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Abstract

A methodology of change–point detection in time series based on
sequential application of the Singular Spectrum Analysis is proposed
and studied. The underlying idea of the main algorithm is that if at
a certain time moment τ the mechanism generating the time series xt

has changed then an increase in the distance between the l-dimensional
hyperplane spanned by the eigenvectors of the so–called lag–covariance
matrix, and M -lagged vectors (xτ+1, . . . , xτ+M ) is to be expected. The
algorithm is more a model–building procedure rather than a precise
statistical tool. However under certain conditions the algorithms could
be considered as proper statistical procedures. Asymptotic expressions
for the probability of false alarm in these algorithms are derived. Re-
sults of applications of proposed algorithms to several sets of data are
displayed. Among the examples, we consider the famous airline data
where presence of a change in trend is apparent.

Key Words: Principal components; Singular Spectrum Analysis;
Sequential algorithm; Singular Value Decomposition.

1 Introduction

SSA, the Singular Spectrum Analysis, is a powerful technique of time series
analysis. The main idea of SSA is the application of the Principal Compo-
nents Analysis to the ”trajectory matrix” obtained from the original time
series with a subsequent reconstruction of the series. The methodology has
become known since mid-eighties due to essential works of Broomhead and
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King (1986), Broomhead, Jones, and King (1987) and also Vautard, Yiou,
and Ghil (1992), Elsner and Tsonis (1996) and references therein. SSA is
still a relatively unknown methodology in statistical circles. On the con-
trary, it recently became a standard tool in analysis of climatic time series,
see for example Fraedrich (1986), Ghil and Vautard (1991), Vautard and
Ghil (1989).

In the present paper we continue the SSA–related research and develop
a methodology of change-point detection in time series based on the use of
SSA. Let us briefly describe the main idea of the method.

Let x1, x2, . . . be a time series, M and N be two integers (M ≤ N/2) and
K = N −M + 1. Define the vectors Xj = (xj , . . . , xj+M−1)T (j = 1, 2, . . .)
and the matrix

X = (xi+j−1)
M,K
ij=1 = (X1, . . . , XK) (1)

which is called the trajectory matrix.
Consider X as a multivariate data with M characteristics and K observa-

tions. The columns Xj of X, considered as vectors, lie in an M -dimensional
space. Define the matrix R = 1

K XXT . (R is called the lag–covariance
matrix.) Singular value decomposition (SVD) of R provides us with the col-
lections of M eigen–values, eigen–vectors and principal components. A par-
ticular combination of a certain number l < M of eigen-vectors determines
an l-dimensional hyperplane in the M -dimensional space. According to the
SSA algorithm, the M -dimensional data is projected onto this l-dimensional
subspace and the subsequent averaging over the diagonals allows to get an
approximation to the original series, see [....] for details.

One of the features of the SSA algorithm is that the distance between
the vectors Xj (j = 1, . . . ,K) and the l-dimensional hyperplane is controlled
by the choice of l and could be reduced to a rather small value. If the time
series {xt}N

t=1 is continued for t > N and there is no change in the mechanism
generating xt then this distance should stay reasonably small for Xj , j ≥ K.
However, if at a certain time moment N + τ the mechanism generating
xt, t ≥ N + τ, has changed then an increase in the distance between the
l-dimensional hyperplane and vectors Xj for j ≥ K + τ is to be expected.

SSA expansions tend to pick up the main structure of the time series, if
there is one. (In our discussion this corresponds to that the l-dimensional
subspace approximates well the M -dimensional vectors.) If this structure is
being picked up then the SSA continuation of the time series should agree
with the continuation of the time series. (That is, the vectors Xj for j ≥ K
should lie close to the l-dimensional subspace.) A change in the structure
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of the time series should move the corresponding vectors Xj out of the
subspace. This is the central idea of the methods we propose and study.

