
A Comprehensive Causality Test Based on the
Singular Spectrum Analysis

Hossein Hassania∗, Anatoly A. Zhigljavskya, Kerry Pattersonb, Abdol S. Soofic

aGroup of Statistics, Cardiff School of Mathematics, Cardiff University, CF24 4AG, UK.
bSchool of Economics, University of Reading, UK.

cDepartment of Economics, University of Wisconsin-Platteville, Platteville, WI 53818-3099, USA.

Abstract

In this paper, we consider the concept of casual relationship between two time
series based on the singular spectrum analysis. We introduce several criteria which
characterize this causality. The criteria are based on the forecasting accuracy and
the predictability of the direction of change. The performance of the proposed tests
is examined using different real time series.
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1 Introduction

A question that frequently arises in time series analysis is whether one economic variable
can help in predicting another economic variable. One way to address this question was
proposed by Granger (1969). Granger (1969) formalized a causality concept as follows:
process X does not cause process Y if (and only if) the capability to predict the series
Y based on the histories of all observables is unaffected by the omission of X’s history
(see also Granger (1980)). Testing causality, in the Granger sense, involves using F -tests
to test whether lagged information on one variable, say X, provides any statistically
significant information about another variable, say Y , in the presence of lagged Y . If not,
then “Y does not Granger-cause X.”

Criteria for Granger causality typically have been realized in the framework of multi-
variate Gaussian statistics via vector autoregressive (VAR) models. It is worth mentioning
that the linear Granger causality is not causality in a broader sense of the word. It just
considers linear prediction and time-lagged dependence between two time series. The
definition of Granger causality does not mention anything about possible instantaneous
correlation between two series XT and YT . (If the innovation to XT and the innovation to
YT are correlated then it is sometimes called instantaneous causality.) It is not rare when
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instantaneous correlation between two time series can be easily revealed, but since the
causality can go either way, one usually does not test for instantaneous correlation. In this
paper, several of our causality tests incorporate testing for the instantaneous causality.
One more drawback of the Granger causality test is the dependence on the right choice of
the conditioning set. In reality one can never be sure that the conditioning set selected is
large enough (in short macro-economic series one is forced to choose a low dimension for
the VAR model). Moreover, there are special problems with testing for Granger causality
in co-integrated relations (see Toda and Phillips (1991)).

The original notion of Granger causality was formulated in terms of linear regression,
but there are some nonlinear extensions in the literature (see, for example, Chu et al.
(2004)). Hiemstra and Jones (1994) also propose a nonparametric test which seems to
be most used test in testing nonlinear causality. However, this method also has several
drawbacks: i) the test is not consistent, at least against a specific class of alternatives
(Diks and Panchenko (2005)), ii) there are restrictive assumptions in this approach (Bosq
(1998)) and iii) the test can severely over-reject the null hypothesis of non-causality (Diks
and Panchenko (2006)).

It is also important to note that Granger causality attempts to capture an important
aspect of causality, but it is not meant to capture all. A method based on the information
theory has realized a more general Granger causality measure that accommodates in
principle arbitrary statistical processes (Diks and DeGoede (2001)). Su and White (2008)
propose a nonparametric test of conditional independence based on the weighted Hellinger
distance between the two conditional densities. There are also a number of alternative
methods, but they are rarely used.

We overcome many of these difficulties by implementing a different technique for cap-
turing the causality; this technique uses the singular spectrum analysis (SSA) technique;
a nonparametric technique that works with arbitrary statistical processes, whether linear
or nonlinear, stationary or non-stationary, Gaussian or non-Gaussian.

The general aim of this study is to assess the degree of association between two arbi-
trary time series (these associations are often called causal relationships as they might be
caused by the genuine causality) based on the observation of these time series. We develop
new tests and criteria which will be based on the forecasting accuracy and predictability
of the direction of change of the SSA algorithms.

The structure of the paper is as follows. Section 2 briefly describes the SSA technique.
The proposed criteria and statistical tests are considered in Section 3. Empirical results
are presented in Section 4. Conclusions are given in Section 5. Appendix contains some
necessary technical details about SSA.

2 Singular Spectral Analysis

A thorough description of the theoretical and practical foundations of the SSA technique
(with many examples) can be found in Golyandina, et al. (2001) and Danilov and A.
Zhigljavsky (1997). There are many papers where SSA has been applied to real-life time
series. In particular, the performance of the SSA technique has been compared with
other techniques for forecasting economics time series (Hassani (2007) and Hassani, et
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al. (2009a–d)), and see also Hassani (2009e) for a new SSA-based algorithm and its
application for forecasting.

Consider the real-valued nonzero time series YT = (y1, . . . , yT ) of sufficient length T .
The main purpose of SSA is to decompose the original series into a sum of series, so that
each component in this sum can be identified as either a trend, periodic or quasi-periodic
component (perhaps, amplitude-modulated), or noise. This is followed by a reconstruction
the original series.

