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tIn this paper, the performan
e of Singular Spe
trum Analysis (SSA) te
hniqueis assessed by applying it to 24 series measuring the monthly seasonally unad-justed industrial produ
tion for important se
tors of the German, Fren
h and UKe
onomies. The results are 
ompared with those obtained using Holt-Winter andARIMA models. All three methods perform similarly in the short-term fore
astingand in predi
ting the dire
tion of 
hange (DC). However, at longer horizons, SSAsigni�
antly outperforms ARIMA and Holt-Winter methods.Keywords: Singular Spe
trum Analysis, ARIMA, Holt-Winter method, Fore-
asting, European Industrial Produ
tion series.1 Introdu
tionThe Singular Spe
trum Analysis (SSA) is a powerful te
hnique for nonparametri
time series analysis and fore
asting. SSA de
omposes the original time series into a sumof small number of independent and interpretable 
omponents su
h as slowly varyingtrend, os
illatory 
omponents and noise. Theoreti
al and pra
ti
al foundations of theSSA te
hnique 
an be found in Golyandina et al. (2001) and an introdu
tion to thesubje
t is given in Elsner and Tsonis (1996).SSA has a wide range of appli
ations; from meteorology and physi
s to e
onomi
sand �nan
ial mathemati
s. SSA was �rst applied to extra
t tenden
ies and harmoni

omponents in meteorologi
al and geophysi
al time series (Vautard et al., 1992). Inre
ent years SSA has been developed and applied to many pra
ti
al problems (see, forexample Ghil et al., 2002, and Moskvina & Zhigljavsky, 2003).SSA is espe
ially useful for analyzing and fore
asting series with 
omplex seasonal
omponents and non-stationarity. Thus, unlike ARIMA models, 
hoosing an appropriatedegree of di�eren
ing is not an important issue in SSA. The data 
onsidered in this studyhas a 
omplex stru
ture of this kind; as a 
onsequen
e, we found superiority of SSA over
lassi
al te
hniques.�E-mail addresses: HassaniH�
f.a
.uk (H. Hassani), HeraviS�
f.a
.uk (S. Heravi),ZhigljavskyAA�
f.a
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Although some probabilisti
 and statisti
al 
on
epts are employed in the SSA-basedmethods, no statisti
al assumptions su
h as stationarity of the series or normality of theresiduals are required and SSA uses the bootstrapping to obtain the 
on�den
e intervalsfor the fore
asts. Another important aspe
t of the SSA (whi
h 
an be very useful ine
onomi
s) is that, unlike many other methods, it works well even for small sample size(Vautard et al., 1992, Hassani, 2007).This study uses eight monthly industrial produ
tion indi
es for Germany, Fran
e andthe UK, previously analysed in linear and nonlinear 
ontexts by Osborn et al. (1999)and Heravi et al. (2004). The eight series examined for the three 
ountries, Germany,Fran
e and the UK, are interesting and important sin
e they 
over produ
tion in themajor industrial se
tors. They also re
e
t diverse types of industries.Osborn et al. (1999) have 
onsidered the extent and nature of seasonality in theseseries. Their �ndings show that seasonality a

ounts for over 90% of the variation inalmost all Fren
h series. The strong seasonal pattern for the traditional industrial se
torin Fran
e is asso
iated with de
lines in produ
tion during the summer. Seasonality alsoa

ounts for at least 80% of variation in all series in Germany and in all series (ex
eptvehi
les) in the UK. Osborn et al. (1999) demonstrated that seasonalities for these seriesare mu
h larger than those reported for monthly output in the United States at the two-digit level (Miron, 1996, Table 3.3). The di�eren
e in pattern of seasonality betweenthe European 
ountries and the United States is asso
iated to di�eren
es in traditionsand institutions. Based on seasonal unit root tests, Osborn et al. (1999) found thatmost of the series should be modelled using 
onventional �rst di�eren
e. However annualdi�eren
e spe
i�
ation often produ
ed the most a

urate out-of-sample fore
asts.In 
ontrast to Moody et al. (1993) and Swanson & White (1997a,b), Heravi et al.(2004) found relatively little eviden
e of non-linearity in most series. Comparing linear andneural network fore
asts, they found that linear models generally produ
e more a

uratepost-sample fore
asts than neural network models at horizons of up to a year in terms ofroot mean square error.Here we examine the out-of-sample fore
ast a

ura
y of the SSA te
hnique and 
om-pare it with ARIMA models and the Holt-Winter method. The stru
ture of the paperis as follows. The next se
tion brie
y des
ribes the SSA te
hnique and provides somegeneral rules for sele
ting its parameters. Se
tion 3 outlines the data for the study. Ourfore
ast results are then presented and des
ribed in Se
tion 4 and some 
on
lusions aregiven in Se
tion 5. Appendix A brie
y des
ribes the data and appendix B provides anexample of the SSA analysis.2 Singular Spe
trum Analysis (SSA)The main purpose of SSA is to de
ompose the original series into a sum of a small numberof time series, so that ea
h subseries 
an be identi�ed as either a trend, periodi
 or quasi-periodi
 
omponent (perhaps, amplitude-modulated), or noise. This is followed by are
onstru
tion of the original series.The SSA te
hnique 
onsists of two 
omplementary stages: de
omposition and re
on-stru
tion. At the �rst stage we de
ompose the time series and at the se
ond stage were
onstru
t the original time series and use the re
onstru
ted time series for fore
asting.Here we provide a brief dis
ussion on the methodology of the Basi
 SSA method; see2



