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Singular spectrum analysis for image processing

LicesiO J. RODRIGUEZ-ARAGON, AND ANATOLY ZHIGLJAVSKY*

A technique of image processing based on application of
the Singular Spectrum Analysis (SSA) is discussed and il-
lustrated on the problem of denoising the celebrated ‘Lena’
image corrupted with noise. Also, SSA-based distances be-
tween two images are introduced and suggested for a possi-
ble use in the face verification problem.
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1. INTRODUCTION

A digital image is generally encoded as a matrix of grey
level or colour values. In the case of grey level images, each
element of the matrix is a grey level, in the case of colour
images each element of the grid is a triplet of values for red,
green and blue components. The two main sources of errors
in image processing are categorized as blur and noise. Blur
is intrinsic to image acquisition systems as digital images
have a finite number of samples. Noise is another source of
error; as indicated below there are different types of noise.

The search for efficient denoising methods is still a valid
challenge in image processing [1]. In this paper we use the
celebrated ‘Lena’ image to illustrate the performance of SSA
for the problem of image denoising. We also introduce SSA-
related distances between images and argue that these dis-
tances can be much more informative than the currently
used Lo-based distances.

2. SSA FOR IMAGE PROCESSING

Assume that we have an image I of size h X w represented
in the form of a matrix,

(1) I=|li;lli=1,...n

Jj=1,...,w

where, for example, the values I; ; code the intensity of
either a colour or a grey level, 0 < I; ; < 255.

We are going to study the extension of the Basic SSA
procedure, as described in [12], for analyzing images. The
first stage of the procedure is the transformation of the data
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(which is now the matrix (1) rather than a time series) into
another matrix which is a version of the trajectory matrix in
the Basic SSA. This matrix will also be called the trajectory
matrix and denoted X. The trajectory matrix X will be
constructed so that it will contain all the information from
the image and, moreover, it will retain the information about
the neighbours of all pixels.

2.1 Construction of the trajectory matrix

Similarly to the Basic SSA, we need to define the win-
dow which will be moved over the image. Unlike the one-
dimensional case, our window has not only width, but height
as well. Let the window have size u x v, with 1 < u < h,
1<v<w.

The window is then placed at all possible positions in the
image. We shall refer to the top-left point in the window as
‘the reference point of the window’; the range of all reference
points is (4, 7) with

1<i<a=h—-—u+1l, 1<j<v=w—v+1.

The window is moved from left to right and top to bot-
tom. That is, the reference point is moved as follows:

.~ {

The window W;_;, with reference point (i, j), covers a region
of the image of size u X v:

(4,5 +1)
(i+1,1)

ifj<w—w
ifj=w—v+landi<h-—u.

Wi = livk—1,5+1-1lk=1,...u -
1=1,...,v
The elements of all windows W are then rearranged into col-
umn vectors using the vec operation; that is, by transposing
rows one by one and writing them consecutively:

—

W =vec(W) =W, Wi,... whHT,

u

where W; is the ith row of the window W. In this way, all
the windows W; ; are transformed into the vectors

—
Wi,j = VGC(WL]') = (Ii,ja Ii,j+17 e »Ii,j+v717

T
Livij,oo o Livtjyo—ty- ooy Liju—1,j40—1)" € R".

N
Finally, the vectors W, ; are arranged into the trajectory
matrix X in the following way:

— — — — — —
(2) X:(W1,17W1,27 o '7W1,’I~J7W2,17 E '7W2,'l77 R Wﬁ,f})'


http://www.intlpress.com/SII/

The size of the matrix X is p X ¢ with p =wv, ¢=uv =
(h—u+1)(w—v+1). This procedure of formation of the
trajectory matrix X is illustrated below for an image I of
size h X w and a window of size 3 x 3: C

"Iy Ly ©Liz' Iiga

Ioqn Izo Inz  Ioa

L[g’l 13,2 13’3J 13,4 —

Isg  Iuo Iiz  Iyg

Ing "hye ©Liz Iig?