The state of a process at time t is considered to capture the relevant information of the
process up to time t. Moreover, it is the state of a process that is to be predicted. Assume
that the process is governed by some linear recurrent formula (LRF), then having the LRF
and embedding theory, forecasting the process at time t may be regarded as forecasting
the state vector. According to the SSA terminology, the problem of forecasting a new
vector requires (a) a window of some suitable length and (b) the number of eigenvalues.

The SSA technique consists of two complementary stages: decomposition and recon-
struction, both of which include two separate steps. At the first stage we decompose the
series and at the second stage we reconstruct the original series and use the reconstructed
series (which is without noise) for forecasting new data points. Below we provide a brief
discussion on the methodology of the SSA technique (for more description of the SSA
algorithm, forecasting procedure and parameter estimation, see Appendix A).

2.1 A short description of the Basic SSA

We consider a time series YT = (y1, . . . , yT ). Fix L (L ≤ T/2), the window length, and
let K = T − L + 1.
(Basic SSA)

Step 1. (Computing the trajectory matrix): this transfers a one-dimensional time
series YT = (y1, . . . , yT ) into the multi-dimensional series X1, . . . , XK with vectors Xi =
(yi, . . . , yi+L−1)

′ ∈ RL, where K = T − L +1. Vectors Xi are called L-lagged vectors
(or, simply, lagged vectors). The single parameter of the embedding is the window length
L, an integer such that 2 ≤ L ≤ T . The result of this step is the trajectory matrix
X = [X1, . . . , XK ] = (xij)

L,K
i,j=1.

Step 2. (Constructing a matrix for applying SVD): compute the matrix XXT .
Step 3. (SVD of the matrix XXT ): compute the eigenvalues and eigenvectors of the

matrix XXT and represent it in the form XXT = PΛP T . Here Λ = diag(λ1, . . . , λL) is
the diagonal matrix of eigenvalues of XXT ordered so that λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and
P = (P1, P2, . . . , PL) is the corresponding orthogonal matrix of eigen–vectors of XXT .

Step 4. (Selection of eigen–vectors): select a group of l (1 ≤ l ≤ L) eigen–vectors
Pi1 , Pi2 , . . . , Pil .

The grouping step corresponds to splitting the elementary matrices Xi into several
groups and summing the matrices within each group. Let I = {i1, . . . , il} be a group
of indices i1, . . . , il. Then the matrix XI corresponding to the group I is defined as
XI = Xi1 + · · ·+ Xil .

Step 5. (Reconstruction of the one-dimensional series): compute the matrix X̃ =
||x̃i,j|| =

∑l
k=1 PikP

T
ik
X as an approximation to X. Transition to the one–dimensional

series can now be achieved by averaging over the diagonals of the matrix X̃.
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2.2 Multivariate Singular Spectrum Analysis: MSSA

Multivariate (or multichannel) SSA is an extension of the standard SSA to the case of
multivariate time series (see e.g. Broomhead and King (1986)). It can be described as
follows. Assume we have two time series XT = x1, . . . , xT and YT = y1, . . . , yT simultane-
ously (a bivariate approach), and let L be window length. Using embedding terminology,
we can define the trajectory matrices MX and MY of the one-dimensional time series XT

and YT , respectively. The trajectory matrix M can then be defined as

M =

(
MX

MY

)
. (1)

The other stages of the Basic Multivariate SSA (or MSSA) procedure are identical to the
Basic SSA. The generalization to the case of several series is straightforward.

There are numerous examples of successful application of the multivariate SSA (see,
for example, Plaut and Vautard, 1994; Danilov and Zhigljavsky, 1997).

3 Causality Criteria

3.1 Forecasting accuracy based criterion

The first criterion we use here is based on the out-of-sample forecasting, which is very
common in the framework of Granger causality. The question behind Granger causality
is whether forecasts of one variable can be improved using the history of another variable.
Here, we compare the forecasted value obtained using the univariate procedure, SSA,
and also the multivariate one, MSSA. We then compare the forecasted values with the
actual values to evaluate the forecasting error. If the forecasting error using MSSA is
significantly smaller than the forecasting error of the univariate SSA, we then conclude
that there is a casual relationship between these series.