Golyandina et al. (2001) for more information and many variations of the Basi
 SSA.Short des
ription of the Basi
 SSAThe main idea of the Basi
 SSA is as follows. Consider the real-valued nonzero time seriesYT = (y1; : : : ; yT ) of suÆ
ient length T . Let K = T �L+1, where L is some integer 
alledthe window length (we 
an assume L � T=2). De�ne the so-
alled `traje
tory matrix'X = [X1; : : : ; XK℄ = (xij)L;Ki;j=1 = 0BBB� y1 y2 y3 : : : yKy2 y3 y4 : : : yK+1... ... ... . . . ...yL yL+1 yL+2 : : : yT
1CCCA :Note that X is a Hankel matrix (by the de�nition, these are the matri
es su
h thattheir (i; j)-th entries depend only on the sum i+j). We then 
onsider X as a multivariatedata with L 
hara
teristi
s and K = T � L + 1 observations. The 
olumns Xj of X,
onsidered as ve
tors, lie in an L-dimensional spa
e RL . De�ne the matrixXXT : Singularvalue de
omposition (SVD) of XXT provides us with the 
olle
tions of L eigenvalues�1 � �2 � : : : � �L � 0 and the 
orresponding eigenve
tors U1; U2; : : : ; UL; where Ui isthe normalised eigenve
tor 
orresponding to the eigenvalue �i (i = 1; : : : ; L).The SVD of the traje
tory matrix 
an be written as:X = E1 + � � �+Ed; (1)where Ei = p�iUiViT (i = 1; : : : ; d), d is the number of non-zero eigenvalues of XXT ,and V1; : : : ; Vd are the prin
ipal 
omponents de�ned as Vi = XTUi=p�i. The 
olle
tion(p�i; Ui; Vi) is referred to as the i-th eigentriple of the matrix X.A group of r (with 1 � r � d) eigenve
tors determines an r-dimensional hyperplane inthe L-dimensional spa
e RL of ve
tors Xj. The L2-distan
e between ve
tors Xj 2 RL andthis r-dimensional hyperplane is equal to Pj =2I �j and 
an be rather small whi
h wouldmean that ~X, the proje
tion of X into this hyperplane, approximates well the originalmatrix X. Subsequent averaging over the diagonals of ~X allows us to obtain a series that
an be 
onsidered as an approximation to the original series.Sele
tion of parametersHere we 
onsider a version of SSA where we split the set of indi
es f1; 2; : : : ; dg intotwo groups only: I = f1; : : : ; rg and �I = fr + 1; : : : ; dg. We asso
iate the group I(and the related matrix EI = E1 + : : : + Er) with signal and the group �I with noise.The SSA method requires then the sele
tion of two parameters, the window length Land the number of elementary matri
es r. There are spe
i�
 rules for sele
ting theseparameters; their 
hoi
e depends on stru
ture of the data and the analysis we want toperform. Detailed des
ription of parameter sele
tion pro
edures is given in Golyandinaet al. (2001). Here we summarize a few general rules.The window length L is the single parameter that should be sele
ted at the de
ompo-sition stage. Larger values of L (we 
an always assume L � T=2) lead to a more detailedde
omposition; in sele
ting L we should try to a
hieve suÆ
ient separability of the 
om-ponents. The following quantity (
alled the weighted 
orrelation or w-
orrelation) is a3



natural measure of dependen
e between two time series Y (1)T and Y (2)T :�(w)12 = �Y (1)T ; Y (2)T �w = k Y (1)T kwk Y (2)T kwwhere �Y (i)T ; Y (j)T �w =PTk=1wky(i)k y(j)k , wk=minfk; L; T � kg, k Y (i)T kw =r�Y (i)T ; Y (i)T �w(i; j = 1; 2).If two re
onstru
ted 
omponents have zero w -
orrelation it means that these two
omponents are well separated. Large values of w -
orrelations between re
onstru
ted
omponents indi
ate that the 
omponents should be 
onsidered as one group and possibly
orrespond to the same 
omponent in the SSA de
omposition.The �rst elementary matrix E1 with the norm p�1 has the highest 
ontribution to thenorm of X in (1) and the last elementary matrix Ed with the norm p�d has the lowest
ontribution to the norm ofX. The plot of the eigenvalues �1; � � � ; �d gives an overall view
on
erning the values of the eigenvalues and is essential in de
iding where to trun
ate thesummation of (1) in order to build a good approximation of the original matrix. A slowlyde
reasing sequen
e of eigenvalues typi
ally indi
ate the presen
e of noise in the series.Similar values of the eigenvalues allow the identi�
ation of the eigentriples that 
orrespondto the same harmoni
 
omponent of the series. The periodogram analysis of the originaltime series also helps us in sele
ting the groups. Sharp sparks in the periodogram areasso
iated with the harmoni
 
omponents in the series.We return to the dis
ussion on parameter sele
tion in Appendix B where we providedetails of analysis for one of the series.SSA Fore
astingSSA fore
asting method 
an be applied to the time series that approximately satisfylinear re
urrent formulae 1. The 
lass of time series governed by linear re
urrent formulaeis rather wide; it in
ludes harmoni
s, polynomial and exponential time series.Let us brie
y des
ribe the so-
alled SSA re
urrent fore
asting algorithm (for moreinformation see Golyandina et al., 2001). De�ne the original series YT = (y1; : : : ; yT )and the re
onstru
ted series eYT = (ey1; : : : ; eyT ). For an eigenve
tor U 2 RL we denote theve
tor of the �rst L�1 
omponents of the ve
tor U as UO 2 RL�1 . Set v2 = �21+: : :+�2r <1, where �i is the last 
omponent of the eigenve
tor Ui (i = 1; : : : ; r). It 
an be provedthat the last 
omponent yL of any ve
tor Y = (y1; : : : ; yL)T is a linear 
ombination of the�rst 
omponents (y1; : : : ; yL�1); that is, yL = a1yL�1 + : : : + aL�1y1 where the ve
tor of
oeÆ
ients A = (a1; : : : ; aL�1) 
an be expressed as A =Pri=1 �iUOi =(1�v2): The fore
astsŷT+1; : : : ; ŷT+h are then obtained asŷi = � eyi for i = 1; : : : ; TPL�1j=1 aj ŷi�j for i = T + 1; : : : ; T + h:1We say that the time series YT satis�es an linear re
urrent formulae of order L�1 if there are numbersa1; : : : ; aL�1 su
h that yT�i = L�1Xk=1 akyT�i�k; 0 � i � T � L:
4



