
Foreasting European Industrial Prodution withSingular Spetrum AnalysisHossein Hassania;b�, Saeed Heravi and Anatoly ZhigljavskyaaStatistis Group, Shool of Mathematis, Cardi� University, CF24 4AG, UK.bStatistial Researh and Training Center (SRTC), Tehran, IranCardi� Business Shool, Cardi� University, CF10 3EU, UK.AbstratIn this paper, the performane of Singular Spetrum Analysis (SSA) tehniqueis assessed by applying it to 24 series measuring the monthly seasonally unad-justed industrial prodution for important setors of the German, Frenh and UKeonomies. The results are ompared with those obtained using Holt-Winter andARIMA models. All three methods perform similarly in the short-term foreastingand in prediting the diretion of hange (DC). However, at longer horizons, SSAsigni�antly outperforms ARIMA and Holt-Winter methods.Keywords: Singular Spetrum Analysis, ARIMA, Holt-Winter method, Fore-asting, European Industrial Prodution series.1 IntrodutionThe Singular Spetrum Analysis (SSA) is a powerful tehnique for nonparametritime series analysis and foreasting. SSA deomposes the original time series into a sumof small number of independent and interpretable omponents suh as slowly varyingtrend, osillatory omponents and noise. Theoretial and pratial foundations of theSSA tehnique an be found in Golyandina et al. (2001) and an introdution to thesubjet is given in Elsner and Tsonis (1996).SSA has a wide range of appliations; from meteorology and physis to eonomisand �nanial mathematis. SSA was �rst applied to extrat tendenies and harmoniomponents in meteorologial and geophysial time series (Vautard et al., 1992). Inreent years SSA has been developed and applied to many pratial problems (see, forexample Ghil et al., 2002, and Moskvina & Zhigljavsky, 2003).SSA is espeially useful for analyzing and foreasting series with omplex seasonalomponents and non-stationarity. Thus, unlike ARIMA models, hoosing an appropriatedegree of di�erening is not an important issue in SSA. The data onsidered in this studyhas a omplex struture of this kind; as a onsequene, we found superiority of SSA overlassial tehniques.�E-mail addresses: HassaniH�f.a.uk (H. Hassani), HeraviS�f.a.uk (S. Heravi),ZhigljavskyAA�f.a.uk (A. A. Zhigljavsky). 1



Although some probabilisti and statistial onepts are employed in the SSA-basedmethods, no statistial assumptions suh as stationarity of the series or normality of theresiduals are required and SSA uses the bootstrapping to obtain the on�dene intervalsfor the foreasts. Another important aspet of the SSA (whih an be very useful ineonomis) is that, unlike many other methods, it works well even for small sample size(Vautard et al., 1992, Hassani, 2007).This study uses eight monthly industrial prodution indies for Germany, Frane andthe UK, previously analysed in linear and nonlinear ontexts by Osborn et al. (1999)and Heravi et al. (2004). The eight series examined for the three ountries, Germany,Frane and the UK, are interesting and important sine they over prodution in themajor industrial setors. They also reet diverse types of industries.Osborn et al. (1999) have onsidered the extent and nature of seasonality in theseseries. Their �ndings show that seasonality aounts for over 90% of the variation inalmost all Frenh series. The strong seasonal pattern for the traditional industrial setorin Frane is assoiated with delines in prodution during the summer. Seasonality alsoaounts for at least 80% of variation in all series in Germany and in all series (exeptvehiles) in the UK. Osborn et al. (1999) demonstrated that seasonalities for these seriesare muh larger than those reported for monthly output in the United States at the two-digit level (Miron, 1996, Table 3.3). The di�erene in pattern of seasonality betweenthe European ountries and the United States is assoiated to di�erenes in traditionsand institutions. Based on seasonal unit root tests, Osborn et al. (1999) found thatmost of the series should be modelled using onventional �rst di�erene. However annualdi�erene spei�ation often produed the most aurate out-of-sample foreasts.In ontrast to Moody et al. (1993) and Swanson & White (1997a,b), Heravi et al.(2004) found relatively little evidene of non-linearity in most series. Comparing linear andneural network foreasts, they found that linear models generally produe more auratepost-sample foreasts than neural network models at horizons of up to a year in terms ofroot mean square error.Here we examine the out-of-sample foreast auray of the SSA tehnique and om-pare it with ARIMA models and the Holt-Winter method. The struture of the paperis as follows. The next setion briey desribes the SSA tehnique and provides somegeneral rules for seleting its parameters. Setion 3 outlines the data for the study. Ourforeast results are then presented and desribed in Setion 4 and some onlusions aregiven in Setion 5. Appendix A briey desribes the data and appendix B provides anexample of the SSA analysis.2 Singular Spetrum Analysis (SSA)The main purpose of SSA is to deompose the original series into a sum of a small numberof time series, so that eah subseries an be identi�ed as either a trend, periodi or quasi-periodi omponent (perhaps, amplitude-modulated), or noise. This is followed by areonstrution of the original series.The SSA tehnique onsists of two omplementary stages: deomposition and reon-strution. At the �rst stage we deompose the time series and at the seond stage wereonstrut the original time series and use the reonstruted time series for foreasting.Here we provide a brief disussion on the methodology of the Basi SSA method; see2



