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Abstract

In this paper, the performance of Singular Spectrum Analysis (SSA) technique
is assessed by applying it to 24 series measuring the monthly seasonally unad-
justed industrial production for important sectors of the German, French and UK
economies. The results are compared with those obtained using Holt-Winter and
ARIMA models. All three methods perform similarly in the short-term forecasting
and in predicting the direction of change (DC). However, at longer horizons, SSA
significantly outperforms ARIMA and Holt-Winter methods.

Keywords: Singular Spectrum Analysis, ARIMA, Holt-Winter method, Fore-
casting, European Industrial Production series.

1 Introduction

The Singular Spectrum Analysis (SSA) is a powerful technique for nonparametric
time series analysis and forecasting. SSA decomposes the original time series into a sum
of small number of independent and interpretable components such as slowly varying
trend, oscillatory components and noise. Theoretical and practical foundations of the
SSA technique can be found in Golyandina et al. (2001) and an introduction to the
subject is given in Elsner and Tsonis (1996).

SSA has a wide range of applications; from meteorology and physics to economics
and financial mathematics. SSA was first applied to extract tendencies and harmonic
components in meteorological and geophysical time series (Vautard et al., 1992). In
recent years SSA has been developed and applied to many practical problems (see, for
example Ghil et al., 2002, and Moskvina & Zhigljavsky, 2003).

SSA is especially useful for analyzing and forecasting series with complex seasonal
components and non-stationarity. Thus, unlike ARIMA models, choosing an appropriate
degree of differencing is not an important issue in SSA. The data considered in this study
has a complex structure of this kind; as a consequence, we found superiority of SSA over
classical techniques.
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Although some probabilistic and statistical concepts are employed in the SSA-based
methods, no statistical assumptions such as stationarity of the series or normality of the
residuals are required and SSA uses the bootstrapping to obtain the confidence intervals
for the forecasts. Another important aspect of the SSA (which can be very useful in
economics) is that, unlike many other methods, it works well even for small sample size
(Vautard et al., 1992, Hassani, 2007).

This study uses eight monthly industrial production indices for Germany, France and
the UK, previously analysed in linear and nonlinear contexts by Osborn et al. (1999)
and Heravi et al. (2004). The eight series examined for the three countries, Germany,
France and the UK, are interesting and important since they cover production in the
major industrial sectors. They also reflect diverse types of industries.

Osborn et al. (1999) have considered the extent and nature of seasonality in these
series. Their findings show that seasonality accounts for over 90% of the variation in
almost all French series. The strong seasonal pattern for the traditional industrial sector
in France is associated with declines in production during the summer. Seasonality also
accounts for at least 80% of variation in all series in Germany and in all series (except
vehicles) in the UK. Osborn et al. (1999) demonstrated that seasonalities for these series
are much larger than those reported for monthly output in the United States at the two-
digit level (Miron, 1996, Table 3.3). The difference in pattern of seasonality between
the European countries and the United States is associated to differences in traditions
and institutions. Based on seasonal unit root tests, Osborn et al. (1999) found that
most of the series should be modelled using conventional first difference. However annual
difference specification often produced the most accurate out-of-sample forecasts.

In contrast to Moody et al. (1993) and Swanson & White (1997a,b), Heravi et al.
(2004) found relatively little evidence of non-linearity in most series. Comparing linear and
neural network forecasts, they found that linear models generally produce more accurate
post-sample forecasts than neural network models at horizons of up to a year in terms of
root mean square error.

Here we examine the out-of-sample forecast accuracy of the SSA technique and com-
pare it with ARIMA models and the Holt-Winter method. The structure of the paper
is as follows. The next section briefly describes the SSA technique and provides some
general rules for selecting its parameters. Section 3 outlines the data for the study. Our
forecast results are then presented and described in Section 4 and some conclusions are
given in Section 5. Appendix A briefly describes the data and appendix B provides an
example of the SSA analysis.

2 Singular Spectrum Analysis (SSA)

The main purpose of SSA is to decompose the original series into a sum of a small number
of time series, so that each subseries can be identified as either a trend, periodic or quasi-
periodic component (perhaps, amplitude-modulated), or noise. This is followed by a
reconstruction of the original series.

The SSA technique consists of two complementary stages: decomposition and recon-
struction. At the first stage we decompose the time series and at the second stage we
reconstruct the original time series and use the reconstructed time series for forecasting.
Here we provide a brief discussion on the methodology of the Basic SSA method; see



Golyandina et al. (2001) for more information and many variations of the Basic SSA.

Short description of the Basic SSA

The main idea of the Basic SSA is as follows. Consider the real-valued nonzero time series
Yr = (y1,-..,yr) of sufficient length 7. Let K = T'— L+ 1, where L is some integer called
the window length (we can assume L < 7'/2). Define the so-called ‘trajectory matrix’

Y1 Y2 Ys - Yk
LK Y2 Y3 Ya - Ykt
X = [Xl,...,XK] :(xij)i,jzlz . . .
Yo Yr+1 YrL+2 --- Y1

Note that X is a Hankel matrix (by the definition, these are the matrices such that
their (4, j)-th entries depend only on the sum 7+ j). We then consider X as a multivariate
data with L characteristics and K = T — L + 1 observations. The columns X; of X,
considered as vectors, lie in an L-dimensional space RY. Define the matrix XX Singular
value decomposition (SVD) of XX” provides us with the collections of L eigenvalues
AL > Ay > ... > A > 0 and the corresponding eigenvectors Uy, Us, ..., Uy, where Uj; is
the normalised eigenvector corresponding to the eigenvalue \; (i = 1,..., L).

The SVD of the trajectory matrix can be written as:

X=E + - +E, (1)

where E; = VAU Vi" (i = 1,...,d), d is the number of non-zero eigenvalues of XX,
and Vi,...,V; are the principal components defined as V; = XTUi/\/Xi. The collection
(\/Xi, U;, V;) is referred to as the i-th eigentriple of the matrix X.

