the perturbed matrixX. In this case, the fitted model
on the noise-reduced time series should be optimal, as we have removed the noise term δX from the noisy matrixX. If the
noise has been significantly reduced, then the latter approach is expected to give better results than the former approach.

There are several noise reduction methods. Having a method for decomposing the vector space of the noisy time series
into a subspace that is generated by the noise free series and a subspace for the noise series, we can construct the noise
free time series. An approximate decomposition of the vector space of the noisy time series into noise free time series and
noise subspace can be performed with, for example, the orthogonal matrix factorization technique such as singular value
decomposition (SVD). It has been shown that SVD based methods and signal subspace (SS) methods are more effective than
many others for noise reduction and forecasting in financial and economics time series (see, for example, [4]).

The idea to perform SS method and modified SVD was used in [5] for reconstruction of noise free series. A general
framework for recovering noise free series has been presented in [6]. The method forms the basis for a very general class
of subspace-based noise reduction algorithms, is based on the assumption that the original time series exhibits some well-
defined properties or follows a certain model. Noise free series is therefore obtained by mapping the original time series
onto the space of series that possess the same structure as the noise free series.

In this context, the SSA technique, which is a SVD and SS based method, can be considered as a proper method for
noise reduction and forecasting time series data sets. The SSA technique includes the elements of classical time series
analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. The aim of SSA is to make
a decomposition of the original series into the sum of a small number of independent and interpretable components such
as a slowly varying trend, oscillatory components and a structureless noise [3].

Any seemingly complex series with a potential structure could provide an example of a successful application of SSA [3].
Possible application areas of SSA are diverse: from mathematics and physics to economics and financial mathematics,
from metrology and oceanology to social science and market research (see, for example, [7–20] and references therein).
A thorough description of the theoretical and practical foundations of the SSA technique (with several examples) can be
found in [3,20].

All the aforementioned research is based on the standard SSA techniquewhich is based on the least squares (LS) estimate.
The LS estimate of the noise free series is obtained by truncating the singular values. In fact, the LS estimator projects the
noisy time series onto the perturbed signal (noise + signal) subspace. The reconstructed series using LS estimator has the
lowest possible (zero) signal distortion and the highest possible noise level. Note that the results of noise reduced series using
SSA technique (based on the LS estimate), are better than those obtained by classical methods which use noisy series (for
comparison between SSA and classical time series methods see, for example, [1,10,12,19]). But as we mentioned above the
reconstructed series still has somepart of the initial noise level δYN due to the nature of LS estimate. In fact, the reconstructed
series is amixture of signal and part of the noise. The ideal situation is thatwe remove,whateverwe can, this part of the noise
from the reconstructed series. In this paper, we consider an alternativemethodwhich is based on the perturbation theory to
overcome this problem. The proposed algorithm enables us to remove the part of the noise from reconstructed series which
has been obtained using the LS estimate. The similarities and dissimilarities between SSA and the subspace-based methods
of signal processing, and application of perturbation theory, with different point of view, have been discussed in [21].

The structure of the paper is as follows. The next section briefly describes perturbation theory and its application for
subspace methods. The SSA technique is presented in Section 3 and the improvement of the technique based on the
perturbation theory is considered in this section. The empirical results are then presented and described in Section 4 and
some conclusions are given in Section 5.

2. Perturbation theory

2.1. Some theorems

Let us now consider the problem of separation of an additive noise component from the perturbation theory point of
view. First we consider some useful theorems.

Theorem 1. Let X and δX be Hermitian matrices and X = X + δX. Let the eigenvalues of X be λ1 ⩾ · · · ⩾ λL, and let the
eigenvalues of X beλ1 ⩾ · · · ⩾ λL. If µL is the smallest eigenvalue of δX, then [22]

λi ⩾ λi + µL i = 1, . . . , L. (3)

There are two useful characteristics about the above theorem; it restricts the location of the eigenvalues of the perturbed matrixX,
but there is no restriction on the size of the perturbation δX. Some perturbation bounds of the singular values have been considered
in [23] as follows.
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Theorem 2. Perturbation bounds for the singular values of L × K matrixX = X + δX are

|λi − λi| ≤ ‖δX‖2

L−
i=1

(λi − λi) ≤ ‖δX‖
2
F .

(4)

The above conditions indicate that the singular values of thematrixX arewell-conditionedwith respect to perturbations.
That is, perturbations of yt produce similar or smaller perturbations in the singular values [23].

2.2. Application in the subspace method

Consider the following matrix

X = X + δX (5)

whereX is a perturbed version of X with perturbation δX. The SVD of the matrix X can be written as:

X = [Us Un]

[
6s 0
0 0

] [
VT
s

VT
n

]
= Us6sVT

s (6)

where Us ∈ RL×r , 6s ∈ Rr×r and Vs ∈ RK×r . The matrices Us and Vs span the column spaces of X and XT , respectively,
whereas Un and Vn span their orthogonal spaces. Similarly, the SVD of the matrixX can be written as:

X = [Us Un]

[6s 0
0 6n

] [VT
sVT
n

]
= Us6sVT

s + Un6nVT
n . (7)

It is clear that the SVD of the matrixX is completely different from the SVD of the matrix X due to the perturbation term
δX. Next the aim is to derive general expressions for approximations to the perturbed terms up to the second order of δX.
Assume the perturbed terms are as follows:

Us = Us + δUs = Us + UnP1 + UsP2Vs = Vs + δVs = Vs + VnP3 + VsP4
(8)

Un = Un + δUn = Un + UsQ1 + UnQ2Vn = Vn + δVn = Vn + VsQ3 + VnQ4
(9)

6s = 6s + δ6s. (10)

Note that each of the perturbed terms in (8) and (9) consists of two parts: the first part captures the perturbation in its
orthogonal space and the second part considers perturbation in each subspace. Let us, for example, consider the perturbation
termUs. The perturbation term δUs consists of two parts:UnP1 captures the perturbation in its orthogonal spaceUn andUsP2
considers perturbation in subspace Us. Now one needs to determine a set of unknowns; {Pi}

4
i=1, {Qi}

4
i=1 and δ6s in order to

remove all perturbations or refine the series. Let the following assumptions hold according to the SVD of the matrices X andX:
UT

s Us = I, VT
s Vs = I, UT

nUn = I, VT
nVn = I, UT

s Un = 0, VT
s Vn = 0 (11)UT

s
Us = I, VT

s
Vs = I, UT

n
Un = I, VT

n
Vn = I, UT

s
Un = 0, VT

s
Vn = 0. (12)

Let 1s = (6s6
T
s )

−1 and consider different projections of δX as:

Ess = UT
s δXVs, Esn = UT

s δXVn, Ens = UT
nδXVs, Enn = UT

nδXVn. (13)

Using the assumptions considered above, the unknowns are, up to second order of δX, as follows [24]:

Q1 = 1s(6sET
ss1s6sET

ns − EsnET
nn) + F1 (14)

Q3 = −1sET
nsEnn + 6−1

s Ess6
−1
s Esn + F2 (15)

where

F1 = −1s6sET
ns, F2 = −6−1

s Esn. (16)



H. Hassani et al. / Nonlinear Analysis: Real World Applications 12 (2011) 2752–2766 2755

The other unknowns can be found based on the Q1,Q3, F1 and F2 as follows:

P1 = −QT
1, P2 = −

1
2
FT1F1, P3 = −QT

3, P4 = −
1
2
FT2F2,

Q2 = −
1
2
FT1F1, Q4 = −

1
2
FT2F2,

δ6s = Ess − EsnFT2 −
1
2
6sF2FT2 +

1
2
F1FT16s.

(17)

The proof of this, can be found in [24] with some substitution. To do this, one needs to substitute 3n with zero (thus α
therein) in the theorem represented in [24]. For more clarification we have presented the proof using the notations used
here and the case considered above in Appendix.

3. SSA based on the perturbation theory

3.1. SSA: A brief description

The main purpose of SSA is to decompose the original series into a sum of series, so that each component in this sum
can be identified as either a trend, periodic or quasi-periodic (perhaps, amplitude-modulated), or noise. This is followed by
a reconstruction of the original series. The main idea of the Basic SSA is as follows.

Consider the real-valued nonzero time series YN = (y1, . . . , yN) of sufficient length N . Let K = N − L + 1, where
L (L ≤ N/2) is some integer called the window length. Define the matrix

X = (xij)
L,K
i,j=1 =


y1 y2 y3 · · · yK
y2 y3 y4 · · · yK+1
...

...
...

. . .
...

yL yL+1 yL+2 · · · yN

 (18)

and call it the trajectorymatrix. Obviously xij = yi+j−1 so that thematrixX has equal elements on the diagonals i+ j = const.
Define the matrix XXT . Singular value decomposition (SVD) of XXT provides us with the collections of L eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0 and the corresponding eigenvectors P1, P2, . . . , PL, where Pi is the normalized eigenvector
corresponding to the eigenvalue λi (i = 1, . . . , L). Note that one can apply SVD to a variety of matrices; for example, in
addition toXXT , it is customary to use either the covariance or correlationmatrix computed fromX, treated as amultivariate
data matrix [3].

A group of r (with 1 ≤ r < L) eigenvectors determine an r-dimensional hyperplane in the L-dimensional space RL

of vectors Xj. The distance between vectors Xj (j = 1, . . . , K) and this r-dimensional hyperplane can be rather small (it is
controlled by the choice of the eigenvalues)meaning that the projection ofX onto this hyperplane approximates the original
matrix X well. If we choose the first r eigenvectors P1, . . . , Pr , then the squared L2-distance between this projection and X
is equal to

∑L
j=r+1 λj. According to the Basic SSA algorithm, the L-dimensional data is projected onto this r-dimensional

subspace and the subsequent averaging over the diagonals allows us to obtain an approximation to the original series.

3.2. Proposed algorithm

In order to apply the perturbation theory in the SSA technique we need to have a priori information about the noise
component δYN or δX. However, the noise series δYN is unknown in practice and usually there is no a priori information.
One way to overcome this problem is to have an estimate of δX. Here we useX− X̂ as an estimate of δX, where X̂ is obtained
using basic SSA. That is, we first apply the basic SSA technique to the noisy time series to find an initial estimate of δX. We
then reconstruct X using its estimate based on the perturbation theory. Therefore, the proposed algorithm consists of two
complementary stages: an initial estimate of δX and reconstruction X both of which include several separate steps. At the
first stage we decompose the series using a basic SSA technique and at the second stage we reconstruct the original series
using SSA based on the perturbation theory and use the reconstructed series (which is without noise) for forecasting new
data points. Let us now formally describe this algorithm next.
Formal description of the proposed algorithm.