Golyandina et al. (2001) for more information and many variations of the Basi SSA.Short desription of the Basi SSAThe main idea of the Basi SSA is as follows. Consider the real-valued nonzero time seriesYT = (y1; : : : ; yT ) of suÆient length T . Let K = T �L+1, where L is some integer alledthe window length (we an assume L � T=2). De�ne the so-alled `trajetory matrix'X = [X1; : : : ; XK℄ = (xij)L;Ki;j=1 = 0BBB� y1 y2 y3 : : : yKy2 y3 y4 : : : yK+1... ... ... . . . ...yL yL+1 yL+2 : : : yT
1CCCA :Note that X is a Hankel matrix (by the de�nition, these are the matries suh thattheir (i; j)-th entries depend only on the sum i+j). We then onsider X as a multivariatedata with L harateristis and K = T � L + 1 observations. The olumns Xj of X,onsidered as vetors, lie in an L-dimensional spae RL . De�ne the matrixXXT : Singularvalue deomposition (SVD) of XXT provides us with the olletions of L eigenvalues�1 � �2 � : : : � �L � 0 and the orresponding eigenvetors U1; U2; : : : ; UL; where Ui isthe normalised eigenvetor orresponding to the eigenvalue �i (i = 1; : : : ; L).The SVD of the trajetory matrix an be written as:X = E1 + � � �+Ed; (1)where Ei = p�iUiViT (i = 1; : : : ; d), d is the number of non-zero eigenvalues of XXT ,and V1; : : : ; Vd are the prinipal omponents de�ned as Vi = XTUi=p�i. The olletion(p�i; Ui; Vi) is referred to as the i-th eigentriple of the matrix X.A group of r (with 1 � r � d) eigenvetors determines an r-dimensional hyperplane inthe L-dimensional spae RL of vetors Xj. The L2-distane between vetors Xj 2 RL andthis r-dimensional hyperplane is equal to Pj =2I �j and an be rather small whih wouldmean that ~X, the projetion of X into this hyperplane, approximates well the originalmatrix X. Subsequent averaging over the diagonals of ~X allows us to obtain a series thatan be onsidered as an approximation to the original series.Seletion of parametersHere we onsider a version of SSA where we split the set of indies f1; 2; : : : ; dg intotwo groups only: I = f1; : : : ; rg and �I = fr + 1; : : : ; dg. We assoiate the group I(and the related matrix EI = E1 + : : : + Er) with signal and the group �I with noise.The SSA method requires then the seletion of two parameters, the window length Land the number of elementary matries r. There are spei� rules for seleting theseparameters; their hoie depends on struture of the data and the analysis we want toperform. Detailed desription of parameter seletion proedures is given in Golyandinaet al. (2001). Here we summarize a few general rules.The window length L is the single parameter that should be seleted at the deompo-sition stage. Larger values of L (we an always assume L � T=2) lead to a more detaileddeomposition; in seleting L we should try to ahieve suÆient separability of the om-ponents. The following quantity (alled the weighted orrelation or w-orrelation) is a3



natural measure of dependene between two time series Y (1)T and Y (2)T :�(w)12 = �Y (1)T ; Y (2)T �w = k Y (1)T kwk Y (2)T kwwhere �Y (i)T ; Y (j)T �w =PTk=1wky(i)k y(j)k , wk=minfk; L; T � kg, k Y (i)T kw =r�Y (i)T ; Y (i)T �w(i; j = 1; 2).If two reonstruted omponents have zero w -orrelation it means that these twoomponents are well separated. Large values of w -orrelations between reonstrutedomponents indiate that the omponents should be onsidered as one group and possiblyorrespond to the same omponent in the SSA deomposition.The �rst elementary matrix E1 with the norm p�1 has the highest ontribution to thenorm of X in (1) and the last elementary matrix Ed with the norm p�d has the lowestontribution to the norm ofX. The plot of the eigenvalues �1; � � � ; �d gives an overall viewonerning the values of the eigenvalues and is essential in deiding where to trunate thesummation of (1) in order to build a good approximation of the original matrix. A slowlydereasing sequene of eigenvalues typially indiate the presene of noise in the series.Similar values of the eigenvalues allow the identi�ation of the eigentriples that orrespondto the same harmoni omponent of the series. The periodogram analysis of the originaltime series also helps us in seleting the groups. Sharp sparks in the periodogram areassoiated with the harmoni omponents in the series.We return to the disussion on parameter seletion in Appendix B where we providedetails of analysis for one of the series.SSA ForeastingSSA foreasting method an be applied to the time series that approximately satisfylinear reurrent formulae 1. The lass of time series governed by linear reurrent formulaeis rather wide; it inludes harmonis, polynomial and exponential time series.Let us briey desribe the so-alled SSA reurrent foreasting algorithm (for moreinformation see Golyandina et al., 2001). De�ne the original series YT = (y1; : : : ; yT )and the reonstruted series eYT = (ey1; : : : ; eyT ). For an eigenvetor U 2 RL we denote thevetor of the �rst L�1 omponents of the vetor U as UO 2 RL�1 . Set v2 = �21+: : :+�2r <1, where �i is the last omponent of the eigenvetor Ui (i = 1; : : : ; r). It an be provedthat the last omponent yL of any vetor Y = (y1; : : : ; yL)T is a linear ombination of the�rst omponents (y1; : : : ; yL�1); that is, yL = a1yL�1 + : : : + aL�1y1 where the vetor ofoeÆients A = (a1; : : : ; aL�1) an be expressed as A =Pri=1 �iUOi =(1�v2): The foreastsŷT+1; : : : ; ŷT+h are then obtained asŷi = � eyi for i = 1; : : : ; TPL�1j=1 aj ŷi�j for i = T + 1; : : : ; T + h:1We say that the time series YT satis�es an linear reurrent formulae of order L�1 if there are numbersa1; : : : ; aL�1 suh that yT�i = L�1Xk=1 akyT�i�k; 0 � i � T � L:
4