SSA analyses time series structure in a nonsequential (off-line) manner.
However, change–point detection problems are typically sequential (on–line)
problems, and we aim at developing algorithms that could be used in an
on–line regime in addition to the standard for time series analysis off–line
manner. These algorithms would also be better accommodated to a presence
of a slow change in time series structure, to outliers and to the case of
multiply changes. All this will be achieved by sequential application of the
SVD to the lag–covariance matrix computed in the time interval [n+1, n+m]
of fixed length m rather than to the trajectory matrix (1). Here n = 0, 1, . . .
is the iteration number.

SSA as well as the associated change–point detection algorithms below
are nonparametric and are not intended for precise statistical inferences,
they are essentially model–building procedures. However under certain con-
ditions the proposed algorithms could be considered as proper statistical
procedures.

SSA analyses time series structure in a nonsequential (off-line) manner.
However, change–point detection problems are typically sequential (on–line)
problems, and we aim at developing algorithms that could be used in an
on–line regime in addition to the standard for time series analysis off–line
manner. Also these algorithms will be accommodated to a presence of a
slow change in time series structure, to outliers and to the case of multiply
changes. All this will be achieved by applying SVD to the trajectory matrix
computed in a sequence of moving time intervals of a given length m rather
than to the whole trajectory matrix (1). Payment for that is a decrease in
sample size and therefore certain loss in efficiency in the ideal situation.

The paper is organised as follows.
In Section 2 we describe the basic scheme of SSA in the style of Danilov

and Zhigljavsky (1997). In Section 3 we formulate change-point detection
algorithms and give recommendations on the choice of parameters. In Sec-
tion 4 we discuss an underlying statistical model, derive asymptotic expres-
sion for the first type error probability and provide an expression for the
threshold conditionally this probability is fixed. The main versions of the
change–point detection algorithms correspond to the case when R = XXT .
In Section 4 we extend the analysis of the algorithms to the case when R is
the covariance matrix of the multivariate data X. In Section 5 we demon-
strate applications of the algorithms to several sets of data.
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2 Description of the Algorithm

2.1 Rationale

If one accepts that SSA is a reliable tool in picking up the structure of time
series and their continuation (that is the point of view in the literature on
SSA, see for example Elsner and Tsonis (1996)) then he/she could be quite
confident that SSA expansions could be a base of efficient change–point
detection algorithms as well.

2.2 Informal description of the algorithms

Let x1, x2, . . . , xN be a time series where N is possibly ∞ and N is large
enough. Let us choose two integers: an even integer m, (m ≤ N), the
window width, and M (M ≤ m/2), the lag parameter. Define also K =
m−M + 1.

For each n = 0, 1, . . . , N −m we take time intervals [n + 1, n + m] and
construct the trajectory matrices

X(n) = (xn+i+j−1)
M,K
i,j=1 =




xn+1 xn+2 . . . xn+K

xn+2 xn+3 . . . xn+K+1
...

...
...

. . .
xn+M xn+M+1 . . . xn+m




(2)

The columns of X(n) are the vectors X
(n)
j (j = 1, . . . , K) where

X
(n)
j = (xn+j , . . . , xn+M+j−1)T , j =−n+1,−n+2, . . . , N−n−M+1 .

In line with (??), for every n define the lag–covariance matrix Rn =
1
K X(n)(X(n))T . SVD of Rn gives us a collections of M eigen–vectors, and
a particular combination of l < M of them determines an l-dimensional
subspace Sn,l in the M -dimensional space of vectors X

(n)
j . Denote the l

eigenvectors that determine the subspace Sn,l by P1, . . . , Pl and the sum of
squares of the (Euclidean) distances between vectors X

(n)
j (j = p + 1, . . . , q)

and this l-dimensional subspace by Dn,l,p,q.
Since the eigen–vectors are orthogonal, the square of the Euclidean dis-

tance between an M−vector ZY = X
(n)
j and the subspace Sn,l spanned by

l eigen–vectors P1, . . . , Pl, is just

||Z||2 − ||P T Z||2 = ZT Z − ZT PP T Z
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where || · || is the Euclidean norm and P is the M × l-matrix with columns
P1, . . . , Pl. Therefore