A group of r (with 1 < r < d) eigenvectors determines an r-dimensional hyperplane in
the L-dimensional space R of vectors X;. The Ly-distance between vectors X; € Rl and
this r-dimensional hyperplane is equal to ngé[ Aj and can be rather small which would

mean that 5(, the projection of X into this hyperplane, approximates well the original
matrix X. Subsequent averaging over the diagonals of X allows us to obtain a series that
can be considered as an approximation to the original series.

Selection of parameters

Here we consider a version of SSA where we split the set of indices {1,2,...,d} into
two groups only: I = {1,...,7} and I = {r +1,...,d}. We associate the group I
(and the related matrix E; = E; + ... + E,) with signal and the group I with noise.
The SSA method requires then the selection of two parameters, the window length L
and the number of elementary matrices r. There are specific rules for selecting these
parameters; their choice depends on structure of the data and the analysis we want to
perform. Detailed description of parameter selection procedures is given in Golyandina
et al. (2001). Here we summarize a few general rules.

The window length L is the single parameter that should be selected at the decompo-
sition stage. Larger values of L (we can always assume L < T/2) lead to a more detailed
decomposition; in selecting L we should try to achieve sufficient separability of the com-
ponents. The following quantity (called the weighted correlation or w-correlation) is a



natural measure of dependence between two time series YT(I) and Yf):

w 1 2 1 2
oy = (v ¥) v v

where (V{7,78) = 320wy, wemmin{k, 2,7 — &}, |8 ), =/ (087,377)

(1,7 =1,2).

If two reconstructed components have zero w-correlation it means that these two
components are well separated. Large values of w-correlations between reconstructed
components indicate that the components should be considered as one group and possibly
correspond to the same component in the SSA decomposition.

The first elementary matrix E; with the norm v/\; has the highest contribution to the
norm of X in (1) and the last elementary matrix E4 with the norm v/, has the lowest
contribution to the norm of X. The plot of the eigenvalues Ay, - - - , Ay gives an overall view
concerning the values of the eigenvalues and is essential in deciding where to truncate the
summation of (1) in order to build a good approximation of the original matrix. A slowly
decreasing sequence of eigenvalues typically indicate the presence of noise in the series.
Similar values of the eigenvalues allow the identification of the eigentriples that correspond
to the same harmonic component of the series. The periodogram analysis of the original
time series also helps us in selecting the groups. Sharp sparks in the periodogram are
associated with the harmonic components in the series.

We return to the discussion on parameter selection in Appendix B where we provide
details of analysis for one of the series.

w

SSA Forecasting

SSA forecasting method can be applied to the time series that approximately satisfy
linear recurrent formulae . The class of time series governed by linear recurrent formulae
is rather wide; it includes harmonics, polynomial and exponential time series.

Let us briefly describe the so-called SSA recurrent forecasting algorithm (for more
information see Golyandina et al., 2001). Define the original series Yr = (yi,...,yr)
and the reconstructed series }7T = (71, .-,yr). For an eigenvector U € R we denote the
vector of the first L —1 components of the vector U as UY € RETL. Set v? = ni+.. . +72 <
1, where 7; is the last component of the eigenvector U; (i = 1,...,r). It can be proved
that the last component y;, of any vector Y = (y1,...,y,)? is a linear combination of the
first components (yi,...,y,_1); that is, y, = a1yr_1 + ... + ar_1y1 where the vector of
coefficients A = (ay,...,az1) can be expressed as A =Y. mUY /(1 —v?). The forecasts
Ur+1, - - -, Yr+n are then obtained as

I 7 forv=1,...,T
TS gy fori=T+ 1, T +h

1'We say that the time series Y7 satisfies an linear recurrent formulae of order L —1 if there are numbers
ai,...,ar_1 such that

L1
Yyr—i = Z ARy —i—k, 0<i<T-L.
k=1



Bootstrapping

Assume that we have a time series Y, = {y;}_, = YT(I) + YT(Z) where YT(I) is the signal

and Yf) represents the noise. Let us consider a method of constructing average series for

the signal yr}l}r u at time T'+M. In the unrealistic situation, when we know both the signal

Y:ﬁl) and the true model of the noise Y}Q), the Monte Carlo simulation can be applied

to check the statistical properties of the forecast values @{Tll u relative to the actual term

1
?J”EN)-M-

Indeed, assuming that the rules for the eigentriple selection are fixed, we can simulate
N independent copies YT(? (t=1,...,N) of the process Yf) and apply the forecasting

procedure to N independent time series Y7 ; = YT(l) + Y:ﬁi.). Then the forecasting result

will form a sample gﬁMﬂ,, which should be compared against yr}l}r - In this way the

Monte Carlo average series for the forecast can be built up.
Since in practice we do not know the signal YT(l), we can not apply this procedure.
Under a suitable choice of the window length L and the corresponding eigentriples, we have

the representation Y, = YT(I) + }7T(2), where )7%1) (the reconstructed series) approximates
YT(I), and )7%2) is the residual series. Suppose now that we have a (stochastic) model for the
residual )7%2) (for instance, we can postulate some model for YT(Z) and, since )7%1) ~ YT(I),
we apply the same model for ?T(Z) with the estimated parameters). Then, simulating
N independent copies YT(i) of the series ?T(Z), we obtain N series Yp; = )7%1) + )7%21) and
produce M forecasting results @{Tll i 10 the same manner as in the Monte Carlo simulation
variant.

From the sample gé}J)er (1 < i < N) of the forecasts we can compute the average
bootstrap forecast. This average bootstrap can then be compared with the value @{TQM
obtained by Basic SSA forecast. Large discrepancy between these two forecast would
typically indicate that the original SSA forecast is not reliable. Furthermore, using the
sample of the bootstrap forecast results we can estimate the distribution of the forecast
and compute, for example, confidence intervals for the true values. To do that, we need
a stochastic model for Y}Q); a standard assumption would be the assumption that Y%Q) is
the Gaussian white noise model. This assumption can be easily verified using the classical

test for randomness and normality.