BootstrappingAssume that we have a time series YT = fytgTt=1 = Y (1)T + Y (2)T where Y (1)T is the signaland Y (2)T represents the noise. Let us 
onsider a method of 
onstru
ting average series forthe signal y(1)T+M at time T+M. In the unrealisti
 situation, when we know both the signalY (1)T and the true model of the noise Y (2)T , the Monte Carlo simulation 
an be appliedto 
he
k the statisti
al properties of the fore
ast values ey(1)T+M relative to the a
tual termy(1)T+M .Indeed, assuming that the rules for the eigentriple sele
tion are �xed, we 
an simulateN independent 
opies Y (2)T;i (i = 1; : : : ; N) of the pro
ess Y (2)T and apply the fore
astingpro
edure to N independent time series YT;i = Y (1)T + Y (2)T;i . Then the fore
asting resultwill form a sample ey(1)T+M;i, whi
h should be 
ompared against y(1)T+M . In this way theMonte Carlo average series for the fore
ast 
an be built up.Sin
e in pra
ti
e we do not know the signal Y (1)T , we 
an not apply this pro
edure.Under a suitable 
hoi
e of the window length L and the 
orresponding eigentriples, we havethe representation YT = eY (1)T + eY (2)T , where eY (1)T (the re
onstru
ted series) approximatesY (1)T , and eY (2)T is the residual series. Suppose now that we have a (sto
hasti
) model for theresidual eY (2)T (for instan
e, we 
an postulate some model for Y (2)T and, sin
e eY (1)T � Y (1)T ,we apply the same model for eY (2)T with the estimated parameters). Then, simulatingN independent 
opies Y (2)T;i of the series eY (2)T , we obtain N series YT;i = eY (1)T + eY (2)T;i andprodu
eM fore
asting results ey(1)T+M;i in the same manner as in the Monte Carlo simulationvariant.From the sample ey(1)T+M;i (1 � i � N) of the fore
asts we 
an 
ompute the averagebootstrap fore
ast. This average bootstrap 
an then be 
ompared with the value ey(1)T+Mobtained by Basi
 SSA fore
ast. Large dis
repan
y between these two fore
ast wouldtypi
ally indi
ate that the original SSA fore
ast is not reliable. Furthermore, using thesample of the bootstrap fore
ast results we 
an estimate the distribution of the fore
astand 
ompute, for example, 
on�den
e intervals for the true values. To do that, we needa sto
hasti
 model for Y (2)T ; a standard assumption would be the assumption that Y (2)T isthe Gaussian white noise model. This assumption 
an be easily veri�ed using the 
lassi
altest for randomness and normality.3 The dataThe data in this study are taken from Eurostat, the oÆ
ial statisti
al agen
y of theEuropean Community and represents eight major 
omponents of industrial produ
tionin Germany, Fran
e and the UK. The series used are seasonally unadjusted monthlyindi
es for real output in Food Produ
ts, Chemi
als, Basi
 Metals, Fabri
ated Metals,Ma
hinery, Ele
tri
al Ma
hinery, Vehi
les and Ele
tri
ity/Gas industries. Appendix Aprovides some information about the series. It should be noted that the series for Germanyare the aggregated data following the reuni�
ation of the former East Germany and WestGermany.The same 24 series, ending in De
ember 1995, have been previously examined instudies by Osborn et al. (1999) and Heravi et al. (2004). As explained in these papers,5



Table 1: Des
riptive statisti
s of the series.Mean S.D WeightSeries UK GR FR UK GR FR UK GR FRFood produ
ts 4.64 4.42 4.58 0.067 0.195 0.129 10.2 7.6 9.0Chemi
als 4.65 4.41 4.52 0.087 0.192 0.176 8.5 8.6 8.9Basi
 metals 4.54 4.58 4.51 0.107 0.098 0.175 3.8 4.5 4.3Fabri
ated metal 4.61 4.39 4.50 0.064 0.201 0.194 5.8 7.2 9.8Ma
hinery 4.63 4.51 4.55 0.078 0.152 0.163 7.5 13.6 8.6Ele
tri
al ma
hinery 4.47 4.37 4.57 0.105 0.256 0.138 3.0 5.6 3.9Vehi
les 4.64 4.29 4.39 0.133 0.315 0.405 4.7 10.4 7.1Ele
tri
ity and gas 4.62 4.48 4.54 0.176 0.172 0.204 6.7 6.5 9.6these time series have been 
hosen primarily be
ause of their importan
e to industrialprodu
tion a
ross the three 
ountries. These eight time series a

ount for at least halfof total industrial produ
tion in ea
h 
ountry. Plots of these time series are in
luded inOsborn et al. (1999) and broadly represent a period of growth in the 1980s and stagnationor re
ession during the early 1990s. Here we have updated the data and in all 
ases thesample period ends in July 2007. However, the starting dates are di�erent whi
h re
e
tsthe availability of 
onsistent data from Eurostat. The data for Germany starts fromJanuary 1978, for Fran
e starts from January 1990 and for the UK starts from 1998.In all 
ases, the �nal two and a half years (30 observations) of data are retainedfor out-of-sample fore
ast a

ura
y tests. For 
omparability and in line with the usual
onvention for e
onomi
 time series, all time series are analysed in logarithmi
 form andall subsequent results refer to the time series after this transformation. The des
riptivestatisti
s for these series are given in Table 1. For Germany, the vehi
les series has thehighest volatility, whi
h is more than twi
e than the volatility of the other series. Similarly,the vehi
les series has the highest volatility for Fran
e. The UK data, generally, are lessvolatile with gas and ele
tri
ity series having highest volatilities.Almost all of the industrial produ
tion series have 
omplex stru
ture with nonlineartrends and 
omplex seasonality. SSA is well suited for non-stationary series with 
omplextrend and periodi
ities and 
an be a powerful te
hnique in modeling these industrialprodu
tion series.4 Fore
asting ResultsComparison of the a

ura
y of the fore
astsWe 
onsider fore
asting performan
e of the SSA, ARIMA and Holt-Winter te
hniques atdi�erent horizons h, of up to a year. We provide results for h = 1; 3; 6 and 12 (months).We use the data up to the end of 2004 as training sample (to perform SSA de
ompositionand to estimate parameters of ARIMA and Holt-Winter models). Thus, with two and ahalf years of out-of-sample data, we have N = 30; 28; 25 and 19 out-of-sample fore
asterrors at the horizons h = 1; 3; 6 and 12, respe
tively.We use the root mean squared error (RMSE) and the per
entage of fore
asts that
orre
tly predi
t the dire
tion of 
hange to measure the fore
ast a

ura
y.2 RMSE is the2We have also 
omputed other measures based on the magnitude of fore
ast errors, su
h as relative6