Dn,l,p,q =
q∑

j=p+1

(X(n)
j )T X

(n)
j − (X(n)

j )T PP T X
(n)
j (3)

For fixed n, the part of sample xn+1, . . . , xn+m that is used to construct
the trajectory matrix X(n) will be called ’training sample’, and another
part, xn+p+1, . . . , xn+q+M−1, which is used to construct the vectors X

(n)
j (j =

p + 1, . . . , q) and thus to compute the sum of squared distances Dn,l,p,q, will
be called ’validation sample’. Of course, the training and validation samples
may intersect.

If a change in the mechanism generating xt occurred somewhere inside
the time interval [n + 1, n + m] then the l-dimensional subspace Sn,l would
provide a poorer approximation to the vectors X

(n)
j and the values of Dn,l

are going to be bigger.
Largest values of Dn,l are to be expected for n such that the change–

point is in the middle of the interval [n + 1, n + m]. The decision rule in the
algorithm which we denote A(M,m,l,p,q,h) is to announce a change if for a
certain n

Dn,l,p,q/µn,l,p,q ≥ h (4)

where h is a fixed threshold (see Section 3.2 concerning the choice of h) and
µn,l,p,q is any estimator of the sum of squared distances Dj,l,p,q at the time
intervals [j + 1, j + m] where the hypothesis of no change points has been
accepted. We can assume for example

µn,l =
1

n−m/2

n−m/2−1∑

i=0

Di,l (5)

In the cases where we allow either a slow change in time series structure
or multiply change–points or even when n is very large, averaging for i from
0 to n−m/2− 1 should be replaced by the averaging in a shorter interval,
say, from n− 3m/2 to n−m/2− 1.

2.3 Formal Description of the Algorithm

Let m, M , l, p and q be some integers such that m is even, M ≤ m/2,
0 ≤ p < q. Define also K = m − M + 1. The change–point detection
algorithm, denoted A = A(m,M, l, p, q) is as follows.
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For every n = 0, 1, . . . , N − m compute the trajectory matrix Xn, see
(2), the lag-covariance matrix Rn = 1

K X(n)(X(n))T , its SVD and Dn,l,p,q, see
(3), the sum of squared Euclidean distances between the vectors X

(n)
j (j =

p + 1, . . . , q) and the l−dimensional subspace Sn,l spanned on the first l
eigen-vectors of Rn. If for some n > m/2 the inequality (4) holds then a
change in the structure of time series is announced to have happened in the
interval [n + 1, n + m].

An increase inDi,l(m0,m1) considered as a function of n is to be expected
starting at n = τ +m0 where τ is the point where a change has happen. This
increase is expected to continue until about the point n = τ+m/2+m0, then
average squared distances Dn,l(m0,m1) are to be decreasing and stabilising
(if there is no other change in time series) at perhaps another level for
n > τ + m + m0.

2.4 Choice of parameters

Significant changes in time series structure will be detected for any reason-
able choice of parameters. To detect small changes in noisy series some
careful tuning of parameters may be required. Let us make some recom-
mendations concerning this tuning.

Length and location of the validation sample: m0,m1.

Three important special cases for the pair (m0,m1) in Algorithm 3 are:

(i) (m0,m1) = (0,K) where K = m−M + 1, in this case Algorithm 3 is
exactly Algorithm 2;

(ii) (m0,m1) = (m−M, m), in this case we use 2M observations xn+m−M+1,
. . . , xn+m+M including M new points, to construct M test vectors
X

(n)
j (j = m−M + 1, . . . ,m);

(iii) (m0,m1) = (m,m + M), in this case we use 2M new observations
xn+m+1, . . . , xn+m+2M to construct M test vectors X

(n)
j (j = m +

1, . . . , m+M).