Let us have a noisy time series ỸN = (ỹ1, . . . , ỹN). Fix L (L ≤ N/2), the window length, and let K = N − L + 1.

1. (Computing the trajectory matrix): transfers a one-dimensional time series ỸN = (ỹ1, . . . , ỹN) into the multi-dimensional
series X̃1, . . . , X̃K with vectors X̃i = (ỹi, . . . , ỹi+L−1)

T , where K = N − L +1. The result of this step is the trajectory matrix
X̃ =


X̃1, . . . , X̃K


.

2. (Constructing a matrix for applying SVD): compute the matrix X̃X̃T .
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3. (SVD of thematrix X̃X̃T ): compute the eigenvalues and eigen-vectors of thematrix X̃X̃T and represent it in the form X̃X̃T
=

P̃Λ̃P̃T . Here Λ̃ = diag(λ̃1, . . . , λ̃L) is the diagonal matrix of eigenvalues of X̃X̃T ordered so that λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃L ≥ 0
and P̃ = (P̃1, P̃2, . . . , P̃L) is the corresponding orthogonal matrix of eigenvectors of X̃X̃T .

4. (Selection of eigenvectors): select a group of r (1 ≤ r ≤ L) eigenvectors P̃i1 , P̃i2 , . . . , P̃ir .
The grouping step corresponds to splitting the elementary matrices X̃i into several groups and summing the matrices
within each group.

5. Compute the matrix X̂ = ‖x̂i,j‖ =
∑r

k=1 P̃ik P̃
T
ik
X̃.

6. Estimating the noise matrix δX: to estimate δX, we use the difference between the initial estimate of signal matrix X, X̂,
and the noisy matrixX; δX ≈ X − X̂.

7. Estimating signal matrix X using the perturbation theory: set X = Us6sVT
s , where Us, 6s and VT

s are the refined version
of the noisy matricesUs,6s andVT

s , respectively, and can be obtained using (8) and (10). Note that performing a SVD of
the estimated noise matrix δX in step 6, enables us to estimate Un and Vn.

8. Transition to the one-dimensional series can now be achieved by averaging over the diagonals of the matrix X. Thus, the
results of this step is an approximation of YN .

9. The refined series YN can now be used for forecasting.

Forecasting procedure.
The SSA technique can be applied to the time series that approximately satisfies linear recurrent formulae.1 The class of

time series governed by linear recurrent formulae is rather wide; it includes harmonics, polynomial, and exponential time
series. Let us briefly describe the so-called SSA recurrent forecasting algorithm (for more information see [3]).

Define the original noisy series YN = (y1, . . . ,yN) and the reconstructed series YN = (y1, . . . , yN). For an eigenvector
U ∈ RL we denote the vector of the first L − 1 components of the vector U as U▽

∈ RL−1. Set v2
= π2

1 + · · · + π2
r < 1,

whereπi is the last component of the eigenvector Ui (i = 1, . . . , r). It can be proved that the last component yL of any vector
Y = (y1, . . . , yL)T is a linear combination of the earlier components (y1, . . . , yL−1); that is, yL = a1yL−1+· · ·+aL−1y1 where
the vector of coefficients A = (a1, . . . , aL−1) can be expressed as A =

∑r
i=1 πiU▽

i /(1− v2). The forecasts ŷT+1, . . . , ŷN+h are
then obtained as

ŷi =


yi for i = 1, . . . ,N
L−1−
j=1

ajŷi−j for i = N + 1, . . . ,N + h.

4. Empirical results

4.1. Simulated data

We shall consider two types of time series: real and simulated time series. The capability of the SSA technique based on
the perturbation theory (SSAPT), in reconstructing and forecasting, is initially assessed by applying it to simple simulated
sinusoidal series:

S012 = β0 + β1 sin(2tπ/12) + β2 sin(2tπ/7) + β3 sin(2tπ/5) + ϵt

S01 = β0 + β1 sin(2tπ/12) + β2 sin(2tπ/7) + ϵt

S1 = β1 sin(2tπ/12) + β2 sin(2tπ/7) + ϵt

(19)

where ϵt is a white noise series. In total 300 data were generated and we added different normally distributed noise to
each point of the original series. The simulation was repeated 1000 times. The first 200 observations were considered as
in-sample (reconstruction) and the rest as out-of-sample (forecasting). Note that usually every harmonic component with
a different frequency produces two eigentriples with close singular values (except for frequency 0.5 which provides one
eigentriple with a saw-tooth singular vector). For example, one needs to select the first five eigenvalues for reconstruction
of the series S012, and the first three for the series S01. It should be noted that we need to consider one eigentriple for the
intercept, which is the first one in this particular example. To calculate the precision we use the ratio of Root Mean Square
Error (RMSE):

1 We say that the time series YN satisfies an linear recurrent formulae of order L − 1 if there are numbers a1, . . . , aL−1 such that

yN−i =

L−1−
k=1

akyN−i−k, 0 ≤ i ≤ N − L.
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Fig. 1. The value of RRMSE in reconstructing noisy series S012 for different window lengths.