Ioqn Iao Ipz Ioas

13’1 ng,g ]3’3 13’4J — ... —

Iy Iip Iz Iyg
Iiw—3z "hw-2 DIw-1 Itw'
Ipw—z Iow—2 Iow—1 Iz
[3,w—3 LIB,w—Q [3,w—1 I3yw4 — ... —
Tyw—3 Isw—2 Tgw-1 Iaw
Ih—3w-3 In-3w-2 In-3w-1 ITn-3w
In2w-3 "Ihow-2 Inow-1 In-2w'
In1w—3 JThcrtw—2 ITn1w-1 Iho1w
Ihw-3 L Ihw—2 Thw-1 Ihw 2

which gives

L Lig I w—2 Ih—2.w—2
Lo L3 I w-1 In_2w-1
Ls ©Iia 11w Ih—2w
Iy Iz I -2 Ih—1,w-2

X=|1l2 I3 I -1 Th—1,w-1
Ios Isa 1o Ih—1,w
I3 I3 I3.w—2 Ihw—2
Is2 I33 13,51 Inw—1
I35 I34 I3, Ih,w

Note that the same element I; ; of the matrix (1) appears
several times (up to p times) in the trajectory matrix X so
that X has a particular structure; this structure is known
as Hankel-block-Hankel [9]. This structure is difficult to de-
scribe analytically but easy algorithmically. Note also that
there is a one-to-one correspondence between the Hankel—-
block—Hankel matrices of size p x ¢ and the images of the
form (1).

2.2 Formal description of the algorithm

Let us have an image of size h X w represented in the
form of a matrix (1). We shall be constructing the trajectory
matrix X as described above. Basic SSA operations will then
be carried out with the matrix X as the trajectory matrix.
In doing so we will assume that the parameters (u and v) of
the window are chosen so that p < ¢, and therefore the size
p x p of the matrix XX is smaller than or equal to the size
g x ¢ of the matrix X”X.

Algorithm 1 (Basic SSA for image processing).
1. (Computing the trajectory matriz): define the window
of size uxv (with 1 <u < h, 1 <v <w) and using the
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procedure described above and summarized in the formula
(2), construct the trajectory matrix X = (z45)]7,
p=uv, g=(h—u+1)(w—v+1), p<gq.

2. (Constructing a matriz for applying SVD): compute
xXxXT.

3. (SVD of the matriz XXT): perform the SVD of XX
that is, represent XX in the form XX* =" X\, P,PT,
where A\ > --- > X\, > 0 are the eigenvalues of XXT and
P; are the normalized eigenvectors corresponding to \; (i =
1,...,p).

4. (Selection of eigenvectors): select a group of I (1 <
[ < p) eigenvectors P;,, P;,, ..., P;,.

5. (Reconstruction of the image): compute the matrix

where

X = 22:1 P,»kPifx as an approximation to X. Transition to
an image of size hxw (represented as a matrix I of size h xw)
can now be achieved by averaging over the corresponding
entries of the matrix X.

Note that this algorithm has been suggested in [3]. It was
further discussed in [5-7] under the name 2D-SSA.

Similarly to the Basic SSA, we can suggest different mod-
ifications of Algorithm 1 such as SSA with single or double
centering (see [4], Sect. 1.7). We have made a numerical
comparative study of different versions of SSA for image
processing. In most examples we considered, the difference
between many versions of SSA was not significant; we hence
do not consider these modifications in the present paper.

Note that Algorithm 1 does not present significant com-
putational difficulties in comparison with the Basic SSA;
chiefly the selection of the window size (u, v) determines the
computational cost. Indeed, the most computationally diffi-
cult operation is the SVD of the matrix XX”'. The difficulty
of this operation depends on the size of the matrix XX
which for the image processing SSA is equal to p x p with
p = uv. Note that on a standard laptop, MATLAB routinely
performs the SVD for a matrix of a size up to 1,000x1,000;
see also [8] for a description of efficient techniques that could
be used to increase the efficiency of the procedures of com-
putation of the SVD for the matrices appearing in SSA.