BootstrappingAssume that we have a time series YT = fytgTt=1 = Y (1)T + Y (2)T where Y (1)T is the signaland Y (2)T represents the noise. Let us onsider a method of onstruting average series forthe signal y(1)T+M at time T+M. In the unrealisti situation, when we know both the signalY (1)T and the true model of the noise Y (2)T , the Monte Carlo simulation an be appliedto hek the statistial properties of the foreast values ey(1)T+M relative to the atual termy(1)T+M .Indeed, assuming that the rules for the eigentriple seletion are �xed, we an simulateN independent opies Y (2)T;i (i = 1; : : : ; N) of the proess Y (2)T and apply the foreastingproedure to N independent time series YT;i = Y (1)T + Y (2)T;i . Then the foreasting resultwill form a sample ey(1)T+M;i, whih should be ompared against y(1)T+M . In this way theMonte Carlo average series for the foreast an be built up.Sine in pratie we do not know the signal Y (1)T , we an not apply this proedure.Under a suitable hoie of the window length L and the orresponding eigentriples, we havethe representation YT = eY (1)T + eY (2)T , where eY (1)T (the reonstruted series) approximatesY (1)T , and eY (2)T is the residual series. Suppose now that we have a (stohasti) model for theresidual eY (2)T (for instane, we an postulate some model for Y (2)T and, sine eY (1)T � Y (1)T ,we apply the same model for eY (2)T with the estimated parameters). Then, simulatingN independent opies Y (2)T;i of the series eY (2)T , we obtain N series YT;i = eY (1)T + eY (2)T;i andprodueM foreasting results ey(1)T+M;i in the same manner as in the Monte Carlo simulationvariant.From the sample ey(1)T+M;i (1 � i � N) of the foreasts we an ompute the averagebootstrap foreast. This average bootstrap an then be ompared with the value ey(1)T+Mobtained by Basi SSA foreast. Large disrepany between these two foreast wouldtypially indiate that the original SSA foreast is not reliable. Furthermore, using thesample of the bootstrap foreast results we an estimate the distribution of the foreastand ompute, for example, on�dene intervals for the true values. To do that, we needa stohasti model for Y (2)T ; a standard assumption would be the assumption that Y (2)T isthe Gaussian white noise model. This assumption an be easily veri�ed using the lassialtest for randomness and normality.3 The dataThe data in this study are taken from Eurostat, the oÆial statistial ageny of theEuropean Community and represents eight major omponents of industrial produtionin Germany, Frane and the UK. The series used are seasonally unadjusted monthlyindies for real output in Food Produts, Chemials, Basi Metals, Fabriated Metals,Mahinery, Eletrial Mahinery, Vehiles and Eletriity/Gas industries. Appendix Aprovides some information about the series. It should be noted that the series for Germanyare the aggregated data following the reuni�ation of the former East Germany and WestGermany.The same 24 series, ending in Deember 1995, have been previously examined instudies by Osborn et al. (1999) and Heravi et al. (2004). As explained in these papers,5



Table 1: Desriptive statistis of the series.Mean S.D WeightSeries UK GR FR UK GR FR UK GR FRFood produts 4.64 4.42 4.58 0.067 0.195 0.129 10.2 7.6 9.0Chemials 4.65 4.41 4.52 0.087 0.192 0.176 8.5 8.6 8.9Basi metals 4.54 4.58 4.51 0.107 0.098 0.175 3.8 4.5 4.3Fabriated metal 4.61 4.39 4.50 0.064 0.201 0.194 5.8 7.2 9.8Mahinery 4.63 4.51 4.55 0.078 0.152 0.163 7.5 13.6 8.6Eletrial mahinery 4.47 4.37 4.57 0.105 0.256 0.138 3.0 5.6 3.9Vehiles 4.64 4.29 4.39 0.133 0.315 0.405 4.7 10.4 7.1Eletriity and gas 4.62 4.48 4.54 0.176 0.172 0.204 6.7 6.5 9.6these time series have been hosen primarily beause of their importane to industrialprodution aross the three ountries. These eight time series aount for at least halfof total industrial prodution in eah ountry. Plots of these time series are inluded inOsborn et al. (1999) and broadly represent a period of growth in the 1980s and stagnationor reession during the early 1990s. Here we have updated the data and in all ases thesample period ends in July 2007. However, the starting dates are di�erent whih reetsthe availability of onsistent data from Eurostat. The data for Germany starts fromJanuary 1978, for Frane starts from January 1990 and for the UK starts from 1998.In all ases, the �nal two and a half years (30 observations) of data are retainedfor out-of-sample foreast auray tests. For omparability and in line with the usualonvention for eonomi time series, all time series are analysed in logarithmi form andall subsequent results refer to the time series after this transformation. The desriptivestatistis for these series are given in Table 1. For Germany, the vehiles series has thehighest volatility, whih is more than twie than the volatility of the other series. Similarly,the vehiles series has the highest volatility for Frane. The UK data, generally, are lessvolatile with gas and eletriity series having highest volatilities.Almost all of the industrial prodution series have omplex struture with nonlineartrends and omplex seasonality. SSA is well suited for non-stationary series with omplextrend and periodiities and an be a powerful tehnique in modeling these industrialprodution series.4 Foreasting ResultsComparison of the auray of the foreastsWe onsider foreasting performane of the SSA, ARIMA and Holt-Winter tehniques atdi�erent horizons h, of up to a year. We provide results for h = 1; 3; 6 and 12 (months).We use the data up to the end of 2004 as training sample (to perform SSA deompositionand to estimate parameters of ARIMA and Holt-Winter models). Thus, with two and ahalf years of out-of-sample data, we have N = 30; 28; 25 and 19 out-of-sample foreasterrors at the horizons h = 1; 3; 6 and 12, respetively.We use the root mean squared error (RMSE) and the perentage of foreasts thatorretly predit the diretion of hange to measure the foreast auray.2 RMSE is the2We have also omputed other measures based on the magnitude of foreast errors, suh as relative6