most frequently quoted measure in fore
asting literature (e.g., Zhang et al 1998). In orderto save spa
e, we only provide RMSE ratios of the SSA to that of the Holt-Winter andARIMA models. 3 The ratios of RMSE areRRMSE =  NXi=1 (ŷT+h;i � yT+h;i)2! 12 =  NXi=1 (~yT+h;i � yT+h;i)2! 12where ŷT+h is the h-step ahead fore
ast obtained by SSA fore
asting and ~yT+h is theh-step ahead fore
ast from either ARIMA or Holt-Winter model and N is the numberof the fore
asts. If RRMSE < 1, then the SSA outperforms the other methods (eitherARIMA or Holt-Winter).In 
omputing Box-Jenkins ARIMA fore
asts, we need to 
hoose the lags, the degree ofdi�eren
ing and the degree of seasonality (p; d; q), (P;D;Q)s where s = 12. To do that weuse the maximum order of lags, set by the software, and apply the Bayesian InformationCriterion (BIC). Holt-Winter fore
asts are also obtained by minimizing the BIC. The SSAparameters, the window length L and the number of eigentriples r, are 
hosen based onthe eigenvalue spe
tra and separability (see Appendix B). The parameters (L; r) of theSSA and the orders (p; d; q); (P;D;Q)s of the ARIMA models are given when the modelsare estimated using data up to the end of 2004. Appendix B gives details of the analysisfor fabri
ated metal series for Germany. Details for the other series are available fromauthors upon request.Tables 2, 3 and 4 show the in-sample RMSE and RMSE ratios and out-of-sampleRMSE ratios for the UK, Fran
e and Germany. Some summary statisti
s (average RMSE,RRMSE of SSA models to the Holt-Winter and ARIMA models for ea
h 
ountry andhorizon) are also given at the bottom of ea
h table. The summary statisti
s are theRMSE and the RRMSE averages and the s
ores. The s
ore is the number of times whenSSA model yields lower RMSE. SSA has produ
ed lower RMSE for all the series for thein-sample results 4.The averages and the s
ores for 1-step ahead show that SSA fore
asts are 
omparablewith the fore
asts obtained by ARIMA and Holt-Winter models. However, the perfor-man
e of the SSA does improve relative to ARIMA and Holt-Winter models for fore-
asting at the horizons greater than one. The s
ores also 
on�rm that the SSA fore
astsoutperform the fore
asts produ
ed by the ARIMA and Holt-Winter models, parti
ularlyat longer horizons. For all the series and three 
ountries (24 
ases), SSA outperformsthe ARIMA 16; 18; 22 and 23 times at h = 1; 3; 6 and 12 horizons respe
tively. It alsooutperforms the Holt-Winter models 16; 19; 23 and 23 times at h = 1; 3; 6 and 12 horizons.Table 5 summarizes the results of fore
asts by ARIMA, Holt-Winter and SSA for allseries. This table shows that the quality of 1-step ahead fore
asts are similar for ARIMAand SSA; Holt-Winter fore
asts being slightly worse. The quality of SSA fore
asts athorizons h = 3; 6 and 12 is mu
h better than the quality of ARIMA and Holt-Winterfore
asts. As h in
reases, the quality of ARIMA and Holt-Winter fore
asts be
omesworse; the standard deviation of the ARIMA and Holt-Winter fore
asts in
reases almostroot mean absolute errors. These measures yield qualitatively similar results to RMSE; we thus do notreport them.3Results of analysis (in
luding values of RMSE for ea
h series, method and horizon) are available fromthe authors upon request.4SSA gives the highest R2, although all three methods �t the data well in-sample, with R2 > 81%.7



linearly with h. The situation is totally di�erent for the SSA fore
asts: the quality ofSSA fore
asts is almost independent of the value of h (at least, in the range of values of h
onsidered in the paper). This observation serves as a 
on�rmation of the following fa
ts:(i) most of the series 
onsidered here have a stru
ture whi
h 
an des
ribed via a deter-ministi
 trend and seasonality (for an example, see Appendix II);(ii) this stru
ture is well re
overed by the SSA;(iii) in most 
ases, the stru
ture of the series is very stable as it is kept by the series forat least 12 months starting at any point.Note that in the ideal situation, when we have a series whi
h is a sum of a deterministi

omponent (fully re
overed by SSA) and a random noise, the error of SSA fore
ast willbe exa
tly the same at any horizon. For more information, see Chapter 2 in Golyandinaet al. (2001).Modi�ed Diebold-Marino statisti
sUsing the modi�ed Diebold-Marino statisti
s, given in Harvey et al. (1997), we test for thestatisti
al signi�
an
e of the results. The symbol � indi
ates the results at the 10% levelof signi�
an
e or less. Comparing the SSA fore
asts with the ARIMA, SSA outperformsthe ARIMA signi�
antly 2; 12; 9 and 19 times at h = 1; 3; 6 and 12 horizons respe
tively at10% signi�
an
e level or less. SSA also outperforms the Holt-Winter signi�
antly 6; 13; 16and 19 times at h = 1; 3; 6 and 12 horizons respe
tively at 10% signi�
an
e level or less.Similar results have also been found when 
omparing the bootstrap fore
asts, 
alled in thetable BSSA (to obtain bootstrap average series we have repli
ated the series 1000 times).In fa
t, the s
ores for all the horizons in tables 2, 3 and 4 show that both the SSA andbootstrap SSA methods have outperformed the ARIMA and Holt-Winter models exa
tlythe same number of times (160 times out of 192 di�erent 
ases).We have also used the fore
ast en
ompassing test (Harvey et al. (1998)). The symbol+ indi
ates the results at the 10% level of signi�
an
e or less. The results also 
on�rmsthe superiority of the SSA, with 54% of 
ases signi�
antly better at the 10% level ofsigni�
an
e or less.Cumulative distribution fun
tions (
.d.f.) of the absolute values of the out-of-sampleerrors (for all eight series and 3 
ountries) obtained by SSA, ARIMA and Holt-Winterfore
asts are presented in Fig. 1. If the 
.d.f. graph produ
ed by one method is stri
tlyabove the graph of another 
.d.f., then we 
an say that the errors obtained by the �rstmethod are sto
hasti
ally smaller than the errors represented by the se
ond method. We
an see from Fig. 1 that for h = 3; 6 and 12, SSA fore
asting errors are sto
hasti
allymu
h smaller than the errors of the other two methods. In addition, it 
an be seen thatthe ARIMA fore
ast errors are slightly smaller than the Holt-Winter fore
ast errors. Inthe 
ase of h = 1 there is no evident prevalen
e of any method.Dire
tion of 
hange predi
tionsAs another measure of fore
ast a