In numerical studies we mostly use Algorithm 3 with (m0,m1) selected
according to (i) and (ii). If there are enough observations and slow variations
in the trend are not allowed then (iii) is slightly preferable to both (i) and (ii)
but the difference between (ii) and (iii) is almost insignificant. Algorithm 3
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in cases (ii) and (iii), where ’training’ samples are different from ’validation’
samples, is more sensitive to changes than the more economical Algorithm 2,
that is Algorithm 3 in case (i).

To get a smooth behaviour of the test statistics Dn,l(m0,m1) we need to
select m1 slightly bigger than m0. If the difference m1 −m0 is too big then
the behaviour of Dn,l(m0, m1) becomes too smooth, that’s what is happen-
ing in Algorithm 2. There are no particular reasons why m1 − m0 should
equal M .

Length of the training sample, window width: m.

The choice of m depends on what kind of structural changes we are look-
ing for. If we allow small gradual changes in the time series then we could
not take m very large. On the contrary, if we take m small then an outlier
could be recognised as a structural change. A general rule is that value of m
has to be reasonably large. Of course, if m is too large then we could either
miss or smooth out all changes in our time series.

Parameters of the SSA algorithm: M, l.

To choose values of the lag M and the number of eigen–vectors chosen
to approximate the trajectory matrices Rn, we have to follow standard SSA
recommendations discussed in Section 2.3. We thus choose M = m/2 (recall
that m is assumed even) and l such that the first l components describe
well the signal and the lower M − l components correspond to noise. To
choose l, SSA decomposition of the whole series and some large parts of
the series before applying the change-point detection algorithms is advised.
Alternatively, if the problem is really sequential and preliminary study of
the time series is impossible, the recommendation is to use all visual SSA
tools in the first part of the series to choose l. (See Section ??.)

If l is too small (underfitting) then we miss a part of the signal and
therefore we could miss a change (that may happen in the underestimated
components). If l is too large (overfitting) then we approximate a part
of noise together with signal and finding a change in signal becomes more
difficult.
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3 Choice of the Threshold

3.1 Zero Hypothesis Model

The proposed algorithms are by no means the automatic tools to detect
change–points, they are rather bricks for model building and visualization
tools helping to see time non-homogenuities. However under certain condi-
tions, that asymptotically hold under fairy general assumptions concerning
the underlying time series, the algorithms could be considered as proper
statistical procedures. It is the purpose of this section to demonstrate that.

The underlying assumption of the SSA technique in general and the
proposed change–point detection algorithms in particular (Algorithms 2 and
3) is the assumption that the initial time series is well approximated by the
series zt, the solution of a finite–difference equation (??), that is, by a process
of the form (??) with a small number of terms. That is, we assume that

xt = zt + et (6)

where et is a noise process and zt satisfies the finite–difference equation

zt = a1zt−1 + . . . + aMzt−M (7)

with some coefficients a1, . . . , aM and certain initial conditions. The noise
could be either random or deterministic but it has to have the property that
its approximation by the solutions of the finite–difference equations is poor.
(I.i.d.r.v. et certainly satisfy this assumption.)

Application of SSA with lag M at time intervals [n + 1, n + m] approxi-
mately recovers the model (6). That is we get

xt = z
(n)
t + e

(n)
t (8)

where z
(n)
t is the SSA approximation for zt, the solution of (7). Asymptoti-

cally, when m →∞, M →∞, and the noise et is an ergodic random process
with finite variance, we get z

(n)
t → zt for all n, see [1, p. 221]

In computing the threshold h we assume the following zero hypothesis:

(A1) the model (6) is valid and there is no change in parameters of the
equation (7),

(A2) z
(n)
t = zt for all n and t,

(A3) either M or m1 −m0 tend to infinity,
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(A4) et = e
(n)
t is a sequence of i.i.d.r.v., et ∼ N(0, σ2) where the variance

σ2 is unknown.