most frequently quoted measure in foreasting literature (e.g., Zhang et al 1998). In orderto save spae, we only provide RMSE ratios of the SSA to that of the Holt-Winter andARIMA models. 3 The ratios of RMSE areRRMSE =  NXi=1 (ŷT+h;i � yT+h;i)2! 12 =  NXi=1 (~yT+h;i � yT+h;i)2! 12where ŷT+h is the h-step ahead foreast obtained by SSA foreasting and ~yT+h is theh-step ahead foreast from either ARIMA or Holt-Winter model and N is the numberof the foreasts. If RRMSE < 1, then the SSA outperforms the other methods (eitherARIMA or Holt-Winter).In omputing Box-Jenkins ARIMA foreasts, we need to hoose the lags, the degree ofdi�erening and the degree of seasonality (p; d; q), (P;D;Q)s where s = 12. To do that weuse the maximum order of lags, set by the software, and apply the Bayesian InformationCriterion (BIC). Holt-Winter foreasts are also obtained by minimizing the BIC. The SSAparameters, the window length L and the number of eigentriples r, are hosen based onthe eigenvalue spetra and separability (see Appendix B). The parameters (L; r) of theSSA and the orders (p; d; q); (P;D;Q)s of the ARIMA models are given when the modelsare estimated using data up to the end of 2004. Appendix B gives details of the analysisfor fabriated metal series for Germany. Details for the other series are available fromauthors upon request.Tables 2, 3 and 4 show the in-sample RMSE and RMSE ratios and out-of-sampleRMSE ratios for the UK, Frane and Germany. Some summary statistis (average RMSE,RRMSE of SSA models to the Holt-Winter and ARIMA models for eah ountry andhorizon) are also given at the bottom of eah table. The summary statistis are theRMSE and the RRMSE averages and the sores. The sore is the number of times whenSSA model yields lower RMSE. SSA has produed lower RMSE for all the series for thein-sample results 4.The averages and the sores for 1-step ahead show that SSA foreasts are omparablewith the foreasts obtained by ARIMA and Holt-Winter models. However, the perfor-mane of the SSA does improve relative to ARIMA and Holt-Winter models for fore-asting at the horizons greater than one. The sores also on�rm that the SSA foreastsoutperform the foreasts produed by the ARIMA and Holt-Winter models, partiularlyat longer horizons. For all the series and three ountries (24 ases), SSA outperformsthe ARIMA 16; 18; 22 and 23 times at h = 1; 3; 6 and 12 horizons respetively. It alsooutperforms the Holt-Winter models 16; 19; 23 and 23 times at h = 1; 3; 6 and 12 horizons.Table 5 summarizes the results of foreasts by ARIMA, Holt-Winter and SSA for allseries. This table shows that the quality of 1-step ahead foreasts are similar for ARIMAand SSA; Holt-Winter foreasts being slightly worse. The quality of SSA foreasts athorizons h = 3; 6 and 12 is muh better than the quality of ARIMA and Holt-Winterforeasts. As h inreases, the quality of ARIMA and Holt-Winter foreasts beomesworse; the standard deviation of the ARIMA and Holt-Winter foreasts inreases almostroot mean absolute errors. These measures yield qualitatively similar results to RMSE; we thus do notreport them.3Results of analysis (inluding values of RMSE for eah series, method and horizon) are available fromthe authors upon request.4SSA gives the highest R2, although all three methods �t the data well in-sample, with R2 > 81%.7



linearly with h. The situation is totally di�erent for the SSA foreasts: the quality ofSSA foreasts is almost independent of the value of h (at least, in the range of values of honsidered in the paper). This observation serves as a on�rmation of the following fats:(i) most of the series onsidered here have a struture whih an desribed via a deter-ministi trend and seasonality (for an example, see Appendix II);(ii) this struture is well reovered by the SSA;(iii) in most ases, the struture of the series is very stable as it is kept by the series forat least 12 months starting at any point.Note that in the ideal situation, when we have a series whih is a sum of a deterministiomponent (fully reovered by SSA) and a random noise, the error of SSA foreast willbe exatly the same at any horizon. For more information, see Chapter 2 in Golyandinaet al. (2001).Modi�ed Diebold-Marino statistisUsing the modi�ed Diebold-Marino statistis, given in Harvey et al. (1997), we test for thestatistial signi�ane of the results. The symbol � indiates the results at the 10% levelof signi�ane or less. Comparing the SSA foreasts with the ARIMA, SSA outperformsthe ARIMA signi�antly 2; 12; 9 and 19 times at h = 1; 3; 6 and 12 horizons respetively at10% signi�ane level or less. SSA also outperforms the Holt-Winter signi�antly 6; 13; 16and 19 times at h = 1; 3; 6 and 12 horizons respetively at 10% signi�ane level or less.Similar results have also been found when omparing the bootstrap foreasts, alled in thetable BSSA (to obtain bootstrap average series we have repliated the series 1000 times).In fat, the sores for all the horizons in tables 2, 3 and 4 show that both the SSA andbootstrap SSA methods have outperformed the ARIMA and Holt-Winter models exatlythe same number of times (160 times out of 192 di�erent ases).We have also used the foreast enompassing test (Harvey et al. (1998)). The symbol+ indiates the results at the 10% level of signi�ane or less. The results also on�rmsthe superiority of the SSA, with 54% of ases signi�antly better at the 10% level ofsigni�ane or less.Cumulative distribution funtions (.d.f.) of the absolute values of the out-of-sampleerrors (for all eight series and 3 ountries) obtained by SSA, ARIMA and Holt-Winterforeasts are presented in Fig. 1. If the .d.f. graph produed by one method is stritlyabove the graph of another .d.f., then we an say that the errors obtained by the �rstmethod are stohastially smaller than the errors represented by the seond method. Wean see from Fig. 1 that for h = 3; 6 and 12, SSA foreasting errors are stohastiallymuh smaller than the errors of the other two methods. In addition, it an be seen thatthe ARIMA foreast errors are slightly smaller than the Holt-Winter foreast errors. Inthe ase of h = 1 there is no evident prevalene of any method.Diretion of hange preditionsAs another measure of foreast auray, in addition to RMSE, we also ompute theperentage of foreasts that orretly predit the diretion of hange. Ash et al. (1997)argue that for some purposes, it may be more harmful to make a smaller predition8