2.3 SSA for analyzing colour images

If a colour image in M colours (e.g., M = 3) of size h x w
is given, then we have M matrices 19 (i = 1,..., M) of
size h X w rather than just one matrix I defined in (1).
To perform an SSA reconstruction of the whole image, we
can perform M parallel reconstructions of the image in i-th
colour (¢ = 1,..., M) by applying M times Algorithm 1
to the matrices 1) (i = 1,...,M). In doing this, we can
naturally assume that the parameters of Algorithm 1 (which
are the window size u X v and the indices of the eigenvectors
chosen for the reconstruction) are fixed.

However, we typically would get a better result if we per-
form a multivariate SSA procedure. To do this, we need to



Figure 1. ‘Lena’ image.

compute the trajectory matrix X according to

X (1)
(3) X—1| ...
X (M)
where the individual trajectory matrices X are computed
by (2). The SSA reconstruction of the trajectory matrix X
given in the form (3) will then correspond to a simultane-
ous reconstruction of the image. We expect to observe an
advantage of performing the simultaneous reconstruction of
M colour images over M parallel reconstructions, if there is
a dependence between these M images.

3. APPLICATION TO THE ‘LENA’ IMAGE

3.1 ‘Lena’ image with no noise

Assume that we are given the standard ‘Lena’ image of
size 128x128 pixels in a grey scale (coded with numbers
from 0 to 255), see Fig. 1. Assume that the image is given
in the form of a matrix I as in (1), with h = w = 128.

In this section, we apply Algorithm 1 for reconstruct-
ing this ‘Lena’ image in the case when there is no noise.
Each reconstruction (that is, application of Algorithm 1)
gives us a matrix I of size 128 x 128. Typically, the recon-
structed images I = ||I;;||}28 521 have values with a range
different from [0,255]. For the purpose of the graphical
representation of these reconstructed images, they are al-
ways rescaled so that min, ; I” — 0 and max; ; I;; — 255;
these images are then painted using the standard grayscale
colourmap.

The ‘Lena’ image has been processed with different win-
dow sizes u X v. Fig. 2 shows the results of the SSA re-
construction of the image using only the first eigenvector
for u,v € {1,5,10,20}. The top row of figures corresponds
to the value u = 1; the second, third and fourth rows cor-
respond to the values u = 5,10, 20 respectively. Similarly,
the columns from left to right correspond to the values
1,5,10, 20 for v.

Assume that we choose the first [ < p = uv eigenvectors
for the reconstruction. If we use all p = wv eigenvectors

klklhal

Figure 2. SSA reconstruction of the ‘Lena’ image using only
the first eigenvector for different window sizes u X v:
u=1,5,10,20 (from top to bottom), v = 1,5,10,20 (from
left to right).

(that is, if I = p), then the image is reconstructed perfectly;
that is why the reconstructed image in the top left corner
of Fig. 2 coincides with the original image. For fixed I and
smaller values of p, the reconstruction is better; for larger
p the reconstructions with small [ are smoothed versions of
the image. If u # v then this smoothing is non-symmetric;
for example, if u > v then the reconstructed images in Fig. 2
are smoother in the vertical direction than in the horizontal
one.

To see the influence of the individual components, in
Fig. 3 we plot the reconstruction of the image using one
eigenvector only; here we use the window size 10 x 10 (that
is, u = v = 10). Specifically, at Step 4 of Algorithm 1 we
have [ =1, P, = k, k = 1,...,12; that is, only the k-th
eigenvector has been used for the reconstruction in the k-th
image (k = 1,...,12). Fig. 3 shows that each of the first
twelve eigenvectors reflects some features of the original im-
age.

Fig. 4 illustrates the relative importance of the compo-
nents of the SVD decomposition in Step 3 of Algorithm 1;
this importance is expressed in terms of the magnitude of
the respective eigenvalues. The eigenvalues from 1 to 10 are
plotted in the first graph and the eigenvalues from 2 to 10
are plotted in the second. As the first eigenvalue is almost
30 times larger than the second eigenvalue, we present the
second plot where the first eigenvalue is omitted.
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Figure 3. SSA reconstruction of the ‘Lena’ image using the
k-th eigenvector only (k = 1,...,12); from left to right and
from top to bottom.