3 The data

The data in this study are taken from Eurostat, the official statistical agency of the
European Community and represents eight major components of industrial production
in Germany, France and the UK. The series used are seasonally unadjusted monthly
indices for real output in Food Products, Chemicals, Basic Metals, Fabricated Metals,
Machinery, Electrical Machinery, Vehicles and Electricity/Gas industries. Appendix A
provides some information about the series. It should be noted that the series for Germany
are the aggregated data following the reunification of the former East Germany and West
Germany.

The same 24 series, ending in December 1995, have been previously examined in
studies by Osborn et al. (1999) and Heravi et al. (2004). As explained in these papers,



Table 1: Descriptive statistics of the series.

Mean S.D Weight
Series UK GR FR | UK GR FR | UK GR FR
Food products 464 442 458 | 0.067 0.195 0.129 | 10.2 7.6 9.0
Chemicals 465 441 452 |0.087 0.192 0.176 | 85 86 8.9
Basic metals 4.54 458 4.51|0.107 0.098 0.175| 3.8 45 4.3
Fabricated metal 461 439 450 |0.064 0.201 0.194| 58 7.2 9.8
Machinery 4.63 451 4.55|0.078 0.152 0.163 | 7.5 13.6 8.6
Electrical machinery | 4.47 4.37 4.57 | 0.105 0.256 0.138 | 3.0 5.6 3.9
Vehicles 464 429 4390133 0315 0405 | 4.7 104 7.1
Electricity and gas | 4.62 4.48 454 | 0.176 0.172 0.204 | 6.7 6.5 9.6

these time series have been chosen primarily because of their importance to industrial
production across the three countries. These eight time series account for at least half
of total industrial production in each country. Plots of these time series are included in
Osborn et al. (1999) and broadly represent a period of growth in the 1980s and stagnation
or recession during the early 1990s. Here we have updated the data and in all cases the
sample period ends in July 2007. However, the starting dates are different which reflects
the availability of consistent data from Eurostat. The data for Germany starts from
January 1978, for France starts from January 1990 and for the UK starts from 1998.

In all cases, the final two and a half years (30 observations) of data are retained
for out-of-sample forecast accuracy tests. For comparability and in line with the usual
convention for economic time series, all time series are analysed in logarithmic form and
all subsequent results refer to the time series after this transformation. The descriptive
statistics for these series are given in Table 1. For Germany, the vehicles series has the
highest volatility, which is more than twice than the volatility of the other series. Similarly,
the vehicles series has the highest volatility for France. The UK data, generally, are less
volatile with gas and electricity series having highest volatilities.

Almost all of the industrial production series have complex structure with nonlinear
trends and complex seasonality. SSA is well suited for non-stationary series with complex
trend and periodicities and can be a powerful technique in modeling these industrial
production series.

4 Forecasting Results

Comparison of the accuracy of the forecasts

We consider forecasting performance of the SSA, ARIMA and Holt-Winter techniques at
different horizons h, of up to a year. We provide results for h = 1,3,6 and 12 (months).
We use the data up to the end of 2004 as training sample (to perform SSA decomposition
and to estimate parameters of ARIMA and Holt-Winter models). Thus, with two and a
half years of out-of-sample data, we have N = 30,28,25 and 19 out-of-sample forecast
errors at the horizons h =1, 3,6 and 12, respectively.

We use the root mean squared error (RMSE) and the percentage of forecasts that
correctly predict the direction of change to measure the forecast accuracy.? RMSE is the

2We have also computed other measures based on the magnitude of forecast errors, such as relative



most frequently quoted measure in forecasting literature (e.g., Zhang et al 1998). In order
to save space, we only provide RMSE ratios of the SSA to that of the Holt-Winter and
ARIMA models. 3 The ratios of RMSE are

1 1
N 3 N 3
RRMSE = (Z(QTﬁ-h,i - yT+h,i)2> / (Z(gT+h,i - yT+h,i)2>

i=1 =1

where g7, is the h-step ahead forecast obtained by SSA forecasting and ¢rp is the
h-step ahead forecast from either ARIMA or Holt-Winter model and N is the number
of the forecasts. If RRMSE < 1, then the SSA outperforms the other methods (either
ARIMA or Holt-Winter).

In computing Box-Jenkins ARIMA forecasts, we need to choose the lags, the degree of
differencing and the degree of seasonality (p, d, q), (P, D, Q)s where s = 12. To do that we
use the maximum order of lags, set by the software, and apply the Bayesian Information
Criterion (BIC). Holt-Winter forecasts are also obtained by minimizing the BIC. The SSA
parameters, the window length L and the number of eigentriples r, are chosen based on
the eigenvalue spectra and separability (see Appendix B). The parameters (L, r) of the
SSA and the orders (p,d, q), (P, D, Q)s of the ARIMA models are given when the models
are estimated using data up to the end of 2004. Appendix B gives details of the analysis
for fabricated metal series for Germany. Details for the other series are available from
authors upon request.

Tables 2, 3 and 4 show the in-sample RMSE and RMSE ratios and out-of-sample
RMSE ratios for the UK, France and Germany. Some summary statistics (average RMSE,
RRMSE of SSA models to the Holt-Winter and ARIMA models for each country and
horizon) are also given at the bottom of each table. The summary statistics are the
RMSE and the RRMSE averages and the scores. The score is the number of times when
SSA model yields lower RMSE. SSA has produced lower RMSE for all the series for the
in-sample results *.

The averages and the scores for 1-step ahead show that SSA forecasts are comparable
with the forecasts obtained by ARIMA and Holt-Winter models. However, the perfor-
mance of the SSA does improve relative to ARIMA and Holt-Winter models for fore-
casting at the horizons greater than one. The scores also confirm that the SSA forecasts
outperform the forecasts produced by the ARIMA and Holt-Winter models, particularly
at longer horizons. For all the series and three countries (24 cases), SSA outperforms
the ARIMA 16,18,22 and 23 times at h = 1,3,6 and 12 horizons respectively. It also
outperforms the Holt-Winter models 16, 19, 23 and 23 times at h = 1, 3,6 and 12 horizons.