error yet misforeast the diretion of hange, than to make a larger diretionally orreterror. Clements and Smith (1999) disuss that the value of a model foreasts may bebetter measured by the diretion of hange. Heravi et al. (2004) argue that the diretionof hange foreasts are partiularly important in eonomis for apturing the businessyle movement relating to expansion versus reession. Here the diretion of hange isinterpreted only in terms of whether industrial prodution in a partiular setor inreasesor dereases.Table 6 provides the perentage of foreasts that orretly predit the diretion ofhange at h = 1; 3; 6 and 12 horizons. It also shows whether they are signi�antly greaterthan the pure hane (p = 0:50). The symbols � and �� in the table indiate the 5%and 1% levels of signi�ane. A set of summary results is also given at the bottom ofthe table. The summary statistis are the average of orret signs for all eight series ath = 1; 3; 6 and 12 horizons and overall average for the three ountries. The perentageof orret signs are generally better than those reported in Heravi et al. (2004). This isdue the fat that the results for diretional hange are partiulary sensitive to struturalhange in the out-of-sample period. The perentage of orret signs an be extremelyhigh or low for all the three methods depending on whether there is a strutural hangein the series in the out-of-sample period. The overall perentage of orret signs for SSAare 90%; 91%; 92% and 85% at h = 1; 3; 6 and 12 respetively. For the Holt-Winter,these �gures are 89%; 91%; 90% and 82%, whih are slightly lower than the SSA. ARIMAmodels have produed slightly better results (91% and 92%) at horizons h = 1 and h = 3but they are lower (90% and 81%) at h = 6 and 12 horizons. For all 96 ases (3 ountries,8 series, h = 1; 3; 6 and 12 horizons) SSA has produed 93 signi�ant ases at the 1% and5% level. Similar results were obtained with the Holt-Winter and ARIMA models, giving93 and 90 signi�ant ases respetively.5 ConlusionIn this paper, we ompared Singular Spetrum Analysis (SSA), ARIMA and Holt-Wintermethods for foreasting seasonally unadjusted monthly data on industrial produtionindiators in Germany, Frane and the UK. We demonstrated that SSA is a very powerfultool for analyzing and prediting eonomi data. SSA outperformed the ARIMA andHolt-Winter methods in prediting the values of the prodution series aording to theRMSE riterion, partiularly at horizons of h = 3; 6 and 12 months. We also foundthat SSA works well for small sample sizes, as for the UK with the sample size of 84observations. The foreasts obtained by bootstrapping also on�rm the �ndings. We alsofound that the three methods perform similarly well in prediting the diretion of hange.However, SSA outperforms the Holt-Winter and ARIMA models at longer horizons andhene an be onsidered as a reliable method for prediting reessions and expansions.AknowledgmentsThe authors would like to thank the editor and the referees for their onstrutive ommentswhih have led to substantial improvements in this paper. The authors are grateful totheir olleagues Nina Golyandina and Vladimir Nekrutkin (University of St.Petersburg)9
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6-step ahead 12-step aheadFigure 1: The umulative distribution funtions of the absolute values of the out-of-sample errors (for all eight series and 3 ountries) obtained by SSA (thik-line), ARIMA(thin-line) and Holt-Winter (dashed-line)
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Table 2: Desriptive statistis of Out-of-sample and In-sample errors, UK.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 36 1-14 (1,0,0)(0,1,1) 0.012 0.010 0.007 0.58 0.70 1 0.90+ 0.78*+ 0.93 0.80*+3 0.83+ 0.79+ 0.92+ 0.88+6 0.77+ 0.63*+ 0.84+ 0.69*+12 0.21*+ 0.95 0.23*+ 1.04dg24 36 1-14 (0,1,1)(0,1,1) 0.019 0.015 0.009 0.47 0.60 1 0.87 0.77*+ 0.93 0.83+3 0.65*+ 0.67*+ 0.70*+ 0.71*+6 0.58* 0.57*+ 0.61* 0.59*+12 0.74+ 0.80+ 0.77+ 0.83+dj27 24 1-16 (0,1,1)(0,1,1) 0.034 0.028 0.005 0.15 0.18 1 0.96 0.90+ 0.91 0.85*+3 0.81+ 0.79+ 0.90+ 0.89+6 0.92 0.92 1.07 1.0712 0.30*+ 0.80 0.34*+ 0.92dj28 36 1-10 (1,0,0)(1,1,0) 0.026 0.020 0.019 0.73 0.95 1 0.86+ 1.06 0.96 1.183 0.84*+ 0.99 1.02 1.216 0.79+ 0.81+ 0.91 0.9412 0.42*+ 0.83 0.46*+ 0.93dk29 36 1-9 (0,1,1)(0,1,1) 0.026 0.023 0.021 0.81 0.91 1 1.21 0.83+ 1.26 0.87+3 0.98 0.76*+ 1.04 0.816 0.98 0.59*+ 0.93 0.56*+12 0.76+ 0.48*+ 0.82 0.52*+dl31 36 1-11 (0,1,1)(0,1,0) 0.037 0.025 0.020 0.54 0.80 1 1.30 1.48 1.20 1.373 0.93 1.05 0.89 1.006 0.81 0.76* 0.81 0.7512 0.42*+ 0.47*+ 0.56*+ 0.63*+dm34 60 1-13 (0,1,1)(1,1,0) 0.059 0.046 0.027 0.46 0.59 1 1.00 0.96 1.07 1.023 0.76*+ 0.80*+ 0.83+ 0.87+6 0.67*+ 0.73*+ 0.81+ 0.88+12 0.48*+ 0.52*+ 0.64*+ 0.69*+e40 36 1-8 (0,1,1)(0,1,0) 0.035 0.024 0.020 0.57 0.83 1 0.93 0.81+ 0.97 0.83+3 1.02 0.80*+ 1.06 0.84+6 0.85+ 0.67*+ 0.92+ 0.72*+12 0.65*+ 0.42*+ 0.67*+ 0.43*+Average 0.031 0.024 0.016 0.54 0.70 1 1.00 0.95 1.03 0.973 0.85 0.83 0.92 0.906 0.80 0.71 0.86 0.7812 0.50 0.66 0.57 0.75Sore 8 8 1 5 6 5 53 7 7 5 66 8 8 7 712 8 8 8 7� indiates signi�ane for DM test at 10% or less, + indiates signi�ane for enompassing test at 10% or less.