RRMSE =


n∑

i=1
(yN+i −yN+i)

2

n∑
i=1

(yN+i −yN+i)2


1/2

(20)

where n represents the number of forecasted points,yN+i are the forecasted values of yN+i obtained by the SSA technique
based on the perturbation theory (SSAPT) andyN+i are the forecasted values of yN+i obtained by other techniques such as SSA
based on the least squares estimate (SSALS). If RRMSE < 1, then the SSAPT procedure outperforms the alternative prediction
method. Alternatively, RRMSE > 1would indicate that the performance of the corresponding SSAPT procedure is worse than
the predictions of the competing method. We also use RRMSE in considering reconstruction accuracy. The only difference
is we use reconstructed values, obtained by each technique, rather than predicted values in (20).

The effect of window length.
Let us first consider the effect of noise reductionwith respect to different window lengths Lwhich is the single parameter

in the decomposition stage. Certainly, the choice of parameter L depends on the data we have and the analysis we aim to
perform. An improper choice of Lwould imply an inferior decomposition. It should benoted that variations in Lmay influence
separability feature of the SSA technique; the orthogonality and closeness of the singular values. Herewe consider L between
10 and 70 which is approximately N/3.

Figs. 1–3 show the RRMSE of reconstructed series for different simulated series. As it appears from these figures, SSAPT
has a better performance in reconstruction of noisy series, particulary for small window length. The performances of both
methods are similar for a large window length.

As the figures show, RRMSE approaches 1 as the window length increases confirming that both methods have similar
performance for a largewindow length. The graphs also show that there is a gradual increase in RRMSEwithwindow length.
For example for window length 10, the performance of SSAPT is up to 15% better than SSALS in reconstruction noisy series
S01. However, there is not a significant discrepancy between the performance of SSAPT and SSALS for window length greater
than 50.

Note that the minimum value of RMSE for both SSAPT and SSALS occurs for a large window length. Let us, for example,
consider the RMSE of SSAPT and SSALS in reconstructing S012 in more detail. Fig. 4 shows the RMSE of SSAPT and SSALS.
As can be seen from the figure, there is a gradual decrease in RMSE with window length. In fact, the maximum accuracy
in reconstruction, using both methods, occurs for a large window length. The figure also shows that the RMSE of SSAPT
is smaller than those obtained using SSALS. Moreover, the figure indicates that the discrepancy between SSAPT and SSALS
reduces as the window length increases. In the rest of this work, we only consider the RRMSE as considering two RMSEs and
the RRMSE gives equal information, but the RRMSE is more informative.

The effect of noise level.
To gain a better understanding of the effect of noise reductionwith respect to differentwindow lengths L, we also consider

different signal to noise ratios (SNR). Here the SNR is the ratio of standard deviation of the noise free series (signal) to
standard deviation of noise. Figs. 5–7 show RRMSE for different values of SNR. For example, Fig. 5 shows RRMSE for the
series S012 where we have an intercept and two different harmonic components. As it appears from the figure, there is a
gradual increase in RRMSE with SNR. In fact, the minimum RRMSE occurs for a high noise level or lowest SNR. This result
confirms that the new SSA algorithm works better for a situation where the series is a mixture of low signal level and high
noise level. For example, for L = 10 and SNR = 0.3, the results indicate that the performance of the SSAPT is up to 15% better
than the basic SSALS, while this is approximately 4% for SNR= 15. However, there is no significant discrepancy between two
methods for a series with a high SNR. A similar results can be seen for L = 40 and L = 70, but the RRMSE tends to 1 faster
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Fig. 2. The value of RRMSE in reconstructing noisy series S01 for different window lengths.

Fig. 3. The value of RRMSE in reconstructing noisy series S1 for different window lengths.

Fig. 4. The value of RMSE in reconstructing noisy sine series for different window lengths using SSAPT (dashed line) and SSALS (thick line).

than for L = 10. These results confirm our previous discussion about separability and window length; a larger window
length provides better separability.

Let us now consider the problem of separability briefly. For a fixed length L, consider a certain SVD of the noisy seriesYN
of length N , and assume that the seriesYN is a sum of two series YN and δYN ;YN = YN + δYN . In this case, separability of the
series YT and δYN means that we can split the matrix terms of the SVD of the trajectory matrix δX into two different groups,
so that the sums of terms within the groups give the trajectory matrices X and δX of the series YN and δYN , respectively (for
more information see [3]).
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Fig. 5. The values of RRMES for different noise levels for the series S012.

Fig. 6. The values of RRMES for different noise levels for the series S01.

Fig. 7. The values of RRMES for different noise levels for the series S1.

Figs. 6 and 7 show the results for series S01 and S1. As the figures show, a similar interpretation, such as those concluded
for series S012, can be stated for these series. It should be, however, noted that the RRMSE formore complex series is greater
than for a simple series. For example for L = 10, the RRMSE is approximately 85% for series S012while this is about 80% and
75% for series S01 and S1, respectively.

The effect of time-series length.
Let us now consider the influence of the time-series length in decomposition and reconstruction of noisy series. In order

to examine this we used series S012, S01 and S1 with different length N (varies between 100 and 1000). Fig. 8 shows the
value of RRMSE in reconstructing the series S012 (thick line), S01 (dashed line) and S1 (thin line) for different values of N .
As the results show there is no change in RRMSE as N increases. This is because the series considered here have a structure
which can be described via a deterministic component. This means the series has a clear structure and this structure is
captured very well by the SSA. In this context, Hassani et al. [12] showed that in the ideal situation, when we have a series
which is a sum of a deterministic component (fully recovered by SSA) and a random noise, the error of the SSA forecast
will be exactly the same at all horizons. Here the same results are obtained for reconstruction of a series with deterministic
components. Therefore, we can conclude that for a series which is a sum of a deterministic component and a random noise,
the error of the SSA forecast (for h step ahead) and reconstruction (for different series length N) remains stable.