Table 5 summarizes the results of forecasts by ARIMA, Holt-Winter and SSA for all
series. This table shows that the quality of 1-step ahead forecasts are similar for ARIMA
and SSA; Holt-Winter forecasts being slightly worse. The quality of SSA forecasts at
horizons h = 3,6 and 12 is much better than the quality of ARIMA and Holt-Winter
forecasts. As h increases, the quality of ARIMA and Holt-Winter forecasts becomes
worse; the standard deviation of the ARIMA and Holt-Winter forecasts increases almost

root mean absolute errors. These measures yield qualitatively similar results to RMSE; we thus do not
report them.

3Results of analysis (including values of RMSE for each series, method and horizon) are available from
the authors upon request.

4SSA gives the highest B2, although all three methods fit the data well in-sample, with B2 > 81%.



linearly with h. The situation is totally different for the SSA forecasts: the quality of
SSA forecasts is almost independent of the value of A (at least, in the range of values of h
considered in the paper). This observation serves as a confirmation of the following facts:

(i) most of the series considered here have a structure which can described via a deter-
ministic trend and seasonality (for an example, see Appendix II);

(ii) this structure is well recovered by the SSA;

(iii) in most cases, the structure of the series is very stable as it is kept by the series for
at least 12 months starting at any point.

Note that in the ideal situation, when we have a series which is a sum of a deterministic
component (fully recovered by SSA) and a random noise, the error of SSA forecast will

be exactly the same at any horizon. For more information, see Chapter 2 in Golyandina
et al. (2001).

Modified Diebold-Marino statistics

Using the modified Diebold-Marino statistics, given in Harvey et al. (1997), we test for the
statistical significance of the results. The symbol * indicates the results at the 10% level
of significance or less. Comparing the SSA forecasts with the ARIMA, SSA outperforms
the ARIMA significantly 2,12, 9 and 19 times at h = 1, 3,6 and 12 horizons respectively at
10% significance level or less. SSA also outperforms the Holt-Winter significantly 6,13, 16
and 19 times at h = 1,3,6 and 12 horizons respectively at 10% significance level or less.
Similar results have also been found when comparing the bootstrap forecasts, called in the
table BSSA (to obtain bootstrap average series we have replicated the series 1000 times).
In fact, the scores for all the horizons in tables 2, 3 and 4 show that both the SSA and
bootstrap SSA methods have outperformed the ARIMA and Holt-Winter models exactly
the same number of times (160 times out of 192 different cases).

We have also used the forecast encompassing test (Harvey et al. (1998)). The symbol
+ indicates the results at the 10% level of significance or less. The results also confirms
the superiority of the SSA, with 54% of cases significantly better at the 10% level of
significance or less.

Cumulative distribution functions (c.d.f.) of the absolute values of the out-of-sample
errors (for all eight series and 3 countries) obtained by SSA, ARIMA and Holt-Winter
forecasts are presented in Fig. 1. If the c.d.f. graph produced by one method is strictly
above the graph of another c.d.f., then we can say that the errors obtained by the first
method are stochastically smaller than the errors represented by the second method. We
can see from Fig. 1 that for h = 3,6 and 12, SSA forecasting errors are stochastically
much smaller than the errors of the other two methods. In addition, it can be seen that
the ARIMA forecast errors are slightly smaller than the Holt-Winter forecast errors. In
the case of h =1 there is no evident prevalence of any method.

Direction of change predictions

As another measure of forecast accuracy, in addition to RMSE, we also compute the
percentage of forecasts that correctly predict the direction of change. Ash et al. (1997)
argue that for some purposes, it may be more harmful to make a smaller prediction



error yet misforecast the direction of change, than to make a larger directionally correct
error. Clements and Smith (1999) discuss that the value of a model forecasts may be
better measured by the direction of change. Heravi et al. (2004) argue that the direction
of change forecasts are particularly important in economics for capturing the business
cycle movement relating to expansion versus recession. Here the direction of change is
interpreted only in terms of whether industrial production in a particular sector increases
or decreases.

Table 6 provides the percentage of forecasts that correctly predict the direction of
change at h =1, 3,6 and 12 horizons. It also shows whether they are significantly greater
than the pure chance (p = 0.50). The symbols * and #* in the table indicate the 5%
and 1% levels of significance. A set of summary results is also given at the bottom of
the table. The summary statistics are the average of correct signs for all eight series at
h = 1,3,6 and 12 horizons and overall average for the three countries. The percentage
of correct signs are generally better than those reported in Heravi et al. (2004). This is
due the fact that the results for directional change are particulary sensitive to structural
change in the out-of-sample period. The percentage of correct signs can be extremely
high or low for all the three methods depending on whether there is a structural change
in the series in the out-of-sample period. The overall percentage of correct signs for SSA
are 90%, 91%, 92% and 85% at h = 1,3,6 and 12 respectively. For the Holt-Winter,
these figures are 89%, 91%, 90% and 82%, which are slightly lower than the SSA. ARIMA
models have produced slightly better results (91% and 92%) at horizons h = 1 and h = 3
but they are lower (90% and 81%) at h = 6 and 12 horizons. For all 96 cases (3 countries,
8 series, h = 1,3,6 and 12 horizons) SSA has produced 93 significant cases at the 1% and
5% level. Similar results were obtained with the Holt-Winter and ARIMA models, giving
93 and 90 significant cases respectively.