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Table 3: Desriptive statistis of Out-of-sample and In-sample errors, Germany.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 60 1-12 (0,1,1)(0,1,1) 0.020 0.020 0.016 0.80 0.80 1 0.89 0.89 0.82 0.833 0.69*+ 0.62* 0.69*+ 0.63*6 0.69*+ 0.64*+ 0.66*+ 0.61*+12 0.49*+ 0.61*+ 0.56*+ 0.70*+dg24 120 1-21 (1,1,0)(0,1,1) 0.024 0.023 0.017 0.71 0.74 1 0.89 0.84 0.98 0.973 0.66*+ 0.57* 0.78+ 0.67*6 0.70*+ 0.43*+ 0.76+ 0.47*+12 0.57*+ 0.31*+ 0.66*+ 0.36*+dj27 60 1-19 (0,1,1)(0,1,1) 0.034 0.032 0.019 0.56 0.59 1 1.59 1.45 1.24 1.133 1.25 1.18 1.01 0.956 0.94 0.76*+ 0.73*+ 0.58*+12 0.56*+ 0.47*+ 0.44*+ 0.37*+dj28 120 1-18 (0,1,1)(0,1,1) 0.028 0.027 0.021 0.75 0.78 1 0.97 0.89 0.87 0.793 0.75* 0.61* 0.74* 0.61*6 0.49*+ 0.40*+ 0.50*+ 0.41*+12 0.23*+ 0.19*+ 0.21*+ 0.17*+dk29 48 1-18 (2,1,0)(0,1,1) 0.035 0.033 0.017 0.49 0.52 1 1.49 1.24 1.04 0.873 1.37 1.03 1.00 0.756 1.01 0.74*+ 0.78*+ 0.57*+12 0.65*+ 0.47*+ 0.52*+ 0.38*+dl31 48 1-18 (0,1,1)(0,1,1) 0.029 0.028 0.015 0.52 0.54 1 1.48 1.41 1.31 1.253 1.17 1.22 1.05 1.096 0.82+ 0.79+ 0.75*+ 0.72*+12 0.54* 0.49*+ 0.45* 0.42*+dm34 60 1-18 (0,1,2)(0,1,1) 0.096 0.092 0.064 0.67 0.70 1 0.72*+ 0.45*+ 0.84+ 0.52+3 0.73*+ 0.41*+ 0.79+ 0.44*+6 0.74+ 0.40*+ 0.53*+ 0.29*+12 0.85 0.44*+ 0.83 0.43*+e40 60 1-15 (0,1,1)(0,1,1) 0.029 0.028 0.019 0.66 0.68 1 0.97 0.96 0.94 0.923 0.75*+ 0.76*+ 0.71*+ 0.71*+6 0.69*+ 0.70*+ 0.67*+ 0.68*+12 0.62*+ 0.62*+ 0.61*+ 0.61*+Average 0.037 0.035 0.023 0.65 0.67 1 1.12 1.02 1.01 0.913 0.92 0.80 0.85 0.736 0.76 0.60 0.67 0.5412 0.57 0.45 0.53 0.43Sore 8 8 1 5 5 5 63 5 5 5 76 7 8 8 812 8 8 8 8� indiates signi�ane for DM test at 10% or less, + indiates signi�ane for enompassing test at 10% or less.
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Table 4: Desriptive statistis of Out-of-sample and In-sample errors, Frane.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 60 1-12 (1,0,0)(0,1,1) 0.024 0.023 0.014 0.58 0.61 1 0.91 0.78 0.78* 0.67*3 0.76*+ 0.68*+ 0.70*+ 0.64*+6 0.75*+ 0.73+ 0.71*+ 0.69+12 0.80*+ 0.67*+ 0.76*+ 0.63*+dg24 120 1-21 (0,1,1)(0,1,1) 0.028 0.024 0.017 0.61 0.71 1 0.82 0.79* 0.78 0.75*3 0.92 0.90 0.90 0.896 0.85 0.81 0.92 0.8812 1.01 1.00 1.23 1.15dj27 60 1-14 (1,1,0)(0,1,1) 0.031 0.029 0.019 0.61 0.66 1 0.93 0.99 0.83 0.893 0.70* 0.74*+ 0.67* 0.71*+6 0.50*+ 0.56*+ 0.51*+ 0.56*+12 0.39*+ 0.53*+ 0.40*+ 0.56*+dj28 120 1-18 (0,1,3)(1,1,0) 0.029 0.026 0.017 0.59 0.65 1 0.77* 0.62*+ 0.80 0.65*+3 0.74* 0.57*+ 0.76* 0.60*+6 0.63 0.48*+ 0.66 0.50*+12 0.56*+ 0.38*+ 0.57*+ 0.38*+dk29 48 1-18 (3,1,0)(0,1,1) 0.028 0.029 0.019 0.68 0.66 1 1.06 1.08 0.98 1.013 1.15 1.05 1.08 0.996 1.15 1.03 1.12 1.0012 0.98 0.73*+ 0.90 0.67*+dl31 48 1-18 (0,1,1)(0,1,1) 0.034 0.033 0.022 0.65 0.67 1 1.16 1.10 1.19 1.143 1.06 0.99 1.11 1.036 0.82 0.79+ 0.83 0.80+12 0.61*+ 0.67*+ 0.70*+ 0.76*+dm34 60 1-18 (0,1,1)(0,1,0) 0.081 0.077 0.074 0.91 0.96 1 0.94 1.01 0.84 0.903 0.80 0.91 0.75 0.826 0.65*+ 0.81+ 0.60*+ 0.75+12 0.42*+ 0.57*+ 0.40*+ 0.55*+e40 60 1-15 (0,0,8)(1,1,0) 0.048 0.037 0.018 0.38 0.49 1 0.93+ 0.86*+ 0.87+ 0.80*+3 0.75*+ 0.78*+ 0.69*+ 0.71*+6 0.65* 0.75*+ 0.58*+ 0.68*+12 0.68* 0.71* 0.63* 0.66*Average 0.038 0.035 0.025 0.63 0.68 1 0.94 0.90 0.88 0.853 0.86 0.83 0.83 0.806 0.75 0.75 0.74 0.7412 0.69 0.66 0.70 0.67Sore 8 8 1 6 5 7 63 6 7 6 76 7 7 7 712 7 7 7 7� indiates signi�ane for DM test at 10% or less, + indiates signi�ane for enompassing test at 10% or less.