The above assumptions imply that at iteration n in Algorithm 3

Dn,l(m0,m1) =
∑

t

wM,n+m0,n+m1(t)e
2
t (9)

where (see Fig. 3.1), if M ≤ q − p,

wM,p,q(t) =





t− p for p < t ≤ p + M
M for p + M < t ≤ q
q + M − t for q < t ≤ q + M
0 otherwise

and, if 0 < q − p ≤ M ,

wM,p,q(t) =





t− p for p < t ≤ q
q − p for q < t ≤ M + p
q + M − t for M + p < t ≤ M + q
0 otherwise

p p+M q q+M

t

M (i) q - p ≥ M

p q M+p q+M

t

q-p
(ii) q - p ≤ M

Figure 3.1: Function wM,p,q(t)

We have
∑

t

wM,p,q(t) =
∑

t

wM,0,q−p(t) = M(q − p) (10)
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∑

t

w2
M,p,q(t) =

{
1
3M

(
3M(q − p) + 1−M2

)
if q − p ≥ M

1
3(q − p)

(
3M(q − p) + 1− (q − p)2

)
if q − p ≤ M

(11)

Obviously (9) is a quadratic form eT Be where e = (e1, e2, . . . , eN )T and
B = B(M,n, m0,m1) is a diagonal matrix with diagonal elements Btt =
wM,n+m0,n+m1(t).

Using the results on distributions of quadratic forms of random variables,
see e.g. Searle (1971), we have the following moments of eT Be:

E(eT Be) = σ2trB , (12)

var(eT Be) = 2σ4trB2 (13)

Note that the proof of (12) does not require normality of et and that both
properties (12) and (13) are easily generalisable to the case when the com-
ponents of e are dependent (e.g. to the case when et is an autoregressive
process), see Searle (1971).

The representation (9) and properties (12), (13), (10), (11) imply

EDn,l(m0,m1) = σ2
∑

t

wM,n+m0,n+m1(t) = σ2M(m1 −m0) ,

varDn,l(m0,m1) = 2σ4
∑

t

w2
M,n+m0,n+m1

(t)

=
2σ4

3
×

{
M

(
3M(m1 −m0) + 1−M2

)
if m1 −m0 ≥ M

(m1 −m0)
(
3M(m1 −m0) + 1− (m1 −m0)2

)
if m1 −m0 ≤ M

Standardising the random variable Dn,l(m0,m1) = eT Be and taking
into account its asymptotic normality, which is a consequence of (A3), we
get asymptotically

Dn,l(m0,m1)−EDn,l(m0,m1)√
varDn,l(m0,m1)

∼ N(0, 1) (14)

3.2 Choice of the Threshold h

Let α be a fixed significance level (say α = 0.05) and tα be such that
Φ(tα) = 1 − α where Φ(·) is the c.d.f. of the standard normal N(0, 1)
distribution. (For example, t0.05 ' 1.645.)
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The asymptotic relation (14) implies that we can claim that asymptoti-
cally the probability of the event

Dn,l(m0, m1)− EDn,l(m0,m1)√
varDn,l(m0,m1)

≥ tα (15)

is α. We then rewrite this inequality in the form

Dn,l(m0,m1)
EDn,l(m0,m1)

≥ 1 + tα

√
varDn,l(m0, m1)

EDn,l(m0,m1)
= 1 + tαCM,m1−m0 (16)

where

Cu,v =
√

6
3uv

×
{ √

u (3uv + 1− u2) if v ≥ u√
v (3uv + 1− v2) if v ≤ u

The decision rule (16) takes the required form (??) when we set

h = 1 + tαCM,m1−m0

and replace EDn,l(m0,m1) by its consistent estimate µn,l(m0,m1) in the
denominator of the test statistics in (16). This replacement does not violate
the asymptotic normality of this statistics, see e.g. property (b) on page 122
in Rao (1973).

Assuming that M = m/2 in Algorithm 2, in three important particular
cases considered in Section 3.4, we have m1 −m0 = M and therefore

h = 1+tα

√
6M(2M2 + 1)

3M2
∼ 1+tα

√
4

3M
+ o(M−2), M →∞ . (17)

For α = 0.05 we thus have h ' 1 + 1.9/
√

M , a pretty good approximation
to (17), even for relatively small M .