Let us consider in more detail the procedure of constructing a vector of forecasting
error for an out-of-sample test. In the first step we divide the series XT = (x1, . . . , xT )
into two separate subseries XR and XF : XT = (XR, XF ) where XR = (x1, . . . , xR),
and XF = (xR+1, . . . , xT ). The subseries XR is used in reconstruction step to provide the
noise free series X̃R. The noise free series X̃R is then used for forecasting the subseries XF

using either the recurrent or vector forecasting algorithm, see Appendix A. The subseries
XF will be forecasted using the recursive h-step ahead forecast with SSA and MSSA.
The forecasted points X̂F = (x̂R+1, . . . , x̂T ) are then used for computing the forecasting
error, and the vector (xR+2, . . . , xT ) is forecasted using the new subseries (x1, . . . , xR+1).
This procedure is continued recursively up to the end of series, yielding the series of
h-step-ahead forecasts for univariate and multivariate algorithms. Therefore, the vector
of h-step-ahead forecasts obtained can be used in examining the association (or order h)
between the two series. Let us now consider a formal procedure of constructing a criterion
of SSA causality of order h between two arbitrary time series.
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Criterion

Let XT = (x1, . . . , xT ) and YT = (y1, . . . , yT ) denote two different time series of length T .
Set window lengths Lx and Ly for the series XT and YT , respectively. Here, for simplicity
assume Lx = Ly. Using the embedding terminology, we construct trajectory matrices
X = [X1, . . . , XK ] and Y = [Y1, . . . , YK ] for the series XT and YT .

Consider an arbitrary loss function L. In econometrics, the loss function L is usually
selected so that it minimizes the mean square error of the forecast. Let us first assume that
the aim is to forecast the series XT . Thus, the aim is to minimize L(XK+Hx − X̂K+Hx),
where the vector X̂K+Hx is an estimate, obtained using a forecasting algorithm, of the
vector XK+Hx of the trajectory matrices X. Note that, for example, when Hx = 1, X̂K+1

is an estimate of the vector XK+1 = (xT+1, . . . , xT+h) where h varies between 1 and L. In
a vector form, this means that an estimate of XK+1 can be obtained using the trajectory
matrix X consisting of vectors [X1, . . . , XK ]. The vector XK+Hx can be forecasted using
either univariate SSA or MSSA. Let us first consider the univariate approach. Define

∆XK+Hx
≡ L(XK+Hx − X̂K+Hx), (2)

where X̂K+Hx is obtained using univariate SSA; that is, the estimate X̂K+Hx is obtained
only from the vectors [X1, . . . , XK ].

Let XT = (x1, . . . , xT ) and YT+d = (y1, . . . , yT+d) denote two different time series to be
considered simultaneously and consider the same window length L for both series. Now,
we forecast xT+1, . . . , xT+h using the information provided by the series YT+d and XT .
Next, compute the following statistic:

∆XK+Hx |YK+Hy
≡ L(XK+Hx − X̃K+Hx). (3)

where X̃K+Hx is an estimate of XK+Hx obtained using multivariate SSA. This means that
we simultaneously use vectors [X1, . . . , XK ] and

[
Y1, . . . , YK+Hy

]
in forecasting vector

XK+Hx . Now, define the criterion:

F
(h,d)
X|Y =

∆XK+Hx |YK+Hy

∆XK+Hx

(4)

corresponding to the h step ahead forecast of the series XT in the presence of the series
YT+d; here d shows the lagged difference between series XT and YT+d, respectively. Note

that d is any given integer (even negative). For example, F
(h,0)
X|Y indicates that we use

the same series length in h step ahead forecasting series X; we use the series XT and YT

simultaneously. F
(h,0)
X|Y can be considered as a common multivariate forecasting system for

time series with the same series length. The criterion F
(h,0)
X|Y can then be used in evalu-

ating two instantaneous causality. Similarly, F
(h,1)
X|Y indicates that there is an additional

information for series Y and that this information is one step ahead of the information
for the series X; we use the series XT and YT+1 simultaneously.

If F
(h,d)
X|Y is small, then having information obtained from the series Y helps us to have

a better forecast of the series X. This means there is a relationship between series X and
Y of order h according to this criterion. In fact, this measure of association shows how
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much more information about the future values of series X contained in the bivariate time
series (X,Y ) than in the series X alone. If F

(h,d)
X|Y is very small, then the predictions using

the multivariate version are much more accurate than the predictions by the univariate
SSA. If F

(h,d)
X|Y < 1, then we conclude that the information provided by the series Y can be

regarded as useful or supportive for forecasting the series X. Alternatively, if the values
of F

(h,d)
X|Y ≥ 1, then either there is no detectable association between X and Y or the

performance of the univariate version is better than the multivariate version (this may
happen, for example, when the series Y has structural breaks which may misdirect the
forecasts of X).

To asses which series is more supportive in forecasting, we need to consider another
criteria. We obtain F

(h,d)
Y |X in a similar manner. Now, these measures tell us whether

using extra information about time series YT+d (or XT+d) supports XT (or YT ) in h-step

forecasting. If F
(h,d)
Y |X < F

(h,d)
X|Y , we then conclude that X is more supportive than Y , and if

F
(h,d)
X|Y < F

(h,d)
Y |X , we then conclude that Y is more supportive than X.