Table 5: Desriptive statistis of out-of-sample errors.Method N Mean S.D Min Median Max1-step aheadHolt-Winter 720 0.00297 0.03109 -0.13771 0.00440 0.16733ARIMA 720 0.00014 0.02808 -0.13844 0.00165 0.10497SSA 720 0.00010 0.02837 -0.08982 -0.00034 0.0871983-step aheadHolt-Winter 672 0.00521 0.03555 -0.15961 0.00728 0.19733ARIMA 672 0.00085 0.03281 -0.14697 0.00284 0.10402SSA 672 -0.00025 0.02855 -0.09839 -0.00069 0.0889086-step aheadHolt-Winter 600 0.00920 0.04115 -0.18965 0.01150 0.20733ARIMA 600 0.00347 0.03853 -0.20505 0.00695 0.11062SSA 600 0.00003 0.02903 -0.13882 0.00063 0.0890812-step aheadHolt-Winter 456 0.01767 0.05278 -0.18090 0.02029 0.14733ARIMA 456 0.00938 0.05452 -0.35677 0.01424 0.19970SSA 456 0.00146 0.02952 -0.13039 0.00110 0.09062
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Table 6: Out-of-sample perentage of foreasts of orret sign.Holt-Winter ARIMA SSASeries 1 3 6 12 1 3 6 12 1 3 6 12UKFood produt 0.87** 0.89** 1.00** 0.89** 0.83** 0.96** 1.00** 0.68 0.90** 0.96** 0.92** 0.74*Chemials 0.97** 0.96** 0.92** 0.89** 0.97** 0.93** 0.96** 0.79** 0.97** 0.93** 0.80** 0.89**Basi metals 0.80** 0.93** 0.76** 0.84** 0.80** 0.86** 0.72* 0.79** 0.73** 0.82** 0.80** 0.74*Fabriated metal 0.97** 0.93** 0.88** 0.84** 0.93** 0.89** 0.92** 0.84** 0.93** 0.96** 1.00** 0.74*Mahinery 0.90** 0.93** 0.80** 0.74* 1.00** 1.00** 0.96** 0.84** 0.90** 0.93** 1.00** 0.95**Eletrial mahinery 0.87** 0.86** 0.84** 0.58 0.93** 0.82** 0.92** 0.53 0.77** 0.89** 0.92** 0.74*Vehiles 0.90** 0.93** 0.96** 0.84** 0.90** 0.93** 0.96** 0.84** 0.97** 0.79** 0.92** 0.84**Eletriity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.96** 0.44 0.89** 1.00** 1.00** 1.00** 0.68Average 0.90 0.92 0.90 0.81 0.92 0.92 0.86 0.78 0.90 0.91 0.92 0.79GermanyFood produt 0.90** 0.78** 0.92** 0.79** 0.90** 0.75** 0.88** 0.84** 0.93** 0.86** 0.92** 0.95**Chemials 0.86** 0.89** 0.72* 0.79** 0.87** 0.89** 0.92** 0.89** 0.87** 0.93** 0.92** 1.00**Basi metals 0.83** 0.79** 0.84** 0.63 0.87** 0.82** 0.84** 0.68 0.80** 0.75** 0.88** 0.89**Fabriated metal 0.87** 0.93** 0.88** 0.63 0.90** 0.93** 0.88** 0.63 0.77** 0.96** 1.00** 1.00**Mahinery 0.97** 0.96** 0.92** 0.79** 0.97** 0.96** 0.96** 0.84** 0.90** 0.89** 0.88** 1.00**Eletrial mahinery 0.90** 0.93** 0.96** 0.89** 0.90** 0.96** 0.96** 0.89** 0.83** 0.86** 0.96** 1.00**Vehiles 0.80** 0.75** 0.88** 0.58 0.87** 0.89** 0.92** 0.79** 0.90** 0.86** 0.96** 0.95**Eletriity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.89** 1.00** 0.84** 0.90** 0.93** 0.92** 0.68Average 0.88 0.87 0.89 0.74 0.90 0.89 0.92 0.80 0.86 0.88 0.93 0.93FraneFood produt 0.90** 93** 0.92** 0.84** 0.93** 1.00** 0.92** 0.95** 0.93** 0.93** 1.00** 0.79**Chemials 0.90** 1.00** 0.88** 0.95** 0.90** 1.00** 0.92** 0.95** 0.93** 0.93** 0.76** 0.95**Basi metals 1.00** 0.86** 0.88** 0.95** 1.00** 0.89** 0.80** 0.89** 1.00** 0.96** 1.00** 0.89**Fabriated metal 0.97** 0.93** 0.92** 1.00** 0.93** 1.00** 1.00** 0.95** 0.97** 0.96** 1.00** 0.95**Mahinery 0.93** 1.00** 0.96** 0.95** 0.90** 1.00** 0.96** 1.00** 0.97** 0.86** 0.80** 0.89**Eletrial mahinery 0.83** 0.86** 0.84** 0.89** 0.87** 0.89** 0.84** 0.84** 0.97** 0.93** 0.88** 0.89**Vehiles 0.93** 0.96** 0.84** 0.84** 0.87** 0.89** 0.84** 0.63 0.87** 0.93** 0.80** 0.84**Eletriity and gas 0.77** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.53Average 0.90 0.94 0.91 0.91 0.91 0.96 0.91 0.89 0.94 0.93 0.91 0.84Overall Average 0.89 0.91 0.90 0.82 0.91 0.92 0.90 0.81 0.90 0.91 0.92 0.85� indiates signi�ane at 5% and �� indiates signi�ane at 1%.