3.3 Application of SSA with averaging

If we know the signal under zero hypothesis exactly then we substract it
from the observations xk and we do not need to make an SSA decomposition,
choice l = 0 would work. That happens when we have enough observations
to estimate the signal (trend) which does not vary in time. This is an
assumption which often occurs in the change–point detection literature but
it is not very interesting case for us.

Assume now that under zero hypothesis the mean Exk is approximately
constant. Of course we can estimate this constant and substract it from xk.
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If the number of observations is not large and the constant is not actually
constant but a slowly varying function, this approach may create enough
bias to make the related change–point problem difficult. An alternative
approach, in line with the discussions above, is to to apply versions of Al-
gorithms 2 and 3 with l = 0 and where row averages are substracted from
the elements of the trajectory matrix. (That is, SSA algorithm with l = 0
and µi = x̄i and σi = 1 is applied for every n.)

Substraction of moving (row) averages from xk makes the decision rule
invariant to the mean of the process xk but changes the expressions for the
distances.

We could still apply Algorithms 2 and 3 (modified so that the row av-
erages are substracted from the elements of the trajectory matrices) to test
for changes but we have to modify the selection rule for the threshold h.

For both algorithms Dn,l(m0,m1) can still be represented as a quadratic
form Dn,l(m0,m1) = eT B̃e but the matrix B̃ is no longer diagonal. Let us
compute the expression for B̃.

Since elements ei with i ≤ n and i ≥ n + m1 + M are not present in
the quadratic form Dn,l(m0,m1), B̃ij = 0 if either min i, j ≤ n or max i, j ≥
n + m1 + M . That is,

B̃ =




0 0 0
0 B 0
0 0 0




where B is a certain (n+m1+M− 1)× (n+m1+M−1)-matrix and 0 denote
matrices of zeroes of appropriate dimensions.

This implies that

Dn,l(m0,m1) = eT B̃e = (e(n))T Be(n)

where e(n) = (en+1, . . . , en+m1+M−1)T .
Using the notation e

(n)
ij = en+i+j−1 we then have

Dn,l(m0,m1) =
M∑

i=1

m1∑

j=m0+1

(e(n)
ij − e

(n)
i. )2

=
M∑

i=1

m1∑

j=m0+1

(e(n)
ij )2 + r

M∑

i=1

(e(n)
i. )2 − 2r

M∑

i=1

ẽ
(n)
i. e

(n)
i.

where r = m1 −m0, K = m−M + 1,

e
(n)
i. =

1
K

K∑

j=1

e
(n)
ij ẽ

(n)
i. =

1
r

m1∑

j=m0+1

e
(n)
ij
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This yields that the matrix B = B(M, K, r) is the matrix of the form

B =

(
0 0
0 B1

)
+

r

K2

(
B2 0
0 0

)
− 1

K

(
0 B3

0 0

)
− 1

K

(
0 0

BT
3 0

)

where B1 is (M+r−1)× (M+r−1)-matrix with elements

B1 = b
(1)
ij =

{
wM,0,K(i) if i = j, 1 ≤ i ≤ K + M − 1
0 otherwise

B2 is (M+K−1)× (M+K−1)-matrix with elements

B2 = b
(2)
ij =





wi, 0, K(j), if 1 ≤ i ≤ M
wM, 0, K(j), if M ≤ i ≤ K
wM+K−i, i−K, i(j), if K ≤ i ≤ M + K − 1

B3 is (M+K−1)× (M+r−1)-matrix with elements

B3 = b
(3)
ij =





wi, 0, r(j), if 1 ≤ i ≤ M
wM, 0, r(j), if M ≤ i ≤ K
wM+K−i, i−K, r+i−K(j), if K ≤ i ≤ M + K − 1

Matrix B1 is a diagonal matrix with diagonal elements wM,0,K(i), i =
1, . . . ,m=M+K−1 and matrices B2 and B3 have the form

B∗ =




1 1 . . . 1 0 . . . 0
1 2 . . . 2 1 . . . 0
...