5 Conclusion

In this paper, we compared Singular Spectrum Analysis (SSA), ARIMA and Holt-Winter
methods for forecasting seasonally unadjusted monthly data on industrial production
indicators in Germany, France and the UK. We demonstrated that SSA is a very powerful
tool for analyzing and predicting economic data. SSA outperformed the ARIMA and
Holt-Winter methods in predicting the values of the production series according to the
RMSE criterion, particularly at horizons of h = 3,6 and 12 months. We also found
that SSA works well for small sample sizes, as for the UK with the sample size of 84
observations. The forecasts obtained by bootstrapping also confirm the findings. We also
found that the three methods perform similarly well in predicting the direction of change.
However, SSA outperforms the Holt-Winter and ARIMA models at longer horizons and
hence can be considered as a reliable method for predicting recessions and expansions.
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Table 2: Descriptive statistics of Out-of-sample and In-sample errors, UK.
Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSE
Series | L r (p,d,q)(P,D,Q)s | ARIMA H-W SSA Tiia s 550 h A 550 Besa gosa
dals | 36 1-14 (1,0,0)(0,1,1) 0.012 0.010 0.007 0.58 0.70 1 0.90F 0.78*F 0.93 0.80*F
3 0.83% 0.797F 0.927F 0.88%
6 0.77t 0.63* 1 0.847F 0.69* 1
12 0.21%F 0.95 0.23*%+ 1.04
dg24 | 36 1-14 (0,1,1)(0,1,1) 0.019 0.015 0.009 0.47 0.60 1 0.87 0.77*F 0.93 0.83T
3 0.65%1 0.67*t 0.70%+ 0.71%t
6 0.58%* 0.57%t 0.61% 0.59%t
12 0.747F 0.80F 0.77F 0.83F
dj27 24 1-16 (0,1,1)(0,1,1) 0.034 0.028 0.005 0.15 0.18 1 0.96 0.90F 0.91 0.85*F
3 0.81F 0.797F 0.90F 0.89F
6 0.92 0.92 1.07 1.07
12 0.30% 1 0.80 0.34%+ 0.92
dj28 36 1-10 (1,0,0)(1,1,0) 0.026 0.020 0.019 0.73 0.95 1 0.86F 1.06 0.96 1.18
3 0.84*+t 0.99 1.02 1.21
6 0.79F 0.81F 0.91 0.94
12 0.42%F 0.83 0.46*+ 0.93
dk29 | 36 19 (0,1,1)(0,1,1) 0.026 0.023 0.021 0.81 0.91 1 1.21 0.83F 1.26 0.87T
3 0.98 0.76%1 1.04 0.81
6 0.98 0.59%t 0.93 0.56%1
12 0.761 0.48*1 0.82 0.52*%1
dI31 36 1-11 (0,1,1)(0,1,0) 0.037 0.025 0.020 0.54 0.80 1 1.30 1.48 1.20 1.37
3 0.93 1.05 0.89 1.00
6 0.81 0.76% 0.81 0.75
12 0.42*% 1 0.47*t 0.56%+ 0.63*1
dm32 | 60 1-13 (0,1,1)(1,1,0) 0.059 0.046 0.027 0.46 0.59 1 1.00 0.96 1.07 1.02
3 0.76*t 0.80*t 0.831 0.87F
6 0.67*t 0.73*t 0.81F 0.88%
12 0.48*t 0.52%F 0.64*+ 0.69*1
€40 36 1-8 (0,1,1)(0,1,0) 0.035 0.024 0.020 0.57 0.83 1 0.93 0.81F 0.97 0.83F
3 1.02 0.80%F 1.06 0.841
6 0.85F 0.67*t 0.92F 0.72%+
12 0.65%t 0.42%F 0.67*+ 0.43* 1
Average 0.031 0.024 0.016 0.54 0.70 T 1.00 0.95 1.03 0.97
3 0.85 0.83 0.92 0.90
6 0.80 0.71 0.86 0.78
12 0.50 0.66 0.57 0.75
Score 8 8 1 5 6 5 5
3 7 7 5 6
6 8 8 7 7
12 8 8 8 7

= indicates significance for DM test at 10% or less, + indicates significance for encompassing test at 10% or less.
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Table 3: Descriptive statistics of Out-of-sample and In-sample errors, Germany.

Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSE

Series L r (p,d,q)(P,D,Q)s | ARIMA H-W SSA Tiia s 550 h A 550 Besa gosa
dals 60  1-12 (0,1,1)(0,1,1) 0.020 0.020 0.016 0.80 0.80 T 0.89 0.89 0.8 0.83
3 0.69* 1 0.62*% 0.69*+ 0.63*

6 0.69* 1 0.64* 1 0.66*+ 0.61*%+

12 0.49%t 0.61*1 0.56*+ 0.70*+

dg24 | 120 1-21 (1,1,0)(0,1,1) 0.024 0.023 0.017 0.71 0.74 1 0.89 0.84 0.98 0.97
3 0.66%1 0.57% 0.787% 0.67*

6 0.70%t 0.43*t 0.761 0.47%F

12 0.57*1 0.31%1 0.66%+ 0.36%+

dj27 60  1-19 (0,1,1)(0,1,1) 0.034 0.032 0.019 0.56 0.59 1 1.59 1.45 1.24 1.13
3 1.25 1.18 1.01 0.95
6 0.94 0.76%1 0.73%+ 0.58*%+
12 0.56%1 0.47*t 0.44*F 0.37%+

dj28 120 1-18 (0,1,1)(0,1,1) 0.028 0.027 0.021 0.75 0.78 1 0.97 0.89 0.87 0.79
3 0.75% 0.61% 0.74% 0.61%
6 0.49* 1 0.40* 1 0.50%+ 0.41*%+
12 0.23*+ 0.19%F 0.21*%+ 0.17*+

dk29 18 1-18 (2,1,0)(0,1,1) 0.035 0.033 0.017 0.49 0.52 1 1.49 1.24 1.04 0.87
3 1.37 1.03 1.00 0.75
6 1.01 0.74%t 0.78*+ 0.57*F
12 0.65%t 0.47*+ 0.52*+ 0.38*+

dI31 8 1-18 (0,1,1)(0,1,1) 0.029 0.028 0.015 0.52 0.54 1 1.48 1.41 1.31 1.25
3 1.17 1.22 1.05 1.09
6 0.82F 0.79F 0.75%+ o0.72%+
12 0.54* 0.49*1 0.45*% 0.42%+

dm34 60  1-18 (0,1,2)(0,1,1) 0.096 0.092 0.064 0.67 0.70 1 0.72%F 0.45%T 0.84T 0.52F
3 0.73%t 0.41%t 0.797F 0.44*%t
6 0.74F 0.40%t 0.53%F 0.29%+
12 0.85 0.44*1 0.83 0.43*+