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Appendix A: European industrial prodution seriesThe two-digit ategories examined in this paper are:Table 7: Industrial prodution series.Short name DetailFood produt (da15) Manufature of food produts and beveragesChemials (dg24) Manufature of hemials and hemial produtBasi metals (dj27) Manufature of basi metalsFabriated metal (dj28) Manufature of fabriated metal produts, exept mahinery and equipmentMahinery (dk29) Manufature of mahinery and equipment N.E.C.Eletrial mahinery (dl31) Manufature of eletrial mahinery and apparatus N.E.C.Vehiles (dm34) Manufature of motor vehiles, trailers and semi-trailersEletriity and gas (e40) Eletriity, gas and water supplyFor more information about these series and some graphs depiting them (up to 1995),see Osborn et al. (1999).Appendix B: Appliation of SSA for the Fabriatedmetal series in GermanyWe shall now use the Fabriated metal series for Germany as an example to illustrate theseletion of the SSA parameters and to show the reonstrution of the original series indetails. To perform the analysis, we have used the SSA software5. Fig. 2 presents theseries, indiating a omplex trend and strong seasonality.

Figure 2: Fabriated metal series in Germany5http://www.gistatgroup.om/at/index.html
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Seletion of the window length LThe window length L is the only parameter in the deomposition stage. Knowing thatthe time series may have a periodi omponent with an integer period, to ahieve a betterseparability of this periodi omponent it is advisable to take the window length propor-tional to that period. For example, the assumption that there is an annual periodiity inthe series suggests that we must pay attention to the frequenies k=12 (k = 1; :::; 12). Asit is advisable to hoose L reasonably large (but smaller than T=2 whih is 162 in thisase), we hoose L = 120.Seletion of rInformation from auxiliary methods help us in hoosing the parameters of the models.Here, we briey explain some methods, whih are useful in the separation of the signalomponent from noise. Usually a harmoni omponent produes two eigentriples withlose singular values (exept for the frequeny 0.5 whih provides one eigentriple with thesaw-tooth singular vetor). Another useful insight is provided by heking breaks in theeigenvalue spetra. Additionally, a pure noise series typially produes a slowly dereasingsequene of singular values.Choosing L = 120 and performing SVD of the trajetory matrix X, we obtain 120eigentriples, ordered by their ontribution (share) in the deomposition. Fig. 3 depitsthe plot of the logarithms of the 120 singular values.

Figure 3: Logarithms of the 120 eigenvalues.Here a signi�ant drop in values ours around omponent 19 whih ould be inter-preted as the start of the noise oor. Six evident pairs, with almost equal leading singularvalues, orrespond to six (almost) harmoni omponents of the series: eigentriple pairs3-4, 6-7, 8-9, 10-11, 14-15 and 17-18 are related to the harmonis with spei� periods(we show later that they orrespond to the periods of 6, 4, 12, 3, 36 and 2.4 months).Another way of grouping is to examine the matrix of the absolute values of the w -orrelations. Fig. 4 shows the w -orrelations for the 120 reonstruted omponents in a20-grade grey sale from white to blak orresponding to the absolute values of orrela-tions from 0 to 1. Based on this information, we selet the �rst 18 eigentriples for thereonstrution of the original series and onsider the rest as noise.The prinipal omponents (shown as time series) of the �rst 18 eigentriples are shownin Fig. 5. Consider a pure harmoni with a frequeny w, ertain phase, amplitude and18



Figure 4: Matrix of w -orrelations for the 120 reonstruted omponents.the ideal situation where the period P = 1=w is a divisor of both the window length Land K = T �L+1. In this ideal situation, the left eigenvetors and prinipal omponentshave the form of sine and osine sequenes with the same period P and the same phase.Thus, the identi�ation of the omponents that are generated by a harmoni is reduedto the determination of these pairs.

Figure 5: The �rst 18 prinipal omponents plotted as time seriesFig. 6 depits the satterplots of the paired prinipal omponents in the series, orre-sponding to the harmonis with periods 6, 4, 12, 3, 36 and 2.4 months. They are orderedby their ontribution (share) in the SVD step (from left to right).The periodograms of the paired eigentriples (3-4 , 6-7, 8-9, 10-11 and 17-18) also19



Figure 6: Satterplots (with lines onneting onseutive points) orresponding to thepaired harmoni prinipal omponents.on�rm that the eigentriples orrespond to the periods of 6, 4, 12, 3, 36 and 2.4 months.Constrution of Trend, Harmonis and NoiseTrend is a slowly varying omponent of a time series whih does not ontain osillatoryomponents. Thus to apture the trend in the series, we should look for slowly vary-ing eigenvetors. Fig. 7 (top) shows the extrated trend whih is obtained from theeigentriples 1, 2, 5, and 12-13. It learly follows the trend in the series.Fig. 7 (middle) represents all the harmoni omponents and learly shows the samepattern of seasonality as in the original series. Thus, we an lassify the rest of theeigentriples omponents (19{120) as noise. Fig. 7 (bottom) shows the residuals whih areobtained from these eigentriples. The w-orrelation between the reonstruted series (theeigentriples 1-18) and the residuals (the eigentriples 19-120) is equal to 0:0006 on�rmsthat this grouping is very reasonable. The p-value of Anderson-Darling test (Stephens,1974) for testing normality is 0:6 implying that the residual series has a distribution verylose to the normal distribution.

Figure 7: Reonstruted trend (top), harmoni (middle) and noise (bottom).20