The effect of non-stationary noise.
So far, we considered the situation where the noise component ϵt is stationary. Let us now consider the situation where

ϵt is not stationary. One of themost common instances of non-stationary behaviour is heteroscedasticity, i.e., the variance of
noise is proportional to the amplitude of the underlying signal. In the following we examine the capability of SSAPT to detect
heteroscedastic noise and reconstruct noise free series. Fig. 9 (left) shows a realization of the series S012 corrupted with a
heteroscedasticity noise. Fig. 9 (right) shows the values of RRMES for different heteroscedasticity noise levels. Here we only
represent the results for L = 10, but the results are similar for L = 40 and L = 70. Again, similar to the results obtained for
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Fig. 8. The value of RRMSE in reconstructing of noisy series for different N; S012 (thick line), S01 (dashed line) and S1 (thin line).

Fig. 9. Left: a realization of the series S012 corrupted with a heteroscedasticity noise. Right: the values of RRMES for different heteroscedasticity noise
levels.
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Fig. 10. The values of RRMES in reconstructing a Hénon map.

stationary noise, the results indicate that the performance of SSAPT is much better than those obtained by SSALS. Therefore,
we can conclude that SSAPT works well for detection of a series corrupted with either stationary or non-stationary noise.

4.2. Chaotic time series

In this section, we show that the proposed technique can be used to obtain the embedding dimension of the chaotic time
series. The capability of the SSA technique as a noise reductionmethod for chaotic time serieswas initially tested by applying
the technique to the Hénon map with usual parameter values: A = 1.4 and B = 0.3. In total 1895 data are generated and
we add different normally distributed noise to each point of the original series.
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Table 1
Descriptive statistics of several stock indices returns series before and after filtering.

Statistics Method DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE

Original 0.24 0.28 0.24 0.36 0.35 0.21 0.58
Mean × 10−3 GARCH −0.24 −0.21 −0.18 −0.30 −0.17 −0.21 0.84

SSALS 0.23 0.28 0.24 0.36 0.35 0.21 0.57
SSAPT 0.24 0.27 0.25 0.36 0.35 0.21 0.58
Original 0.11 0.11 0.09 0.11 0.09 0.08 0.16

S.D. × 10−1 GARCH 0.11 0.11 0.09 0.11 0.09 0.08 0.16
SSALS 0.09 0.09 0.07 0.09 0.09 0.07 0.13
SSAPT 0.08 0.07 0.06 0.07 0.08 0.07 0.11
Original 4.57 3.39 3.44 3.83 4.33 8.58 6.94

Kurtosis GARCH 4.46 3.38 3.44 3.76 4.33 8.44 6.91
SSALS 3.81 3.44 3.64 3.77 4.30 6.93 6.10
SSAPT 3.57 3.31 3.48 3.51 4.12 6.13 5.90

Fig. 10 shows the values of RRMES in reconstructing a Hénon map for different noise levels. The first two eigenvalues
were selected in reconstructing a noisy Hénonmap. The results indicate that the performance of SSAPT is slightly better than
those obtained by SSALS. The results indicate that the discrepancy between SSAPT and SSALS in reconstructing Hénon map is
smaller than those obtained for a sine series. The performance of SSALS for filtering of a noisy Hénon map was studied by
Hassani et al. [1]. They showed that the SSALS technique can be used as a powerful noise reductionmethod for filtering either
chaotic series or financial time series. They also showed that the SSALS performance ismuch better than the considered linear
and non-linear models for a noisy Hénon map. The new SSA based method presented here can be therefore used as a noise
reduction technique for financial time series.

4.3. Real data

4.3.1. Financial time series
Hassani et al. [12] considered the daily closing prices of several stockmarket indices to examinewhether noise reduction

matters in measuring dependencies of the financial series. Here we also use the same series. Next we examine the effect of
noise reduction on the daily closing prices of several stockmarket indices: ASE (Greece), CAC 40 (France), DAX 30 (Germany),
FTSE 100 (UK), PSI 20 (Portugal), IBEX 35 (Spain) and S&P 500 (USA). These data sets have been used by many authors. For
example, Szpiro [25] in studying the S&P 500 Index, found an increasing presence of noise. Davis and Mikosch [26] consider
plots of the sample autocorrelation function (ACF) of the squares of the S&P index for different periods and found that either
the process is non-stationary or that the process exhibits heavy tails.

The BDS test [27] for nonlinearity was used to test whether the series are Independent and Identically Distributed (IID).
The BDS test can detect many types of departures from being IID, and can serve as a general model specification test,
especially in the presence of nonlinear dynamics. The results of the BDS test indicate a significant dependence in all series
confirming the existing results of dependencies in the stock market literature [28].