€40 60  1-15 (0,1,1)(0,1,1) 0.029 0.028 0.019 0.66 0.68 1 0.97 0.96 0.94 0.92
3 0.75*+ 0.76* 1 0.71%+ 0.71%+
6 0.69* 1 0.70%+ 0.67*F 0.68*+
12 0.62%t 0.62%t 0.61*+ 0.61*+

Average 0.037 0.035  0.023 0.65 0.67 1 1.12 1.02 1.01 0.91

3 0.92 0.80 0.85 0.73

6 0.76 0.60 0.67 0.54

12 0.57 0.45 0.53 0.43

Score 8 8 1 5 5 5 6

3 5 5 5 7

6 7 8 8 8

12 8 8 8 8

= indicates significance for DM test at 10% or less, + indicates significance for encompassing test at 10% or less.
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Table 4: Descriptive statistics of Out-of-sample and In-sample errors, France.

Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSE
Series L r (p,d,q)(P,D,Q)s | ARIMA  H-W SSA Toias 228 h A 255 Dosa, gosa
dals 60  1-12 (1,0,0)(0,1,1) 0.024 0.023 0.014 0.58 0.61 1 0.91 0.78 0.78% 0.67%
3 0.76* 1 0.68*+ 0.70*+ 0.64* 1
6 0.75*+ 0.737% 0.71%+ 0.69F
12 0.80* 1 0.67*t 0.76*+ 0.63* 1
dg24 | 120  1-21 (0,1,1)(0,1,1) 0.028 0.024 0.017 0.61 0.71 1 0.82 0.79% 0.78 0.75%
3 0.92 0.90 0.90 0.89
6 0.85 0.81 0.92 0.88
12 1.01 1.00 1.23 1.15
dj27 60  1-14 (1,1,0)(0,1,1) 0.031 0.029 0.019 0.61 0.66 T 0.93 0.99 0.83 0.89
3 0.70% 0.74%+ 0.67*% 0.71%+
6 0.50%+ 0.56%+ 0.51%+ 0.56%+
12 0.39*+ 0.53*+ 0.40%+ 0.56%+
dj28 120 1-18 (0,1,3)(1,1,0) 0.029 0.026 0.017 0.59 0.65 1 0.77% 0.62%T 0.80 0.65%T
3 0.74* 0.57%F 0.76* 0.60*1
6 0.63 0.48*+ 0.66 0.50%t
12 0.56%1 0.38*%+ 0.57*F 0.38* 1
dk29 18 1-18 (3,1,0)(0,1,1) 0.028 0.029 0.019 0.68 0.66 1 1.06 1.08 0.98 T.01
3 1.15 1.05 1.08 0.99
6 1.15 1.03 1.12 1.00
12 0.98 0.73*+ 0.90 0.67*t
dI31 18 1-18 (0,1,1)(0,1,1) 0.034 0.033 0.022 0.65 0.67 1 1.16 1.10 1.19 1.14
3 1.06 0.99 1.11 1.03
6 0.82 0.797F 0.83 0.80F
12 0.61*1 0.67*t 0.70*+ 0.76* 1
dm34 60  1-18 (0,1,1)(0,1,0) 0.081 0.077 _ 0.074 0.91 0.96 T 0.94 T.01 0.8 0.90
3 0.80 0.91 0.75 0.82
6 0.65* 1 0.81F 0.60*+ 0.75F
12 0.42%F 0.57*+ 0.40*+ 0.55*1
€40 60  1-15 (0,0,8)(1,1,0) 0.048 0.037  0.018 0.38 0.49 1 0.93F 0.86%T 0.87T 0.80%T
3 0.75%t 0.78*%+ 0.69%+ 0.71%t
6 0.65*% 0.75%+ 0.58*%+ 0.68*1
12 0.68* 0.71% 0.63* 0.66*
Average 0.038 0.035 0.025 0.63 0.68 1 0.94 0.90 0.88 0.85
3 0.86 0.83 0.83 0.80
6 0.75 0.75 0.74 0.74
12 0.69 0.66 0.70 0.67
Score 8 8 1 6 5 7 6
3 6 7 6 7
6 7 7 7 7
12 7 7 7 7

* indicates significance for DM test at 10% or less, + indicates significance for encompassing test at 10% or less.

Table 5: Descriptive statistics of out-of-sample errors.

Method | N | Mean | S.D | Min | Median | Max

1-step ahead

Holt-Winter | 720 | 0.00297 | 0.03109 | -0.13771 | 0.00440 | 0.16733

ARIMA 720 | 0.00014 | 0.02808 | -0.13844 | 0.00165 | 0.10497

SSA 720 | 0.00010 | 0.02837 | -0.08982 | -0.00034 | 0.087198
3-step ahead

Holt-Winter | 672 | 0.00521 | 0.03555 | -0.15961 | 0.00728 | 0.19733

ARIMA 672 | 0.00085 | 0.03281 | -0.14697 | 0.00284 | 0.10402

SSA 672 | -0.00025 | 0.02855 | -0.09839 | -0.00069 | 0.088908
6-step ahead

Holt-Winter | 600 | 0.00920 | 0.04115 | -0.18965 | 0.01150 | 0.20733

ARIMA 600 | 0.00347 | 0.03853 | -0.20505 | 0.00695 | 0.11062

SSA 600 | 0.00003 | 0.02903 | -0.13882 | 0.00063 | 0.08908
12-step ahead

Holt-Winter | 456 | 0.01767 | 0.05278 | -0.18090 | 0.02029 | 0.14733

ARIMA 456 | 0.00938 | 0.05452 | -0.35677 | 0.01424 | 0.19970

SSA 456 | 0.00146 | 0.02952 | -0.13039 | 0.00110 | 0.09062
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Table 6:

Out-of-sample percentage of forecasts of correct sign.