...
. . . . . . . . .

...
1 2 . . . M . . . M . . . 2 1 0 . . . 0
0 1 2 . . . M . . . M . . . 2 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 1 2 . . . M . . . M . . . 2 1 0
0 . . . 0 1 2 . . . M . . . M . . . 2 1
...

. . . . . . . . .
...

...
0 . . . 0 1 2 . . . 2 1
0 . . . 0 1 . . . 1 1




In case m0 = 0,m1 = K, that is Algorithm 2 and case (i) in Section 2.4, the
formulas could be very much simplified:

eT Be = Dn,l(m0,m1) =
M∑

i=1

K∑

j=1

(e(n)
ij − e

(n)
i. )2 =

M∑

i=1

K∑

j=1

(e(n)
ij )2 −K

M∑

i=1

(e(n)
i. )2

13



implying r = K, B2 = B3 = BT
3 . Therefore matrix B has the form

B = B1 − 1
K

B2

and elements

bij =





K−1
K wM,O,K(j) if i = j
− 1

K wi, 0, K(j), if i 6= j, 1 ≤ i ≤ M
− 1

K wM, 0, K(j), if i 6= j, M ≤ i ≤ K
− 1

K wM+K−i, i−K, i(j), if i 6= j, K ≤ i ≤ M + K − 1

Hence tr(B) = M(K − 1),

tr(B2) =
∑

i,j

b2
ij = M2K − M(M2 − 1)

3
−M2 +

M2(M2 − 1)
6K2

Even more interesting case is when m0 ≥ K in Algorithm 3. (This
includes versions (ii) and (iii) in Section 2.4.) In this case we have

tr(B) =
Mr(K + 1)

K
, tr(B2) = M2r − M(M2 − 1)

3

+
r2

K4

[
(K −M + 1)2M2 − M(M − 1)

6
(5M2 − 8KM − 7M + 4K)

]

+
2

K2

[
(K −M + 1)(r −M + 1)M2 − M(M − 1)

6
(5M2 − 4M(K + r)− 7M + 2(K + r))

]

Using (16) and properties (12), (13), we can now apply the decision rule
(??) where the threshold is now

h = 1 + tα

√
varDn,l(m0,m1)

EDn,l(m0,m1)
= 1 + tα

√
2tr(B2)
tr(B)

and tr(B), tr(B2) are computed above.

4 Numerical examples

To illustrate applications of Algorithms 2 and 3, let us consider five numer-
ical examples. In the first four examples the data was simulated so that
N = 400, xt = zt + et (t = 1, . . . , 400) where zt is the signal and et is noise
and the change–point was always τ = 200.

14



Example 1. (see Fig. 4.1(a,b))

zt =

{
1.5 sin(0.2t) for 1 ≤ t ≤ 200
1.5 sin(0.3t) for 201 ≤ t ≤ 400

and et are i.i.d.r.v. et ∼ N(0, 1) for t = 1, . . . , 400 (white noise).

Example 2. (see Fig. 4.2(a,b)) z1 = 0, z2 = 8, z3 = 6, z4 = 4,

zt =

{
−0.96zt−1 + zt−2 − 0.5zt−3 + 0.97zt−4 for 5 ≤ t ≤ 200
−0.96zt−1 + zt−2 − 0.7zt−3 + 0.97zt−4 for 201 ≤ t ≤ 400

and et are i.i.d.r.v. et ∼ N(0, 1) for t = 1, . . . , 400.

Example 3. (see Fig. 4.3(a))

zt =

{
0 for 1 ≤ t ≤ 200
1 for 201 ≤ t ≤ 400

and et are i.i.d.r.v. et ∼ N(0, 1) for t = 1, . . . , 400.