Table 1 represents a summary of descriptive statistics for the series before and after filtering. The rows related to Kurtosis
shows the value of Kurtosis of the series. A positive value typically indicates that the distribution has a sharper peak, thinner
shoulders, and fatter tails than the normal distribution. As it appears from Table 1, all series have fatter tails than the normal
distribution. Thus, the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)modelwas considered as a noise
reduction method for filtering the series. Note that GARCH models are widely used in various financial applications such as
risk management, option pricing, foreign exchange, and the term structure of interest rates [29].

The results in Table 1 indicate that the filtered series based on the SSA, for all cases have a smaller standard deviation,
S.D., than those values obtained by the GARCHmodel. Again, as the results show, the performance of SSAPT is slightly better
than SSALS. The same results can also be seen for the values of the maximum and minimum of the series, but we omit them
here.

Table 2 shows the values of the ACF at lag-1 and λ =


1 − exp[−2I(X, Y )]

 1
2
of several stock indices returns series

before and after filtering, where I(X, Y ) is the mutual information between two series X and Y . As it appears from Table 2,
the values of the ACF are changed after filtering. In fact, the values were immediately affected by filtering. It should also be
noted that the sign of the ACF of the series IBEX 35, PSI 20 and ASE was changed from positive to negative after filtering by
the GARCHmodel indicating that the performance of the GARCHmodel is not very good for filtering the series. It seems that
the results obtained for λ after filtering, are more robust than those for the ACF.

We also used Ljung–Box Q -statistics to test whether the values obtained for the ACF, before and after filtering, are
significantly different from zero; ∗ indicates significant results at the 1% level of significance. The results indicate that
the values of the ACF of the original series and those obtained after filtering by the SSA (except for S&P) are statistically
significant.

We also considered the significance test for λ. In order to perform the test we followed the method which has been
introduced in [30]. The critical values have been simulated for the null distribution and found through simulation of critical
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Table 2
The values of the ACF at lag-1 and λ of several stock indices returns series before and after filtering.

DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE

ACF

Original 0.0519∗ 0.0344∗ 0.0234∗ 0.0524∗ 0.0147 0.137∗ 0.147∗

GARCH 0.0001 0.0000 0.0235 −0.0007 0.0145 −0.0001 −0.0001
SSALS 0.1790∗ 0.1680∗ 0.1516∗ 0.2383∗ 0.0147 0.4406∗ 0.4505∗

SSAPT 0.1921∗ 0.1834∗ 0.1857∗ 0.2511∗ 0.0581 0.5437∗ 0.4728∗

λ

Original 0.3079∗ 0.2358∗ 0.1508∗ 0.2564∗ 0.1540∗ 0.3502∗ 0.3157∗

GARCH 0.2799∗ 0.1171∗ 0.1508∗ 0.5382∗ 0.1540∗ 0.7951∗ 0.2909∗

SSALS 0.2921∗ 0.2425∗ 0.2326∗ 0.2855∗ 0.1475∗ 0.4977∗ 0.5263∗

SSAPT 0.3142∗ 0.2713∗ 0.2678∗ 0.2911∗ 0.1876∗ 0.5216∗ 0.5419∗

values based on awhite noise. Dionisio et al. [31] have presented the critical values for a number of sample sizes and different
significant levels. Again, ∗ indicates the results at the 1% level of significance; the values of λ, before and after filtering, are
statistically significant.

The results indicate that the dynamics of the system are approximated better using SSA. In fact, using the SSA technique
enables us to adjust the series to better satisfy the approximations to the dynamics. It leads to noise reductionmore effective
than traditional filtering such as GARCH, specifically for a complex time series.

4.3.2. Monthly accidental deaths in the USA
Let us now consider the performance of the SSA technique based on the perturbation theory by applying it to a well-

known time series data set, namely, monthly accidental deaths in the USA. The Death series shows the monthly accidental
deaths in the USA between 1973 and 1978. This data have been used by many authors (see, for example, [32]) and can be
found in many time series data libraries.

In this section we compare the SSA technique with several well-known methods namely, the traditional Box–Jenkins
SARIMA models, the ARAR Algorithm and the Seasonal Holt–Winters Algorithm. Brockwell and Davis [32] applied these
methods on the Death series to forecast the six future data points. Below, these methods are described shortly and the
results of their forecasting are compared with the SSA technique.
SARIMA model.

Box and Jenkins [2] provide a methodology for fitting a model to an empirical series. This systematic approach identifies
a class of models appropriate for the empirical data sequence at hand and estimates its parameters. A general class of Box
and Jenkins models includes ARIMA and SARIMA models that can model a large class of autocorrelation functions. We use
the models below for forecasting the six future data as are described in [32]: Model I:

∇∇12yt = 28.831 + (1 − 0.478B)(1 − 0.588B12)Zt , Zt ∼ WN(0, 94390). (21)

Model II:

∇∇12yt = 28.831 + Zt − 0.596Zt−1 − 0.407Zt−6 − 0.685Zt−12 + 0.460Zt−13 Zt ∼ WN(0, 94390) (22)

where the backward shift operator B is: BjZt = Zt−j and ∇j = 1 − Bj. Note that the seasonal difference of a time series is
the series of changes from one season to the next. For monthly accidental deaths in the USA, in which there are 12 periods
in a season, the seasonal difference of the series at period t is ∇12yt = yt − yt−12. In the forecasting the series, we see that
the first difference of yt is far from random (it is still strongly seasonal), and the seasonal difference is far from stationary (it
resembles a random walk). Therefore, both kinds of differencing are needed to render the series stationary and to account
for the gross pattern of seasonality. It should be noted that the first difference of the seasonal difference of a monthly time
series at period t is equal to ∇∇12yt . This is the amount by which the change from the previous period to the current period
is different from the change that was observed exactly one year earlier. Thus, for example, the first difference of the seasonal
difference in May 1978 is equal to the April-to-May change in 1978 minus the April-to-May change in 1977.
ARAR algorithm.