ura
y, in addition to RMSE, we also 
ompute theper
entage of fore
asts that 
orre
tly predi
t the dire
tion of 
hange. Ash et al. (1997)argue that for some purposes, it may be more harmful to make a smaller predi
tion8



error yet misfore
ast the dire
tion of 
hange, than to make a larger dire
tionally 
orre
terror. Clements and Smith (1999) dis
uss that the value of a model fore
asts may bebetter measured by the dire
tion of 
hange. Heravi et al. (2004) argue that the dire
tionof 
hange fore
asts are parti
ularly important in e
onomi
s for 
apturing the business
y
le movement relating to expansion versus re
ession. Here the dire
tion of 
hange isinterpreted only in terms of whether industrial produ
tion in a parti
ular se
tor in
reasesor de
reases.Table 6 provides the per
entage of fore
asts that 
orre
tly predi
t the dire
tion of
hange at h = 1; 3; 6 and 12 horizons. It also shows whether they are signi�
antly greaterthan the pure 
han
e (p = 0:50). The symbols � and �� in the table indi
ate the 5%and 1% levels of signi�
an
e. A set of summary results is also given at the bottom ofthe table. The summary statisti
s are the average of 
orre
t signs for all eight series ath = 1; 3; 6 and 12 horizons and overall average for the three 
ountries. The per
entageof 
orre
t signs are generally better than those reported in Heravi et al. (2004). This isdue the fa
t that the results for dire
tional 
hange are parti
ulary sensitive to stru
tural
hange in the out-of-sample period. The per
entage of 
orre
t signs 
an be extremelyhigh or low for all the three methods depending on whether there is a stru
tural 
hangein the series in the out-of-sample period. The overall per
entage of 
orre
t signs for SSAare 90%; 91%; 92% and 85% at h = 1; 3; 6 and 12 respe
tively. For the Holt-Winter,these �gures are 89%; 91%; 90% and 82%, whi
h are slightly lower than the SSA. ARIMAmodels have produ
ed slightly better results (91% and 92%) at horizons h = 1 and h = 3but they are lower (90% and 81%) at h = 6 and 12 horizons. For all 96 
ases (3 
ountries,8 series, h = 1; 3; 6 and 12 horizons) SSA has produ
ed 93 signi�
ant 
ases at the 1% and5% level. Similar results were obtained with the Holt-Winter and ARIMA models, giving93 and 90 signi�
ant 
ases respe
tively.5 Con
lusionIn this paper, we 
ompared Singular Spe
trum Analysis (SSA), ARIMA and Holt-Wintermethods for fore
asting seasonally unadjusted monthly data on industrial produ
tionindi
ators in Germany, Fran
e and the UK. We demonstrated that SSA is a very powerfultool for analyzing and predi
ting e
onomi
 data. SSA outperformed the ARIMA andHolt-Winter methods in predi
ting the values of the produ
tion series a

ording to theRMSE 
riterion, parti
ularly at horizons of h = 3; 6 and 12 months. We also foundthat SSA works well for small sample sizes, as for the UK with the sample size of 84observations. The fore
asts obtained by bootstrapping also 
on�rm the �ndings. We alsofound that the three methods perform similarly well in predi
ting the dire
tion of 
hange.However, SSA outperforms the Holt-Winter and ARIMA models at longer horizons andhen
e 
an be 
onsidered as a reliable method for predi
ting re
essions and expansions.A
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1-step ahead 3-step ahead