Let us now consider a definition for a feedback system according to the above criteria.
If F

(h,d)
Y |X < 1 and F

(h,d)
X|Y < 1, we then conclude that there is a feedback system between

series X and Y . We shall call it F-feedback (forecasting feedback) which means that using
a multivariate system improves the forecasting for both series. For a F-feedback system,
X and Y are mutually supportive.

Statistical test

To check if the discrepancy between the two forecasting procedures are statistically sig-
nificant we may apply the Diebold and Mariano (1995) test statistic, with the corrections
suggested by Harvey et al. (1997). The quality of a forecast is to be judged on some speci-
fied function L as a loss function of the forecast error. Then, the null hypothesis of equality
of expected forecast performance is E(Dt) = 0, where Dt = (DXK+Hx |YK+Hy

− DXK+Hx
)

and DXK+Hx |YK+Hy
and DXK+Hx

are the vectors of the forecast errors obtained with the
univariate and multivariate approaches, respectively. In our case, L is the quadratic loss
function. The modified Diebold and Mariano statistic for a h step ahead forecast and the
number of n forecasted points is

S = D̄

√
n + 1− 2h + h(h− 1)/n

n v̂ar(D̄)

where D̄ is the sample mean of the vector Dt and v̂ar(D̄) is, asymptotically n−1
(
γ̂0 + 2

∑h−1
k=1 γ̂k

)
,

where γ̂k is the k-th autocovariance of Dt and can be estimated by n−1
∑n

t=k+1(Dt −
D̄)(Dt−k− D̄). The S statistic has an asymptotic standard normal distribution under the
null hypothesis and its correction for a finite samples follows the Student’s t distribution
with n− 1 degrees of freedom.

3.2 Direction of change based criterion

Ash et al. (1997) argue that for some purposes, it may be more harmful to make a
smaller prediction error yet fail in predicting the direction of change, than to make a
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larger directionally correct error. Clements and Smith (1999) discuss that the value of a
model’s forecasts may be better measured by the direction of change. Heravi et al. (2004)
argue that the direction of change forecasts are particularly important in economics for
capturing the business cycle movement relating to expansion versus contraction phases
of the cycle. Thus as another measure of forecasting performance, we also compute the
percentage of forecasts that correctly predict the direction of change.

Criterion

The direction of change criterion shows the proportion of forecasts that correctly predict
the direction of the series movement. For the forecasts obtained using only XT (uni-
variate case), let ZXi

take the value 1 if the forecast observations correctly predicts the
direction of change and 0 otherwise. Then Z̄X =

∑n
i=1 ZXi/n shows the proportion of

forecasts that correctly predict the direction of the series movement (in forecasting n data
points). The Moivre-Laplace central limit theorem implies that, for large samples, the
test statistic 2(Z̄X − 0.5)N1/2 is approximately distributed as standard normal. When
Z̄X is significantly larger than 0.5, then the forecast is said to have the ability to predict
the direction of change. Alternatively, if Z̄X is significantly smaller than 0.5, the forecast
tends to give the wrong direction of change.

For the multivariate case, let ZX|Y,i takes a value 1 if the forecast series correctly
predicts the direction of change of the series X having information about the series Y and
0 otherwise. Then, we define the following criterion:

D
(h,d)
X|Y =

Z̄X

Z̄X|Y
(5)

where h and d have the same interpretation as for F
(h,d)
X|Y . The criterion D

(h,d)
X|Y characterizes

the improvement we are getting from the information contained in YT+h (or XT+h) for
forecasting the direction of change in the h step ahead forecast.

If D
(h,d)
X|Y < 1, then having information about the series Y helps us to have a better

prediction of the direction of change for the series X. This means that there is an asso-
ciation between the series X and Y with respect to this criterion. This criterion informs
us how much more information we have in the bivariate time series relative to the infor-
mation contained in the univariate time series alone with respect to the prediction of the
direction of change. Alternatively, if D

(h,d)
X|Y > 1, then the univariate SSA is better than

the multivariate version.
To find out which series is more supportive in predicting the direction of change, we

consider the following criterion. We compute D
(h,d)
Y |X in a similar manner. Now, if D

(h,d)
Y |X <

D
(h,d)
X|Y , then we conclude that that X is more supportive (with respect to predicting the

direction) to Y than Y to X.
Similar to the consideration of the forecasting accuracy criteria, we can define a feed-

back system based on the criteria characterizing the predictability of the direction of
change. Let us introduce a definition for a feedback system according to D

(h,d)
X|Y and D

(h,d)
Y |X .

If D
(h,d)
Y |X < 1 and D

(h,d)
X|Y < 1, we conclude that there is a feedback system between the se-

ries X and Y for prediction of the direction of change. We shall call this type of feedback
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D-feedback. The existence of a D-feedback in a system yields that the series in the system
help each other to capture the direction of the series movement with higher accuracy.