Example 4. (see Fig. 4.4(a)) zt = 0 for t = 1, . . . , 400 and et are i.i.d.r.v.
et ∼ N(0, σ2

t )

σ2
t =

{
1 for 1 ≤ t ≤ 200
4 for 201 ≤ t ≤ 400

In the first three examples the change point is not obviously seen in
the graph. The most difficult is Example 2 where success of the proposed
change–point detection algorithms could only be explained by the fact that
the model (6) is perfect for the time series. In Examples 1 and 3 (6) is
also a suitable model but the signals are simpler. Signal in Example 1 is
standard in signal processing and the change–point problem of Example 3
is the most celebrated problem in the field. Example 4, where the change
happens in the noise parameters, is also quite standard. Of course, when
exact parametric models for signal and noise are known, CUSUM type al-
gorithms are superior to our algorithms for the problems of Example 3 and
4. (However comparative study of different algorithms in beyond the scope
of this paper.)

In all four examples we have applied Algorithm 2 with m = 100,M = 50
as well as Algorithm 3 with m = 100,M = 50, m0 = n,m1 = n + M
(case (ii) in Section 3.4) Since we were interested only in the main either
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periodics or trend components, the number of eigen-vectors, l, was small:
l = 2 in Examples 1 and 3 l = 4 in Example 2 and l = 1 in Example 4. For
Examples 3 and 4 we have also applied the Algorithms 2 and 3 with l = 0
and averaging, as described in Section 3.3.

In plots at Fig. 4.1(c), 4.2(c), 4.3(b,c) and 4.4(b,c) we plot test statistics
dn = 1

tr(B)Dn,l(m0,m1), the normalised values of the sum of the squared dis-

tances between the vectors X
(n)
j (j = m0 +1, . . . , m1) and the l−dimensional

subspace Sn,l. As soon as n + m1 < τ = 200, that is no change happened,
values of dn should be close to 1. (Corresponding values of n are in the range
[m,m + τ ] = [100, 200] for Algorithm 2 and [m,m + τ −M ] = [100, 150] for
Algorithm 3.) Then the values of dn are expected to grow and reach highest
values at n around τ + M = 250 for Algorithm 2 and τ = 200 for Algo-
rithm 3. Then the time series is slowly becoming undisturbed again and
therefore values of dn are stabilising at perhaps another level (for n > 300
and n > 250, correspondingly). This is what we roughly see at Fig. 4.1(c),
4.2(c), 4.3(b,c) and 4.4(b,c) with much clearer picture for Algorithm 3 than
for Algorithm 2.

Example 5. Airlines data. (see Fig. 4.5(a))
This celebrated data, see e.g. Box and Jenkins (1970), give logarithms of

monthly totals (in thousands) of international airline passengers for January
1949 - December 1960. There are only 144 data points so we have selected
a rather small m, m = 36. (For the sake of precision of SSA decompositions
m has to be proportional to the main period which is 12.) We have also
taken M = m/2 = 18, according to the recommendations in Section 2.4,
and m0 = 18, as in the case (ii) of Section 2.4, and m1 = 30 (value m1 = 36
would be a little too large: there is not enough data). To choose l, we have
made SSA decomposition of the whole series (Algorithm 1 with N = 144
and M = 18), see also Danilov (1997). The results of the decomposition are
displayed on Fig. 4.5(a): the main trend is described by the 1-st and 6-th
principal components, the main period (12–months) is described by the 2-nd
and 3-rd components and the second main period (6–months) is represented
by the 4-th and 5-th principal components (The series reconstructed from
these two components is shifted down which resulted in the second zero in
the plot on Fig. 4.5(a).) Fig. 4.5(b) shows that Algorithm 3 clearly indi-
cates on two time intervals where certain changes in trend have probably
occurred.
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Figure 4.5: Logarithm of airline passenger numbers, Example 5.
Parameters: m = 36, m0 = M = 18, m1 = 30, l = 6.
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