6-step ahead 12-step aheadFigure 1: The 
umulative distribution fun
tions of the absolute values of the out-of-sample errors (for all eight series and 3 
ountries) obtained by SSA (thi
k-line), ARIMA(thin-line) and Holt-Winter (dashed-line)
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Table 2: Des
riptive statisti
s of Out-of-sample and In-sample errors, UK.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 36 1-14 (1,0,0)(0,1,1) 0.012 0.010 0.007 0.58 0.70 1 0.90+ 0.78*+ 0.93 0.80*+3 0.83+ 0.79+ 0.92+ 0.88+6 0.77+ 0.63*+ 0.84+ 0.69*+12 0.21*+ 0.95 0.23*+ 1.04dg24 36 1-14 (0,1,1)(0,1,1) 0.019 0.015 0.009 0.47 0.60 1 0.87 0.77*+ 0.93 0.83+3 0.65*+ 0.67*+ 0.70*+ 0.71*+6 0.58* 0.57*+ 0.61* 0.59*+12 0.74+ 0.80+ 0.77+ 0.83+dj27 24 1-16 (0,1,1)(0,1,1) 0.034 0.028 0.005 0.15 0.18 1 0.96 0.90+ 0.91 0.85*+3 0.81+ 0.79+ 0.90+ 0.89+6 0.92 0.92 1.07 1.0712 0.30*+ 0.80 0.34*+ 0.92dj28 36 1-10 (1,0,0)(1,1,0) 0.026 0.020 0.019 0.73 0.95 1 0.86+ 1.06 0.96 1.183 0.84*+ 0.99 1.02 1.216 0.79+ 0.81+ 0.91 0.9412 0.42*+ 0.83 0.46*+ 0.93dk29 36 1-9 (0,1,1)(0,1,1) 0.026 0.023 0.021 0.81 0.91 1 1.21 0.83+ 1.26 0.87+3 0.98 0.76*+ 1.04 0.816 0.98 0.59*+ 0.93 0.56*+12 0.76+ 0.48*+ 0.82 0.52*+dl31 36 1-11 (0,1,1)(0,1,0) 0.037 0.025 0.020 0.54 0.80 1 1.30 1.48 1.20 1.373 0.93 1.05 0.89 1.006 0.81 0.76* 0.81 0.7512 0.42*+ 0.47*+ 0.56*+ 0.63*+dm34 60 1-13 (0,1,1)(1,1,0) 0.059 0.046 0.027 0.46 0.59 1 1.00 0.96 1.07 1.023 0.76*+ 0.80*+ 0.83+ 0.87+6 0.67*+ 0.73*+ 0.81+ 0.88+12 0.48*+ 0.52*+ 0.64*+ 0.69*+e40 36 1-8 (0,1,1)(0,1,0) 0.035 0.024 0.020 0.57 0.83 1 0.93 0.81+ 0.97 0.83+3 1.02 0.80*+ 1.06 0.84+6 0.85+ 0.67*+ 0.92+ 0.72*+12 0.65*+ 0.42*+ 0.67*+ 0.43*+Average 0.031 0.024 0.016 0.54 0.70 1 1.00 0.95 1.03 0.973 0.85 0.83 0.92 0.906 0.80 0.71 0.86 0.7812 0.50 0.66 0.57 0.75S
ore 8 8 1 5 6 5 53 7 7 5 66 8 8 7 712 8 8 8 7� indi
ates signi�
an
e for DM test at 10% or less, + indi
ates signi�
an
e for en
ompassing test at 10% or less.
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Table 3: Des
riptive statisti
s of Out-of-sample and In-sample errors, Germany.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 60 1-12 (0,1,1)(0,1,1) 0.020 0.020 0.016 0.80 0.80 1 0.89 0.89 0.82 0.833 0.69*+ 0.62* 0.69*+ 0.63*6 0.69*+ 0.64*+ 0.66*+ 0.61*+12 0.49*+ 0.61*+ 0.56*+ 0.70*+dg24 120 1-21 (1,1,0)(0,1,1) 0.024 0.023 0.017 0.71 0.74 1 0.89 0.84 0.98 0.973 0.66*+ 0.57* 0.78+ 0.67*6 0.70*+ 0.43*+ 0.76+ 0.47*+12 0.57*+ 0.31*+ 0.66*+ 0.36*+dj27 60 1-19 (0,1,1)(0,1,1) 0.034 0.032 0.019 0.56 0.59 1 1.59 1.45 1.24 1.133 1.25 1.18 1.01 0.956 0.94 0.76*+ 0.73*+ 0.58*+12 0.56*+ 0.47*+ 0.44*+ 0.37*+dj28 120 1-18 (0,1,1)(0,1,1) 0.028 0.027 0.021 0.75 0.78 1 0.97 0.89 0.87 0.793 0.75* 0.61* 0.74* 0.61*6 0.49*+ 0.40*+ 0.50*+ 0.41*+12 0.23*+ 0.19*+ 0.21*+ 0.17*+dk29 48 1-18 (2,1,0)(0,1,1) 0.035 0.033 0.017 0.49 0.52 1 1.49 1.24 1.04 0.873 1.37 1.03 1.00 0.756 1.01 0.74*+ 0.78*+ 0.57*+12 0.65*+ 0.47*+ 0.52*+ 0.38*+dl31 48 1-18 (0,1,1)(0,1,1) 0.029 0.028 0.015 0.52 0.54 1 1.48 1.41 1.31 1.253 1.17 1.22 1.05 1.096 0.82+ 0.79+ 0.75*+ 0.72*+12 0.54* 0.49*+ 0.45* 0.42*+dm34 60 1-18 (0,1,2)(0,1,1) 0.096 0.092 0.064 0.67 0.70 1 0.72*+ 0.45*+ 0.84+ 0.52+3 0.73*+ 0.41*+ 0.79+ 0.44*+6 0.74+ 0.40*+ 0.53*+ 0.29*+12 0.85 0.44*+ 0.83 0.43*+e40 60 1-15 (0,1,1)(0,1,1) 0.029 0.028 0.019 0.66 0.68 1 0.97 0.96 0.94 0.923 0.75*+ 0.76*+ 0.71*+ 0.71*+6 0.69*+ 0.70*+ 0.67*+ 0.68*+12 0.62*+ 0.62*+ 0.61*+ 0.61*+Average 0.037 0.035 0.023 0.65 0.67 1 1.12 1.02 1.01 0.913 0.92 0.80 0.85 0.736 0.76 0.60 0.67 0.5412 0.57 0.45 0.53 0.43S
ore 8 8 1 5 5 5 63 5 5 5 76 7 8 8 812 8 8 8 8� indi
ates signi�
an
e for DM test at 10% or less, + indi
ates signi�
an
e for en
ompassing test at 10% or less.
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Table 4: Des
riptive statisti
s of Out-of-sample and In-sample errors, Fran
e.Parameters In-sample: RMSE In-sample: RRMSE Out-of-sample: RRMSESeries L r (p; d; q)(P;D;Q)s ARIMA H-W SSA SSAARIMA SSAH�W h SSAARIMA SSAH�W BSSAARIMA BSSAH�Wda15 60 1-12 (1,0,0)(0,1,1) 0.024 0.023 0.014 0.58 0.61 1 0.91 0.78 0.78* 0.67*3 0.76*+ 0.68*+ 0.70*+ 0.64*+6 0.75*+ 0.73+ 0.71*+ 0.69+12 0.80*+ 0.67*+ 0.76*+ 0.63*+dg24 120 1-21 (0,1,1)(0,1,1) 0.028 0.024 0.017 0.61 0.71 1 0.82 0.79* 0.78 0.75*3 0.92 0.90 0.90 0.896 0.85 0.81 0.92 0.8812 1.01 1.00 1.23 1.15dj27 60 1-14 (1,1,0)(0,1,1) 0.031 0.029 0.019 0.61 0.66 1 0.93 0.99 0.83 0.893 0.70* 0.74*+ 0.67* 0.71*+6 0.50*+ 0.56*+ 0.51*+ 0.56*+12 0.39*+ 0.53*+ 0.40*+ 0.56*+dj28 120 1-18 (0,1,3)(1,1,0) 0.029 0.026 0.017 0.59 0.65 1 0.77* 0.62*+ 0.80 0.65*+3 0.74* 0.57*+ 0.76* 0.60*+6 0.63 0.48*+ 0.66 0.50*+12 0.56*+ 0.38*+ 0.57*+ 0.38*+dk29 48 1-18 (3,1,0)(0,1,1) 0.028 0.029 0.019 0.68 0.66 1 1.06 1.08 0.98 1.013 1.15 1.05 1.08 0.996 1.15 1.03 1.12 1.0012 0.98 0.73*+ 0.90 0.67*+dl31 48 1-18 (0,1,1)(0,1,1) 0.034 0.033 0.022 0.65 0.67 1 1.16 1.10 1.19 1.143 1.06 0.99 1.11 1.036 0.82 0.79+ 0.83 0.80+12 0.61*+ 0.67*+ 0.70*+ 0.76*+dm34 60 1-18 (0,1,1)(0,1,0) 0.081 0.077 0.074 0.91 0.96 1 0.94 1.01 0.84 0.903 0.80 0.91 0.75 0.826 0.65*+ 0.81+ 0.60*+ 0.75+12 0.42*+ 0.57*+ 0.40*+ 0.55*+e40 60 1-15 (0,0,8)(1,1,0) 0.048 0.037 0.018 0.38 0.49 1 0.93+ 0.86*+ 0.87+ 0.80*+3 0.75*+ 0.78*+ 0.69*+ 0.71*+6 0.65* 0.75*+ 0.58*+ 0.68*+12 0.68* 0.71* 0.63* 0.66*Average 0.038 0.035 0.025 0.63 0.68 1 0.94 0.90 0.88 0.853 0.86 0.83 0.83 0.806 0.75 0.75 0.74 0.7412 0.69 0.66 0.70 0.67S