Statistical test

Let us describe a statistical test for the criterion D
(h,d)
X|Y . As in the comparison of two

proportions, when we test the hypothesis about the difference between two proportions,
first we need to know whether the two proportions are dependent. The test is differ-
ent depending on whether the proportions are independent or dependent. In our case,
obviously, ZX and ZX|Y are dependent. We therefore consider this dependence in the
following procedure. Let us consider the test statistic for the difference between ZX and
ZX|Y . Assume that ZX and ZX|Y , in forecasting n future points of the series X, are
arranged as Table 1.

ZX|Y ZX number
1 1 a
1 0 b
0 1 c
0 0 d

Total n = a + b + c + d

Table 1: An arrangement of ZX and ZX|Y in forecasting n future points of the series X.

Then the estimated proportion using the multivariate system is PX|Y = (a+ b)/n, and
the estimated proportion using the univariate version is PX = (a + c)/n. The difference
between the two estimated proportions is

π = PX|Y − PX =
a + b

n
− a + c

n
=

b− c

n
(6)

Since the two population probabilities are dependent, we cannot use the same approach
for estimating the standard error of the difference that is used for independent case. The
formula for the estimated standard error for the dependent case was given in Fleiss (1981):

ˆSE(π) =
1

n

√
(b + c)− (b− c)2

n
. (7)

Let us consider the related test for the difference between two dependent proportions,
then the null and alternative hypotheses are:

H0 : πd = ∆0

Ha : πd 6= ∆0
(8)

The test statistic, assuming that the sample size is large enough for the normal approxi-
mation to the binomial to be appropriate, is:

Tπd
=

π −∆0 − 1/n

ˆSE(π)
(9)
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where 1/n is the continuity correction. In our case ∆0 = 0. The test statistic then
becomes:

Tπd
=

(b− c)/n− 1/n

1/n
√

(b + c)− (b− c)2/n
=

b− c− 1√
(b + c)− (b− c)2/n

(10)

The test is valid when the average of the discordant cell frequencies, (b + c)/2, is
equal or more than 5. However, then it is less than 5, a binomial test can be used. Note
that under the null hypothesis of no difference between samples ZX and ZX|Y , Tπd

is
asymptotically distributed as standard normal.

3.3 Comparison with Granger causality test

Linear Granger causality test

Let XT and YT be two stationary time series. To test for Granger causality we compare
the full and the restricted model. The full model is given by

xt = φ0 + φ1xt−1 + . . . + φpxt−p + ψ1yt−1 + . . . + ψpyt−p + εtx|y (11)

where {εtx|y} is an iid sequence with zero mean and variance σx|y, φi and ψi are model
parameters. The null hypothesis stating that YT does not Granger cause XT is:

H0 = ψL+1 = ψ2 = . . . = ψp = 0 (12)

If the null hypothesis holds, the full model (11) is reduced to the restricted model as
follows:

xt = φ0 + φ1xt−1 + . . . + φpxt−L+1 + εtx (13)

where εtx is iid sequence with zero mean and variance σx. The forecasting results obtained
by the restricted model (13) are compared to those obtained using the full model (11) to
test for Granger causality. We then apply the F-test (or some other similar test) to obtain
a p-value for whether the full model results are better than the restricted model results.
If the full model provides a better forecast, according to the standard loss functions,
we then conclude that YT Granger causes XT . Thus, YT would Granger cause XT if
YT occurs before and contains information useful in forecasting XT . As the formula of
Granger causality shows, the test, in fact, is a mathematical formulation based on the
linear regression modeling of two time series. Therefore, the above formulation of Granger
causality can only give information about linear features of the series.

Let us now compare the similarity and dissimilarity of the proposed algorithm which
is based on the SSA forecasting algorithm with the Granger causality procedure. As
mentioned in the description of the SSA forecasting algorithm, the last component XL of
any vector X = (x1, . . . , xL)T ∈ Lr is a linear combination of the first L− 1 components
(x1, . . . , xL−1) such that:

xL = α1xL−1 + . . . + αL−1x1.

where A = (α1, . . . , αL−1) can be estimated using equation (23) of the Appendix A. Thus,
the univariate version of SSA is given by

xt = α1xt−1 + . . . + αL−1xt−L+1 (14)
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As can be seen from (14), a univariate SSA forecasting formula is similar to the restricted
model. However, the procedure of parameter estimation in the SSA technique and the
Granger model are quite different. Both are linear combinations of previous observations,
and from this point of view both are similar. The multivariate version of SSA is a system
in which XT and YT are considered simultaneously to estimate vectors A and B as follows.
The multivariate forecasting system is:

(
xt

yt

)
=

(
α1xt−1 + . . . + αL−1xt−L+1

β1yt−1 + . . . + βL−1yt−L+1

)
(15)

where the vectors A = (α1, . . . , αL−1) and B = (β1, . . . , βL−1) are estimated using the
multivariate system. As equation (15) shows, the multivariate SSA is not similar to the
Granger full model. An obvious discrepancy is that we use the value of the series Y in
parameter estimation and also in forecasting series X in the Granger based test, while
we use the information provided in the subspaces generated by Y in multivariate SSA
and not the observed values. More specifically, the Granger causality test uses a linear
combination of the values of both series X and Y in the full model, whereas multivariate
SSA uses the information provided by X and Y in construction of the subspace and not
the observations themselves.