Holt-Winter ARIMA SSA
Series 1 3 6 12 1 3 6 12 1 3 6 12
UK

Food product 0.87%F 0.89%F 1.00* 0.89%F [ 0.83%* 0.96"F 1.00"*  0.68 | 0.90°* 096 0.92%F  0.74F
Chemicals 0.97*%  0.96%*  0.92%%  0.89%* | 0.97%*%  0.93%F  0.96%*  0.79%* | 0.97%*  0.93%*  0.80**  0.89**
Basic metals 0.80**  0.93%*  0.76%*  0.84** | 0.80** 0.86%*  0.72*  0.79%* | 0.73%* 0.82%* 0.80**  0.74*
Fabricated metal | 0.97**  0.93%f  0.88%% 0.84** | 0.93%* 0.89%* 0.92%% 0.84%% | 0.93%* 0.96%* 1.00**  0.74*
Machinery 0.90%*  0.93*%  0.80%*  0.74% | 1.00**  1.00%* 0.96%*  0.84%* | 0.90**  0.93%*  1.00**  0.95%*
Electrical machinery | 0.87%*  0.86** 0.84**  0.58 | 0.93** 0.82%* 0.92** 053 | 0.77** 0.89%* 0.92%*  0.74*
Vehicles 0.90%*  0.93%%  0.96%%  0.84%% | 0.90%F  0.93%F  0.96%F  0.84%F | 0.97FF  0.79%F  0.92%F  0.84%*
Electricity and gas | 0.93**  0.93%*  1.00%*  0.84** | 0.97** 0.96**  0.44  0.89%* | 1.00** 1.00%* 1.00%*  0.68
Average 090 092 090 0.81 | 0.92 092 0.86 078 | 0.90 0.91 0.92  0.79

Germany
Food product 0.90%F 0.78%F 0.92%F 0.79%F [ 0.90FF 0.75%F 0.88%F 0.84%F [ 0.93%F 0.86"F 0.92%F 0.95%F
Chemicals 0.86%*  0.89%*  0.72%  0.79%* | 0.87%*  0.89%*  0.92%%  0.89%* | 0.87%* 0.93%*  0.92%* 1.00%*
Basic metals 0.83%*  0.79%%  0.84%*  0.63 | 0.87*F 0.82%* 0.84%*  0.68 | 0.80** 0.75%*  0.88%f  (0.89**
Fabricated metal | 0.87**  0.93%f  0.88**  0.63 | 0.90** 0.93** 0.88**  0.63 | 0.77%* 0.96%* 1.00%** 1.00%*
Machinery 0.97*%  0.96%%  0.92%F  0.79%F | 0.97*FF  0.96%F  0.96%F  0.84%F | 0.90**  0.89%*  0.88%F  1.00**
Electrical machinery | 0.90%*  0.93%*  0.96%*  0.89%* | 0.90%** 0.96** 0.96%* 0.89** | 0.83** 0.86** 0.96%* 1.00%*
Vehicles 0.80**  0.75%*  0.88**  0.58 | 0.87** 0.89%*  0.92%%  0.79%* | 0.90%* 0.86**  0.96%*  0.95%*
Electricity and gas | 0.93%*  0.93**  1.00*%*  0.84%* | 0.97*% 0.89** 1.00** 0.84** | 0.90** 0.93** 0.92**  0.68
Average 088 087 0.89 074 | 090 089 092 0.80 | 0.86 0.88 0.93  0.93
France
Food product 0.90%%  93%F 0.92%F 0.84%F [ 0.93%F 1.00"* 0.92%F 0.95%* [ 0.93% 0.93% 1.00F 0.79%F
Chemicals 0.90%*  1.00%*  0.88%*  0.95%* | 0.90**  1.00%* 0.92%* 0.95%F | 0.93%* 0.93%* 0.76**  0.95%*
Basic metals 1.00%*  0.86%*  0.88**  0.95%* | 1.00%* 0.89%** 0.80%* 0.89** | 1.00%* 0.96** 1.00** 0.89%*
Fabricated metal | 0.97*%  0.93%**  0.92%*  1.00%* | 0.93**  1.00** 1.00** 0.95%* | 0.97**  0.96%* 1.00%*  0.95%*
Machinery 0.93**  1.00%*  0.96%*  0.95%* | 0.90**  1.00%* 0.96%* 1.00%* | 0.97** 0.86** 0.80**  0.89**
Electrical machinery | 0.83**  0.86**  0.84%%  0.89%* | 0.87%* (.89%* (.84%* (.84%* | 0.97%* 0.93%* 0.88*%*  (.89**
Vehicles 0.93%*  0.96%*  0.84%*  0.84%* | 0.87** 0.89%* 0.84**  0.63 | 0.87%* 0.93%* 0.80**  0.84**
Electricity and gas | 0.77%*%  0.96**  1.00%*  0.89** | 0.87** 0.96** 1.00** 0.89** | 0.87** 0.96** 1.00**  0.53
Average 090 094 091 091 [ 091 096 091 0.89 [ 0.94 0.93 0.91  0.84
[ Overall Average | 0.89 0.91 0.90 0.82 | 0.91 0.92 0.90 0.81 [ 090 0.91 0.92 0.85 |

x indicates significance at 5% and = indicates significance at 1%.
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Appendix A: European industrial production series

The two-digit categories examined in this paper are:

Table 7: Industrial production series.