The ARAR algorithm is an adaption of ARARMA algorithm in which the idea is to apply automatically selected ‘memory-
shortening’ transformations (if necessary) to the data and then to fit an ARMA model to the transformed series. The ARAR
algorithm used here is a version of this in which the ARMA fitting step is replaced by the fitting of the subset AR model to
the transformed data.
Holt–Winters Seasonal algorithm (HWS).

The Holt–Winters (HW) algorithm uses a set of simple recursions that generalize the exponential smoothing recursions
to generate forecasts of series containing a locally linear trend. The Holt–Winters seasonal algorithm (HWS) extends the HW
algorithm to handle data in which there are both trend and seasonal variation of known period.
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Table 3
The value RRMSE of the post-sample forecasts.

Method RRMSE (SSAPT/Other methods)
r = 12 r = 13 r = 14 r = 15

Model I 0.60 0.56 0.59 0.60
Model II 0.62 0.63 0.63 0.65
H-W 0.72 0.68 0.71 0.73
ARAR 0.91 0.86 0.89 0.91
SSALS 0.98 0.91 0.86 0.74

Forecasting results.
The window L = 24 and the first 12 singular values (r = 12) have been used in reconstructing and forecasting the series

yt and singular values 13–24 have been considered as noise components (for more information about parameters selection,
for this series, see [10]).

The results are presented in Table 3. The values of RMSE show performance of forecasting. The last four columns, labeled
RRMSE, show the ratios of RMSEs SSA/other methods. As it appears from Table 3, the forecasting performance using SSAPT
is much better than other forecasting methods; the SSAPT is the best among the methods considered here. For example for
r = 12, the value of RMSE for the SSAPT is 40% less than the first one (model I) and almost 10% less than the ARAR algorithm.
From the table, one can see that the SSAPT performance is better that the SSALS.

We also considered the performance of the SSA forecasting resultswith respect to different values of selected eigenvalues
r . We choose the same window length L but different eigenvalues r . The results are presented in Table 3, for the first 13,
14 and 15 eigenvalues. As the table shows, again, the SSAPT technique outperforms the other classical methods and also
indicates that SSAPT is less sensitive than SSALS for this particular example. Note that the quality of the forecast is changed
when one changes the number of eigenvalues in the reconstruction step. Of course, forecasting accuracy and reconstruction
quality are related. By selecting a group of eigenvalues, and considering other eigenvalues as noise, some frequencies may
be filtered out completely. This destroys the signal structure and then gives a poorer reconstruction. In general, a high signal
to noise ratio will result in good forecasting and vice-versa.

5. Conclusion

The results of this paper confirm that techniques such as the SSA which is based on the signal subspace method and SVD
can be applied as a powerful technique for noise reduction and also for forecasting future data points of a noisy series. We
considered the perturbations in subspace decomposition on a perturbed matrix. We studied how perturbed subspaces and
singular values can be refined using perturbation theory. It was shown that the perturbations can be derived as functions of
the perturbation in the matrix up to the second order. According to the results obtained based on the perturbation theory of
a noisy matrix, we introduced the SSA technique based on the perturbation theory (SSAPT). The results illustrate that SSAPT
performs verywell in reconstructing noisy series. The comparison of the forecasting results showed that SSAPT ismuchmore
accurate than several well-known classical methods, in forecasting of a real time series. We also consider the sensitivity of
the technique with respect to different window lengths, noise levels and series lengths. The results show that SSAPT works
very well even for a small window length. This future of SSA is very important in deal with short time series.

To cover a broad application range, various simulated series, from dynamic to chaotic and from stationary to non-
stationary, are used to verify the proposed algorithm. The results with strong evidence confirm that the performance of the
SSAPT is not sensitive to these conditions. It should be noted that in the SSA many probabilistic and statistical concepts are
employed; however, as was stated earlier, the technique is non-parametric and does not make any statistical assumptions
such as stationarity concerning either signal or noise in the data. One may consider this as one of the advantages of the
technique compared to other classical methods which usually rely on some restricted assumptions such as normality or
stationarity of the series.

Appendix

The following proof can be found in general form in [24]. Let us consider the projections ofX onto different perturbed
subspaces using the assumptions stated in (12):

XTUs = Vs6s, XTUn = Vn6n, XVs = Us6s, XVn = Un6n (23)

and in a similar from the projections of X onto different perturbed subspaces is:

XTUs = Vs6s, XTUn = Vn6n, XVs = Us6s, XVn = Un6n. (24)

Now let us now considerXTUs = Vs6s.
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XTUs = Vs6s

(X + δX)T (Us + δUs) = (Vs + δVs)(6s + δ6s)

(X + δX)T (Us + UnP1 + UsP2) = (Vs + VnP3 + VsP4)(6s + δ6s).