Nonlinear Granger causality test

It is worth mentioning that the simultaneous reconstruction of the trajectory matrices
X and Y in the MSSA technique is also used in testing for Granger causality between
two nonlinear time series. Let us consider the concept of nonlinear Granger causality in
more detail. Let Z = [X,Y] be the joint trajectory matrix with lagged difference zero
(same value of K in the trajectory matrix X and Y). In the joint phase space consider a
small neighborhood of any vector. The dynamics of this neighborhood can be described
via a linear approximation and a linear autoregressive model can be used to predict the
dynamics within the neighborhood. Assume that the vectors of prediction errors are given
by eX|Y and eY |X . The reconstruction and the fitting procedure are now employed for the
individual time series XT and YT in the same neighborhood and the vector of prediction
errors eX and eY are then computed. Now, we compute the following criteria

V ar(eX|Y )

V ar(eX)
,

V ar(eY |X)

V ar(eY )
(16)

The above procedure is then repeated for various regions on the attractor, each column
of trajectory matrices X and Y, and the average of the above criteria are used. The
above criteria, clearly, can be considered as a function of neighborhood size. If the ratios
are smaller than 1, we then conclude that there is a nonlinear Granger causal relation
between two series. The similarity of nonlinear Granger causality test with SSA causality
test is only in the construction of the trajectory matrices X and Y using embedding
terminology, which is only the first step of SSA. Otherwise, the Granger nonlinear test is
different from the test considered here. Moreover, the major drawback of the standard
nonlinear analysis is that it requires a long time series, while the SSA technique works
well for short and long time series (see, for example, Hassani and Zhigljavsky (2009)).
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Further discussion of the difference between Granger causality and the SSA-
based techniques

One of the main drawbacks of the Granger causality is that we need to assume that
the model is fixed (we then just test for significance of some parameters in the model);
model can be (and usually is) wrong. The test statistics used for testing the Granger
causality are not comprehensive. In the certain case of the linear model, testing for
Granger causality consists in the repeated use of the standard F-test which is sensitive to
various deviations from the model, and the Granger causality is only associated with the
lag difference between the two series.

In our approach, the model of dependence (or causality) is not fixed a priori; instead,
this is built into the process of analysis. The models we build are non-parametric and are
very broad (in particular, causality is not necessarily associated with a lag) and flexible.

The tests for Granger causality consider the past information of other series in fore-
casting the series. For example, in the linear Granger causality test, we use the series X
up to time t and the series Y up to time t− d; and the series YT−d is used in forecasting
series XT . Whereas in the proposed test here, the series YT+d is employed in forecasting
series XT .

Furthermore, the tests for Granger causality are based on the forecasting accuracy.
In this paper, we have also introduced another criterion for capturing causality which is
based on the predictability of the direction of change. As we mentioned above, it may
be more harmful to make a smaller prediction error yet fail in predicting the direction of
change, than to make a larger directionally correct error (Ash et al. (1997)).

The definition of Granger causality does not mention anything about possible instan-
taneous correlation between two series XT and YT , where the criteria introduced enable
an interpretation of an instantaneous causality. In fact, the proposed test is not restricted
to the lagged difference between two series. It works equally well when there is no lagged
difference between series.

Furthermore, real world time series are typically noisy (e.g., financial time series),
non-stationary, and can have small length. It is well known that the existence of a
significant noise level reduces the efficiency of the tests (linear and nonlinear) for capturing
the amount of dependence between two financial series (see, for example, Hassani et al.
(2009c)).

There are mainly two different approaches to examine causality between two time
series. According to the first one, that is utilized in current methods, the criteria of
capturing causality is computed directly from the noisy time series. Therefore, we ignore
the existence of the noise, which can lead to misleading interpretations of causal effects.
In our approach, the noisy time series is filtered in order to reduce the noise level and
then we calculate the criteria. It is commonly accepted that the second approach is more
effective than the first one if we are dealing with the series with high noise level (Soofi
and Cao (2002)).
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4 Empirical results

4.1 Exchange rate

Given the high correlation between the UK (pound/dollar) and EU (euro/dollar) exchange
rates, Hassani et al. (2009d) used a 2-variable vector autoregressive (VAR) model and
SSA (univariate and multivariate model) in exchange rate predicting. This approach to
prediction is called a-theoretical, since there is no theoretical justifications in asserting
that one exchange rate is a predictor of another one. They showed that VAR model is
not a good choice in predicting exchange rate series, while SSA (specifically multivariate
version) decisively outperforms the VAR model. They also found that the exchange rate
series has a unit root, which implies the series is non-stationary.