3.2 Denoising the ‘Lena’ image

In this section, we demonstrate the results of application
of Algorithm 1 for denoising the ‘Lena’ image corrupted with
different kinds of noise.

The uncorrupted ‘Lena’ image (‘Lena’) is shown as the
left image of Fig. 5, ‘Lena’ image corrupted with salt and
pepper noise of different intensity (images ‘L.1°, ‘L.2°, ‘L3’) is
shown in the first column of Fig. 6; Fig. 7 and Fig. 8 show
the ‘Lena’ image corrupted with Gaussian white noise of dif-
ferent intensity (images ‘L4’ and ‘L5’) and distorted ‘Lena’
images (‘L6’ and ‘L7’). We also show the SSA-based recon-
struction of these images using the first [ eigenvectors (1 <
1 < 10) for the window size 10 x 10. To do the reconstruc-
tion, we used the first eigenvector only (the second column
in Figs. 5, 6, 7 and 8), the first three eigenvectors (the third
column), and the first ten eigenvectors (the fourth column).

To measure the distance between the original image and
the reconstructions of the corrupted images, let us assume
that we have two images I") = ||Iflj)||, 1% = ||Il(2j)|| of the
same size h X w. To measure the dissimilarity between the
two images we shall use the normalized squared Frobenius
distance

O _ @]

h,w
L
(4) A IO)= o 3| =1

i,j=1

which is the distance used most commonly. For more sophis-
ticated distances between images, see Sec. 4 below.

In order to measure the denoising efficiency of the SSA
decomposition, the distances between the original ‘Lena’ im-
age, Fig. 1, and the reconstructions of the corrupted images,
Figs. 5, 6, 7 and 8, have been computed. In Figs. 9, 10 and
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2 3 4 5 6 7 8 9 10

Figure 4. Top: The first ten eigenvalues in the SSA
decomposition of the ‘Lena’ image with a window of size
u = v = 10. Bottom: the eigenvalues 2-10.

Figure 5. Reconstruction of the ‘Lena’ image with the
window size u = v = 10 for a different number of
eigenvectors (all, the first only, the first three, the first ten).

11 we plot the distances between the original ‘Lena’ image
and its reconstructions.

In Figs. 9, 10 and 11 the circles show the distances be-
tween the original ‘Lena’ image and its reconstructions us-
ing the first | eigenvectors (I = 1,2,...,10). The crosses in
Figs. 9, 10 and 11 represent the normalized squared Frobe-
nius distances between the original ‘Lena’ image and the
reconstructions of the corresponding noisy image. The hori-
zontal line represents the normalized squared Frobenius dis-
tance between the original ‘Lena’ image and the original
corrupted image.



Figure 6. Denoising the ‘Lena’ image corrupted with salt and
pepper noise of different intensity, ‘L1’, ‘L2" and ‘L3’

Figure 7. Denoising the ‘Lena’ image corrupted with Gaussian
white noise of different intensity, ‘L4’ and ‘L5".

The numerical values of the squared normalized Frobe-
nius distances plotted in Figs. 9, 10 and 11, are given in
Table 1. The first row gives the distances between the origi-
nal ‘Lena’ image and all test (noisy) images. In the following
rows we give the distances between the ‘Lena’ image and the
respective reconstructed images. The reconstructions have
been done using the first [ eigenvectors (I = 1,2,...,10)
and the size of the window is 10 x 10.

From the Figs. 9, 10 and 11 and Table 1, we can observe
that the original ‘Lena’ image is much closer to some of
the reconstructed images than to the noisy image taken for
the analysis. This can be considered as an evidence of good
performance of SSA as a tool for image denoising.