Short name Detail
Food product (dal5) Manufacture of food products and beverages
Chemicals (dg24) Manufacture of chemicals and chemical product
Basic metals (dj27) Manufacture of basic metals
Fabricated metal (dj28) Manufacture of fabricated metal products, except machinery and equipment
Machinery (dk29) Manufacture of machinery and equipment N.E.C.
Electrical machinery (d131) | Manufacture of electrical machinery and apparatus N.E.C.
Vehicles (dm34) Manufacture of motor vehicles, trailers and semi-trailers
Electricity and gas (e40) | Electricity, gas and water supply

For more information about these series and some graphs depicting them (up to 1995),
see Osborn et al. (1999).

Appendix B: Application of SSA for the Fabricated
metal series in Germany

We shall now use the Fabricated metal series for Germany as an example to illustrate the
selection of the SSA parameters and to show the reconstruction of the original series in
details. To perform the analysis, we have used the SSA software®. Fig. 2 presents the
series, indicating a complex trend and strong seasonality.

468

4.45

4.22

3.99 : :
JAN 1978 JAN 1985 JAN 1991 JAN 1998 DEC 2004

Figure 2: Fabricated metal series in Germany

http://www.gistatgroup.com/cat/index.html
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Selection of the window length L

The window length L is the only parameter in the decomposition stage. Knowing that
the time series may have a periodic component with an integer period, to achieve a better
separability of this periodic component it is advisable to take the window length propor-
tional to that period. For example, the assumption that there is an annual periodicity in
the series suggests that we must pay attention to the frequencies k/12 (k =1,...,12). As
it is advisable to choose L reasonably large (but smaller than 7'/2 which is 162 in this
case), we choose L = 120.

Selection of r

Information from auxiliary methods help us in choosing the parameters of the models.
Here, we briefly explain some methods, which are useful in the separation of the signal
component from noise. Usually a harmonic component produces two eigentriples with
close singular values (except for the frequency 0.5 which provides one eigentriple with the
saw-tooth singular vector). Another useful insight is provided by checking breaks in the
eigenvalue spectra. Additionally, a pure noise series typically produces a slowly decreasing
sequence of singular values.

Choosing L = 120 and performing SVD of the trajectory matrix X, we obtain 120
eigentriples, ordered by their contribution (share) in the decomposition. Fig. 3 depicts
the plot of the logarithms of the 120 singular values.

7.6

1.9

-3.8

9.5

1 20 40 60 80 100 120

Figure 3: Logarithms of the 120 eigenvalues.

Here a significant drop in values occurs around component 19 which could be inter-
preted as the start of the noise floor. Six evident pairs, with almost equal leading singular
values, correspond to six (almost) harmonic components of the series: eigentriple pairs
3-4, 6-7, 8-9, 10-11, 14-15 and 17-18 are related to the harmonics with specific periods
(we show later that they correspond to the periods of 6, 4, 12, 3, 36 and 2.4 months).

Another way of grouping is to examine the matrix of the absolute values of the w-
correlations. Fig. 4 shows the w-correlations for the 120 reconstructed components in a
20-grade grey scale from white to black corresponding to the absolute values of correla-
tions from 0 to 1. Based on this information, we select the first 18 eigentriples for the
reconstruction of the original series and consider the rest as noise.

The principal components (shown as time series) of the first 18 eigentriples are shown
in Fig. 5. Consider a pure harmonic with a frequency w, certain phase, amplitude and
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Figure 4: Matrix of w-correlations for the 120 reconstructed components.

the ideal situation where the period P = 1/w is a divisor of both the window length L
and K =T — L+1. In this ideal situation, the left eigenvectors and principal components
have the form of sine and cosine sequences with the same period P and the same phase.
Thus, the identification of the components that are generated by a harmonic is reduced
to the determination of these pairs.

1(99.967%) 2(0.006%) 3(0.004%)
46 -0.5 -0.5

4(0.004%) 5(0.003%) 6(0.002%)
-0.5 -0.4 -0.3

7(0.002%) 8(0.001%) 9(0.001%)
L e T e
-0.3 -0.3 -0.3

10(0.001%) 11(0.001%) 12(0.001%)
T O N
-0.2 -0.3 -0.4

13(0.001%) 14(0.001%) 15(0.001%)
03 /’\/\W 03 r\/\/\/\/\/\ 03 _,\_/\_/\/\/\/
-0.4 -0.3 -0.2

16(0.000%) 17(0.000%) 18(0.000%)
-0.2 -0.12 -0.13

Figure 5: The first 18 principal components plotted as time series

Fig. 6 depicts the scatterplots of the paired principal components in the series, corre-
sponding to the harmonics with periods 6, 4, 12, 3, 36 and 2.4 months. They are ordered
by their contribution (share) in the SVD step (from left to right).

The periodograms of the paired eigentriples (3-4 , 6-7, 8-9, 10-11 and 17-18) also
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Figure 6: Scatterplots (with lines connecting consecutive points) corresponding to the
paired harmonic principal components.

confirm that the eigentriples correspond to the periods of 6, 4, 12, 3, 36 and 2.4 months.

Construction of Trend, Harmonics and Noise

Trend is a slowly varying component of a time series which does not contain oscillatory
components. Thus to capture the trend in the series, we should look for slowly vary-
ing eigenvectors. Fig. 7 (top) shows the extracted trend which is obtained from the
eigentriples 1, 2, 5, and 12-13. It clearly follows the trend in the series.

Fig. 7 (middle) represents all the harmonic components and clearly shows the same
pattern of seasonality as in the original series. Thus, we can classify the rest of the
eigentriples components (19-120) as noise. Fig. 7 (bottom) shows the residuals which are
obtained from these eigentriples. The w-correlation between the reconstructed series (the
eigentriples 1-18) and the residuals (the eigentriples 19-120) is equal to 0.0006 confirms
that this grouping is very reasonable. The p-value of Anderson-Darling test (Stephens,
1974) for testing normality is 0.6 implying that the residual series has a distribution very
close to the normal distribution.
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Figure 7: Reconstructed trend (top), harmonic (middle) and noise (bottom).
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