ore 8 8 1 6 5 7 63 6 7 6 76 7 7 7 712 7 7 7 7� indi
ates signi�
an
e for DM test at 10% or less, + indi
ates signi�
an
e for en
ompassing test at 10% or less.
Table 5: Des
riptive statisti
s of out-of-sample errors.Method N Mean S.D Min Median Max1-step aheadHolt-Winter 720 0.00297 0.03109 -0.13771 0.00440 0.16733ARIMA 720 0.00014 0.02808 -0.13844 0.00165 0.10497SSA 720 0.00010 0.02837 -0.08982 -0.00034 0.0871983-step aheadHolt-Winter 672 0.00521 0.03555 -0.15961 0.00728 0.19733ARIMA 672 0.00085 0.03281 -0.14697 0.00284 0.10402SSA 672 -0.00025 0.02855 -0.09839 -0.00069 0.0889086-step aheadHolt-Winter 600 0.00920 0.04115 -0.18965 0.01150 0.20733ARIMA 600 0.00347 0.03853 -0.20505 0.00695 0.11062SSA 600 0.00003 0.02903 -0.13882 0.00063 0.0890812-step aheadHolt-Winter 456 0.01767 0.05278 -0.18090 0.02029 0.14733ARIMA 456 0.00938 0.05452 -0.35677 0.01424 0.19970SSA 456 0.00146 0.02952 -0.13039 0.00110 0.09062
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Table 6: Out-of-sample per
entage of fore
asts of 
orre
t sign.Holt-Winter ARIMA SSASeries 1 3 6 12 1 3 6 12 1 3 6 12UKFood produ
t 0.87** 0.89** 1.00** 0.89** 0.83** 0.96** 1.00** 0.68 0.90** 0.96** 0.92** 0.74*Chemi
als 0.97** 0.96** 0.92** 0.89** 0.97** 0.93** 0.96** 0.79** 0.97** 0.93** 0.80** 0.89**Basi
 metals 0.80** 0.93** 0.76** 0.84** 0.80** 0.86** 0.72* 0.79** 0.73** 0.82** 0.80** 0.74*Fabri
ated metal 0.97** 0.93** 0.88** 0.84** 0.93** 0.89** 0.92** 0.84** 0.93** 0.96** 1.00** 0.74*Ma
hinery 0.90** 0.93** 0.80** 0.74* 1.00** 1.00** 0.96** 0.84** 0.90** 0.93** 1.00** 0.95**Ele
tri
al ma
hinery 0.87** 0.86** 0.84** 0.58 0.93** 0.82** 0.92** 0.53 0.77** 0.89** 0.92** 0.74*Vehi
les 0.90** 0.93** 0.96** 0.84** 0.90** 0.93** 0.96** 0.84** 0.97** 0.79** 0.92** 0.84**Ele
tri
ity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.96** 0.44 0.89** 1.00** 1.00** 1.00** 0.68Average 0.90 0.92 0.90 0.81 0.92 0.92 0.86 0.78 0.90 0.91 0.92 0.79GermanyFood produ
t 0.90** 0.78** 0.92** 0.79** 0.90** 0.75** 0.88** 0.84** 0.93** 0.86** 0.92** 0.95**Chemi
als 0.86** 0.89** 0.72* 0.79** 0.87** 0.89** 0.92** 0.89** 0.87** 0.93** 0.92** 1.00**Basi
 metals 0.83** 0.79** 0.84** 0.63 0.87** 0.82** 0.84** 0.68 0.80** 0.75** 0.88** 0.89**Fabri
ated metal 0.87** 0.93** 0.88** 0.63 0.90** 0.93** 0.88** 0.63 0.77** 0.96** 1.00** 1.00**Ma
hinery 0.97** 0.96** 0.92** 0.79** 0.97** 0.96** 0.96** 0.84** 0.90** 0.89** 0.88** 1.00**Ele
tri
al ma
hinery 0.90** 0.93** 0.96** 0.89** 0.90** 0.96** 0.96** 0.89** 0.83** 0.86** 0.96** 1.00**Vehi
les 0.80** 0.75** 0.88** 0.58 0.87** 0.89** 0.92** 0.79** 0.90** 0.86** 0.96** 0.95**Ele
tri
ity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.89** 1.00** 0.84** 0.90** 0.93** 0.92** 0.68Average 0.88 0.87 0.89 0.74 0.90 0.89 0.92 0.80 0.86 0.88 0.93 0.93Fran
eFood produ
t 0.90** 93** 0.92** 0.84** 0.93** 1.00** 0.92** 0.95** 0.93** 0.93** 1.00** 0.79**Chemi
als 0.90** 1.00** 0.88** 0.95** 0.90** 1.00** 0.92** 0.95** 0.93** 0.93** 0.76** 0.95**Basi
 metals 1.00** 0.86** 0.88** 0.95** 1.00** 0.89** 0.80** 0.89** 1.00** 0.96** 1.00** 0.89**Fabri
ated metal 0.97** 0.93** 0.92** 1.00** 0.93** 1.00** 1.00** 0.95** 0.97** 0.96** 1.00** 0.95**Ma
hinery 0.93** 1.00** 0.96** 0.95** 0.90** 1.00** 0.96** 1.00** 0.97** 0.86** 0.80** 0.89**Ele
tri
al ma
hinery 0.83** 0.86** 0.84** 0.89** 0.87** 0.89** 0.84** 0.84** 0.97** 0.93** 0.88** 0.89**Vehi
les 0.93** 0.96** 0.84** 0.84** 0.87** 0.89** 0.84** 0.63 0.87** 0.93** 0.80** 0.84**Ele
tri
ity and gas 0.77** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.53Average 0.90 0.94 0.91 0.91 0.91 0.96 0.91 0.89 0.94 0.93 0.91 0.84Overall Average 0.89 0.91 0.90 0.82 0.91 0.92 0.90 0.81 0.90 0.91 0.92 0.85� indi
ates signi�
an
e at 5% and �� indi
ates signi�
an
e at 1%.
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Appendix A: European industrial produ
tion seriesThe two-digit 
ategories examined in this paper are:Table 7: Industrial produ
tion series.Short name DetailFood produ
t (da15) Manufa
ture of food produ
ts and beveragesChemi
als (dg24) Manufa
ture of 
hemi
als and 
hemi
al produ
tBasi
 metals (dj27) Manufa
ture of basi
 metalsFabri
ated metal (dj28) Manufa
ture of fabri
ated metal produ
ts, ex
ept ma
hinery and equipmentMa
hinery (dk29) Manufa
ture of ma
hinery and equipment N.E.C.Ele
tri
al ma
hinery (dl31) Manufa
ture of ele
tri
al ma
hinery and apparatus N.E.C.Vehi
les (dm34) Manufa
ture of motor vehi
les, trailers and semi-trailersEle
tri
ity and gas (e40) Ele
tri
ity, gas and water supplyFor more information about these series and some graphs depi
ting them (up to 1995),see Osborn et al. (1999).Appendix B: Appli
ation of SSA for the Fabri
atedmetal series in GermanyWe shall now use the Fabri
ated metal series for Germany as an example to illustrate thesele
tion of the SSA parameters and to show the re
onstru
tion of the original series indetails. To perform the analysis, we have used the SSA software5. Fig. 2 presents theseries, indi
ating a 
omplex trend and strong seasonality.