In Fig. 12 the normalized squared Frobenius distance
from the original ‘Lena’ image to the reconstructions using
the first [ eigenvectors of images ‘L1’ and ‘L2’, is plotted,
where we use all possible values for I: [ =1,2,...,100 = uv.
The reference distances between the original ‘Lena’ image

Figure 8. Denoising the distorted ‘Lena’ images, ‘L6’ and
‘L7

Table 1. Distances between the original ‘Lena’ image and the
reconstructions of noisy images. In the first column the
distance between the original ‘Lena’ image and their
reconstructions is given as reference. In the first row distance
between the original ‘Lena’ image and each of the 7 test
images is presented

l Lena L1 L2 L3 L4 L5 L6 L7
0 0 350 1034 2778 798 2927 671 1046
1 1149 1162 1192 1292 1179 1253 1194 1228
2 676 684 712 813 701 786 741 799
3 533 543 573 684 561 659 615 740
4 442 455 488 603 473 582 537 653
5 367 382 419 541 403 527 473 620
6 313 329 375 499 351 496 435 602
7 265 286 328 473 311 467 399 619
8 237 259 305 464 286 460 391 620
9 212 237 288 462 267 460 379 620
10 189 218 274 460 251 460 364 630

and its reconstructions reduce to zero as the number of
eigenvalues approaches uv. For noisy images, the distances
initially decrease and afterwards, as the reconstructions get
closer to the original noisy image, approach the reference
line. This reference line represents the normalized squared
Frobenius distance between the original ‘Lena’ image and
the related noisy image.

4. SSA-BASED DISTANCES BETWEEN

IMAGES
4.1 Defining the SSA-based distances
Assume that we have two images I") = ||IZ(1J)||, 1% =

||Iz(3) || of the same size h x w. To measure the dissimilarity
between the two images it is customary to use the Lo-based
distance (4).

In this section we introduce a family of distances based on
the trajectory matrices of the images and their SVD expan-

sions. Our experience shows that these SSA-based distances
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Figure 9. The evolution of the squared Frobenius distance for
the reconstruction of ‘Lena’ image corrupted with salt and
pepper noise of different intensity (images L1,L2,13).

reflect the dissimilarity between two images much more nat-
urally than the distance (4).

Let us fix the size uxv of the moving window and let X1,
X @ be two trajectory matrices of size p x ¢ associated with
IM and I?. First, we normalize the trajectory matrices as
follows:

Yy = X/ [tr(XO(XWD)T)
Yo = X@/y /tr(X2)(X@)T)
Then we make the SVD of the matrices Y1Y{ and Y2Yy .
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Figure 10. The evolution of the squared Frobenius distance
for the reconstruction of ‘Lena’ image corrupted with
Gaussian noise of different intensity (images L4, L5).

Let Ay > --- > XAp and g > --- > p, be the correspond-
ing eigenvalues. As the matrices Y;Y{! and Y2Y, are non-
negative definite and tr(Y1Y") = tr(YaYy') = 1, we have
Ai >0, >0foralliand Y0 AN =>"% =1

Let us now analyze the two images I(") and I(?) simulta-
neously. To do this, we create a joint (normalized) trajectory

matrix Y = (2 ) so that

T_ (N _(myy vy
(5) YY® = <Y2> (Y*1 }/2) - <Y2Y1T Y2)/2T .

Denote the eigenvalues of the (2px2p)-matrix YY 7T by vy >
oo > vy, > 0. Since tr(YYT) = tr(V1Y{) + tr(YaYy) = 2,
we have Zfﬁl v; = 2. If it is needed, from the SVD of the
matrix YY 7T we can perform the reconstruction of both im-
ages, IV and I® | using Algorithm 1.
Consider two extreme cases:
(a) Y1 = Y5 (proportional images), and
(b) Y1Y5' = 0 (orthogonal images).
In the case (a) we have pu; = X\; (i = 1,...
(YIYIT YY"
vyl vivt
vi=0fori=p+1,...,2p.

D), YYT =
) and therefore v; = 2)\; for ¢ = 1,...,p and
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Figure 11. The evolution of the squared Frobenius distance
for the reconstruction of distorted ‘Lena’ images (images L6,
L7).