Moreover, using Johansen maximum-likelihood method, they also found that the ex-
change rates are cointegrated, and the Granger causality test showed that the UK/dollar
rate does Granger cause the EU/dollar exchange rate series and vice versa.

Next we consider testing for causality between the two exchange rate series using the
criteria we have introduced in previous section. First, we consider univariate SSA to
forecast one step ahead of the UK and EU exchange rate series, and then compare the
MSSA and SSA forecasting results to find F

(1,0)
UK|EU and F

(1,1)
UK|EU . In this particular example,

examining F
(h,0)
UK|EU also shows whether exchange rate series is martingale or not.

To find the vector of forecasting errors, we forecast all observations of the UK and
EU series from 1-May-2009 to 26-June-2009. Fig. 1 shows these series over the period
3-Jan-2000 to 26-Jun-2009, in these prediction exercises. Each of these series contain
2452 points. It is very clear that the UK and EU series are highly correlated (indeed,
the nonlinear correlation coefficient between UK and EU series is about 0.75). It must
be mentioned that this correlation only shows the relationship between the main trends
of the series. One source of the relation between the UK and EU exchange rate series is
obvious as the two series are each a ratio of US series.

Figure 1: The exchange rate series UK (thick line) and EU (thin line) exchange rate series
over the period 3-Jan-2000 to 26-Jun-2009.
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We perform one-step ahead forecasting based on the most up-to-date information
available at the time of the forecast. Note that we first use SSA in prediction of a single
series, e.g. in prediction of the UK series without using euro series. Next, we use both
series simultaneously, e.g. we use the EU time series in forecasting the UK series and vice
versa. We shall refer to the results of this step F

(1,0)
UK|EU and F

(1,0)
EU |UK . We also use one-step

ahead information of EU time series as additional information in forecasting UK series
and vice versa. We shall call this version of results F

(1,1)
UK|EU and F

(1,1)
EU |UK . Note that we

select window length 3 for both single and multivariate SSA in forecasting exchange rate
series. The symbol ∗ indicates the significant results on the 1% level.

F
(1,0)
UK|EU D

(1,0)
UK|EU F

(1,1)
UK|EU D

(1,1)
UK|EU F

(1,0)
EU |UK D

(1,0)
EU |UK F

(1,1)
EU |UK D

(1,1)
EU |UK

0.94 0.92 0.63* 0.88 0.81* 0.92 0.45* 0.84

Table 2: The value of FUK|EU , DUK|EU , FEU |UK and DEU |UK in forecasting 1 step ahead
of the UK and EU exchange rate series for d =0 and 1.

It can be observed from Table 2 that the difference between the MSSA predictions
and SSA is significant with respect to F

(h,d)
UK|EU and D

(h,d)
UK|EU . The results confirm with

that we have improved both accuracy and direction of change of the forecasting results.
For example, in forecasting one step ahead for the EU series and d = 0, compared to
the univariate case, we have improved the accuracy and the direction of change of the
forecasting results up to 19% and 8% (column 3 of Table 2), respectively. Similarly for
the UK exchange rate series with zero lagged difference, MSSA enable an improvement
in forecasting accuracy and prediction of the direction of change up to 6% and 8% (with

respect to F
(1,0)
UK|EU and D

(1,0)
UK|EU), respectively. Thus, using the information of the UK and

EU exchange rate (with zero lagged difference) enable an improvement the results.
The results obtained so far can be considered as zero-lag correlation between two

exchange rate series or multivariate version of the SSA with zero lagged difference. These
results can be considered as an evidence that there is the SSA causal relationship between
the UK and EU exchange rate of order zero. It should be noted that the SSA causality of
zero order confirms that there exists instantaneous causality. The SSA causality of zero
order, instantaneous causality, suggests that there might be SSA causal relationship of
higher order.

To examine this, next we consider MSSA with one more additional observation for
one series. For example, we use the UK exchange rate series up to time t, and the EU
exchange rate series up to time t + 1 in forecasting one step ahead of the UK exchange
rate series to obtain F

(1,1)
UK|EU . In fact, there is one lagged difference between two series in

one step ahead forecasting. We use a similar procedure in forecasting the EU series. We
expect this additional information gives better results in both forecasting accuracy and
the direction of change prediction.