Figure 2: Fabri
ated metal series in Germany5http://www.gistatgroup.
om/
at/index.html
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Sele
tion of the window length LThe window length L is the only parameter in the de
omposition stage. Knowing thatthe time series may have a periodi
 
omponent with an integer period, to a
hieve a betterseparability of this periodi
 
omponent it is advisable to take the window length propor-tional to that period. For example, the assumption that there is an annual periodi
ity inthe series suggests that we must pay attention to the frequen
ies k=12 (k = 1; :::; 12). Asit is advisable to 
hoose L reasonably large (but smaller than T=2 whi
h is 162 in this
ase), we 
hoose L = 120.Sele
tion of rInformation from auxiliary methods help us in 
hoosing the parameters of the models.Here, we brie
y explain some methods, whi
h are useful in the separation of the signal
omponent from noise. Usually a harmoni
 
omponent produ
es two eigentriples with
lose singular values (ex
ept for the frequen
y 0.5 whi
h provides one eigentriple with thesaw-tooth singular ve
tor). Another useful insight is provided by 
he
king breaks in theeigenvalue spe
tra. Additionally, a pure noise series typi
ally produ
es a slowly de
reasingsequen
e of singular values.Choosing L = 120 and performing SVD of the traje
tory matrix X, we obtain 120eigentriples, ordered by their 
ontribution (share) in the de
omposition. Fig. 3 depi
tsthe plot of the logarithms of the 120 singular values.

Figure 3: Logarithms of the 120 eigenvalues.Here a signi�
ant drop in values o

urs around 
omponent 19 whi
h 
ould be inter-preted as the start of the noise 
oor. Six evident pairs, with almost equal leading singularvalues, 
orrespond to six (almost) harmoni
 
omponents of the series: eigentriple pairs3-4, 6-7, 8-9, 10-11, 14-15 and 17-18 are related to the harmoni
s with spe
i�
 periods(we show later that they 
orrespond to the periods of 6, 4, 12, 3, 36 and 2.4 months).Another way of grouping is to examine the matrix of the absolute values of the w -
orrelations. Fig. 4 shows the w -
orrelations for the 120 re
onstru
ted 
omponents in a20-grade grey s
ale from white to bla
k 
orresponding to the absolute values of 
orrela-tions from 0 to 1. Based on this information, we sele
t the �rst 18 eigentriples for there
onstru
tion of the original series and 
onsider the rest as noise.The prin
ipal 
omponents (shown as time series) of the �rst 18 eigentriples are shownin Fig. 5. Consider a pure harmoni
 with a frequen
y w, 
ertain phase, amplitude and18



Figure 4: Matrix of w -
orrelations for the 120 re
onstru
ted 
omponents.the ideal situation where the period P = 1=w is a divisor of both the window length Land K = T �L+1. In this ideal situation, the left eigenve
tors and prin
ipal 
omponentshave the form of sine and 
osine sequen
es with the same period P and the same phase.Thus, the identi�
ation of the 
omponents that are generated by a harmoni
 is redu
edto the determination of these pairs.

Figure 5: The �rst 18 prin
ipal 
omponents plotted as time seriesFig. 6 depi
ts the s
atterplots of the paired prin
ipal 
omponents in the series, 
orre-sponding to the harmoni
s with periods 6, 4, 12, 3, 36 and 2.4 months. They are orderedby their 
ontribution (share) in the SVD step (from left to right).The periodograms of the paired eigentriples (3-4 , 6-7, 8-9, 10-11 and 17-18) also19



Figure 6: S
atterplots (with lines 
onne
ting 
onse
utive points) 
orresponding to thepaired harmoni
 prin
ipal 
omponents.
on�rm that the eigentriples 
orrespond to the periods of 6, 4, 12, 3, 36 and 2.4 months.Constru
tion of Trend, Harmoni
s and NoiseTrend is a slowly varying 
omponent of a time series whi
h does not 
ontain os
illatory
omponents. Thus to 
apture the trend in the series, we should look for slowly vary-ing eigenve
tors. Fig. 7 (top) shows the extra
ted trend whi
h is obtained from theeigentriples 1, 2, 5, and 12-13. It 
learly follows the trend in the series.Fig. 7 (middle) represents all the harmoni
 
omponents and 
learly shows the samepattern of seasonality as in the original series. Thus, we 
an 
lassify the rest of theeigentriples 
omponents (19{120) as noise. Fig. 7 (bottom) shows the residuals whi
h areobtained from these eigentriples. The w-
orrelation between the re
onstru
ted series (theeigentriples 1-18) and the residuals (the eigentriples 19-120) is equal to 0:0006 
on�rmsthat this grouping is very reasonable. The p-value of Anderson-Darling test (Stephens,1974) for testing normality is 0:6 implying that the residual series has a distribution very
lose to the normal distribution.

Figure 7: Re
onstru
ted trend (top), harmoni
 (middle) and noise (bottom).20