In the case (b), the set of eigenvalues {r;}7%, is a union
of the sets {\;}'_; and {u;}r_;.

A very useful result of [11] implies that for any matrix of
the form (5) (where the matrices Y; and Ys are arbitrary)

and any positive integer k we have

k

k k
(6) SN =y
j=1 j=1

j=1

(here we assume that A\; = 0 if j is larger than the rank of

the matrix Y7; similarly for the eigenvalues p; and v;).
Define

[t [t
Fi(t)=>_X; and Fy(t) =Y p;
j=1 j=1

so that Fy(t) and F»(t) can be interpreted as c.d.f.’s de-
fined on the integers {1,...,p}. Similarly, we define F(t) =
%Zgﬂzl vj so that the c.d.f. F(t) defines a discrete proba-
bilistic measure on {1,...,2p}.

In our notation, the inequality (6) means that Fi(t) +
Fy(t) — 2F(t) > 0 for all t > 0.
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Figure 12. The evolution of the normalized squared Frobenius
distance for the reconstruction of distorted ‘Lena’ images
computed forl =1,2,...,100 = uv. Top: Distances for ‘L1".
Bottom: Distances for ‘L2’. Dashed line is the distance
between the original ‘Lena’ and its reconstructions, to be used
as reference.

Therefore, the rationale for defining the distances be-
tween two images (1) and I is as follows: if the difference
G(t) = Fi(t) + Fa(t) — 2F(t) is small, then the images I
and I are similar; if, on the contrary, the difference G(¢) is
large then the images are different. Indeed, in the case (a)
G(t) = 0 for all ¢ and in the case (b) G(t) > 0 for all ¢,
1 <t < rank(Yy) + rank(Yz).

For large t, the behaviour of the c.d.f.’s Fy(t), Fa(t) and
F(t) resembles the c.d.f. of eigenvalues of random matrices
and therefore the dissimilarity between images better man-
ifests itself at the values of G(t) for relatively small ¢ (the
range of values of ¢ should depend on the size of the image
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and the size of the window). Therefore, a natural definition
of the distance is

k k
M a®1®) = [ Godt =30 + - )
0

j=1
where k is small compared to p. Another natural distance is

(8) doo(IM, I?) = max G(t) = max (\j+ p; —v;).
0<t<oo Jj=1,....p

We have made extensive numerical experiments with the
SSA-based distances (7) and (8); these experiments have
shown that these distances reflect the similarity (and dis-
similarity) between images much finer than the standard
distance (4) and the distances between the subspaces cre-
ated by the SVD decompositions of the trajectory matrices
of the two images taken separately.

4.2 Application to face verification

The technique described above can be applied to solving
the face verification problem which is the problem of making
the decision of whether a given image belongs to the subject
that claims a certain identity. Such problems are usually
simulated with databases of images such that different sets
of images have been taken for each individual.

Usually feature extraction methods, including multivari-
ate dimension reduction methods, are used to extract dis-
criminating patterns. Afterwards classifiers are trained and
tested through an exhaustive cross-validation of the whole
database. Examples of these strategies can be found for ex-
ample in [10] for the FRAV2D database of colour images
and in [2] for the FRAV3D database of 3-dimensional laser
scans.

The advantages of applying SSA to the verification prob-
lems is the possibility of applying the distances between
images, such as (7), (8), to directly compare reference im-
ages and possible candidates, instead of comparing features
through a learning algorithm. First results of application of
the SSA-based distances to face verification problems are
very encouraging: the success rate for the SSA-based face
verification techniques is comparable to the best results ob-
tained by the application of the support vector machines
(SVM). An advantage of SSA over SVM is the fact that
all the manipulations with data in SSA are transparent and
controllable; this is not true in the case of SVM. On the other
hand, the use of the SSA-based distances require higher
computational costs for large-scale problems than that for
the SVM. The authors intend to accomplish a comprehen-
sive comparative study of SSA and SVM techniques in face
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recognition problems and provide a thorough discussion of
advantages and disadvantages of both approaches in a sep-
arate publication.
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