(25)

Eq. (25), using Eqs. (6) and (24), is simplified to:

δXTUs + δXTUnP1 + δXTUsP2 + VsΣsP2 = Vsδ6
T
s + VnP36

T
s + VnP3δ6

T
s + VsP46

T
s + VsP4δ6

T
s . (26)

Let us now premultiply both sides of (26) by VT
n and VT

s , respectively, and use the assumption stated in (11), then we find
two new equations which can be useful to find unknowns. Note that these equation are obtained usingXTUs = Vs6s:

ET
ss + ET

nsP1 + 6T
s P2 + ET

ssP2 = δ6T
s + P46

T
s + P4δ6

T
s (27)

ET
sn + ET

nnP2 + ET
snP2 = P36

T
s + P3δ6

T
s . (28)

Similar to those obtained in (27) and (28), the following equations can be obtained using other equalities in (23):

ET
nn + ET

snQ1 + ET
nnQ2 = 0 (29)

ET
ns + ET

ssQ1 + 6T
s Q1 + ET

nsQ2 = 0 (30)

Ess + EsnP3 + 6sP4 + EssP4 = δ6s + P26s + P2δ6s (31)
Ens + EnnP3 + EnsP4 = P16s + P1δ6s (32)
Enn + EnsQ3 + EnnQ4 = 0 (33)
Esn + EssQ3 + 6sQ3 + EsnQ4 = 0. (34)

The unknowns can be obtained using the above equations. It should be noted that Q2 is a Hermitian matrix; Q2 = QT
2 .

After some simplifications the following equality holds between Q1 and Q2:

Q2 ≈
1
2
QT

1Q1. (35)

In addition to the above equality, the following equalities hold:

Q4 ≈ −
1
2
QT

3Q3, P2 ≈ −
1
2
PT
1P1, P4 ≈ −

1
2
PT
3P3. (36)

Let us first show that P1 = −QT
1 . To prove this, we need the following lemma.

Lemma.
LetX = X + δX with SVD’s of X andX be given in (6) and (7), respectively. Assume that ‖δX‖2 is less than the smallest

nonzero singular value of X. Let the r dimensional subspace spanned by the columns ofUs, the perturbed signal subspace,
be defined bySs = span(Us) and the K − r dimensional subspace spanned by the columns ofUn, the perturbed orthogonal
subspace, be defined bySn = span(Un). Then,Sn is spanned by the columns of Un + UsQ1 andSs is spanned by the columns
of Us + UnP1 where Q1 and Q1 are matrices whose norms are of the order of δX [24]. The lemma above gives bases for the
perturbed signal and orthogonal subspaces. For the orthogonal subspace we have:

(UT
n + QT

1U
T
s )(Un + Q1Us) = I + QT

1Q1. (37)

The above equation shows how the basis for the perturbed orthogonal subspace can be normalized. Therefore, an
orthonormal basis for the perturbed orthogonal subspace is given by

(Un + UsQ1)(I + QT
1Q1)

−
1
2 . (38)

A similar equation holds for the perturbed signal’s subspace. An orthonormal basis for the perturbed signal’s subspace is
given by

(Us + UnP1)(I + PT
1P1)

−
1
2 . (39)

We know that the perturbed signal and orthogonal subspaces are orthogonal to each other. Thus the unnormalized basis
vectors given in the lemma are orthogonal. That is,

(UT
n + QT

1U
T
s )(Us + UnP1) = 0 (40)

⇒ P1 + QT
1 = 0, ⇒ P1 = −QT

1 . (41)

Therefore, we only need to obtain Q1 as others can be obtained based on Q1. Let us now consider Q1.
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The following equality is obtained between Q1 and Q3 using (27)–(34).

Esn + EssQ3 + 6sQ3 = Q1Enn. (42)

The above equation can be written as the following form:

Q3 = 6−1
s Esn − 6−1

s EssQ3 + 6−1
s Q1Enn. (43)

Now we need to express Q3 by Q1. Substituting on the right-hand side of (43) and neglecting higher order terms, (43) is
simplified to

Q3 = 6−1
s Esn + 6−1

s Ess6
−1
s Ess + 6−1

s Q1Enn. (44)

In a similar way, the following equality is obtained between Q1 and Q3 using (27)–(34):

ET
ns + ET

ssQ1 + 6T
s Q1 = Q3ET

nn. (45)

Substituting Q3 in (44) into (47) and discarding higher order terms, we obtain an equation for Q1 as follows

6T
s Q1 = −ET

ns − 6−1
s EsnET

nn − ET
ssQ1. (46)

The above equation shows that it is not easy to obtain a closed form forQ1 in the currentmatrix-form equation. However,
we can use the recursive technique. Note that we are only interested in the expression of up to the second-order of δX.
Multiplying both sides of (47) by 6s, and introducing a new definition 1s = (6s6

T
s )

−1, (47) becomes

Q1 ≈ −1s6sET
ns − 1sEsnET

nn − 1s6sET
ssQ1. (47)

Now, we use recursive method and keeping terms only up to the second-order perturbations, we then use the following
matrix form to obtain Q1,

Q1 ≈ −1s6sET
ns − 1sEsnET

nn + 1s6sET
ss1s6sET

ns. (48)

Now, rearranging all terms in (48) and new definition F1 = −1s6sET
ns, (48) becomes (14),

Q1 = 1s(6sET
ss1s6sET

ns − EsnET
nn) + F1. (49)
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