Tt can be observed from columns F
(1,1)
UK|EU , D

(1,1)
UK|EU , F

(1,1)
EU |UK and D

(1,1)
EU |UK , thus the

errors for the MSSA forecast and direction of change, with only one additional observa-
tion, are much smaller than those obtained using univariate version. These results are
also better than the results obtained using the multivariate approach with zero lag dif-
ference. This is not surprising though as the additional data used for forecast is highly
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correlated with the values we are forecasting. As the results show, the accuracy perfor-
mance of MSSA has been significantly increased. This means using only one additional
observation enable an improvement in forecasting accuracy up to 37% and 55% relative
to the univariate version for the UK and EU series (according to F

(1,1)
UK|EU and F

(1,1)
EU |UK),

respectively. Similarly for the direction of change, using only one additional observation
enable an improvement in predicting the direction of change up to 12% and 16% (with

respect to D
(1,1)
UK|EU and D

(1,1)
EU |UK).

These results imply that the exchange rate time series are not martingales with respect
to all available information available at the currency exchange markets. In fact, the results
confirm that the series are SSA causal of order 1. Moreover, F

(1,1)
EU |UK > F

(1,1)
UK|EU indicates

that, in forecasting this period of the series, the UK exchange rate series is more supportive
than the EU series. Furthermore, F

(1,0)
EU |UK > F

(1,0)
UK|EU is other evidence for this. This means

for this particular example, the SSA casual of order zero then consequences SSA casual
of order one as well. However, D

(0,1)
EU |UK = D

(0,1)
UK|EU and the discrepancy between D

(1,1)
EU |UK

and D
(1,1)
UK|EU is not substantially indicating that neither is more directive.

Finally, the results of Table 2 strongly confirm that there exists F-feedback and D-
feedback between the UK and EU exchange rate series. This means, considering both the
UK and EU exchange rate series simultaneously, with and without one additional obser-
vation, will improve both the accuracy of forecasting and predictability of the direction
of change.

4.2 Index of Industrial Production Series

As the second example, we consider the index of industrial production (IIP) series. The
IIP series is a key indicator of the state of the UK’s industrial base and regarded as a
leading indicator of the general state of the economy. The IIP series is published on
a monthly basis by the Office for National Statistics (ONS). The index is first released
as a provisional estimate and then revised each month to incorporate the information
that was not available at the time of the preliminary release. A number of studies have
been concerned with the size and nature of revisions to important economic time series.
Patterson and Heravi (1991a, b, 1992) have extensively analyzed the key national income
and expenditure time series. There are many other studies for modelling and forecasting
of data revision. For example, Patterson (1995a, b) have used state space approach in
forecasting the final vintage of the IIP series and real personal disposable income. For
more information about the data revision see Patterson (1992, 1994, 1995c).

The overall data period for the study includes 423 monthly observations for 1972:1 to
2007:3 on 12 vintages of data seasonally adjusted IIP. The first vintage, which is published
one month after the latest month of published data, refers to the first publication in the
monthly Digest of statistics. The second vintage refers to the next published figure and
so on. For this study we take the 12th vintage as the final vintage (m), then having 12
vintages of data on the same variables.

Let yv
t be the vth vintage (v = 1, · · · ,m) of the data on variable y for the period t,

where v = 1 indicates the initially published data and v = m the finally published data.
(In practice, m may be taken to indicate the conditionally final vintage.) Here m = 12.
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The structure of the data which is published by Monthly Digest of Statistics (MDS) is as
follow:




y1
1 y2

1 y3
1 . . . ym

1
...

...
...

. . .
...

y1
t−m y2

t−m y3
t−m . . . ym

t−m
...

...
...

. . .

y1
t−2 y2

t−2 y3
t−2

y1
t−1 y2

t−1

y1
t




. (17)

Thus, publication from a particular issue of MDS traces back a diagonal of this data
matrix which is a composite of data of different vintages. We expect that there is a
SSA causal relationship between preliminary vintage (vth vintage) and final vintage (mth

vintage). To answer this, we need to forecast h step ahead (h = 1, . . . , 11) of the final
vintage, v = m, giving the information at time t. The forecast could be obtained using
classical univariate time series methods. However, the forecasts are not optimal since other
information (vintages) available at time t are not used. For example, in forecasting ym

t−m+1

we also have available information of yv
t−m+1 for v = 1, · · · ,m − 1, each of which could

itself be regarded as a forecast of ym
t−m+1. This matter motivates us to use a multivariate

method for forecasting h step ahead of ym
t . For example, to obtain the final vintage

value at time t, ym
t , we can use the information for the first vintage data y1

1, . . . , y
1
t and

the final vintage data ym
1 , . . . , ym

t−m. If the results of h step ahead forecast MSSA are

better than SSA, e.g. F
(h,m−i)

vm|vi < 1 and D
(h,m−i)

vm|vi < 1, we then conclude that there is a

SSA causal relationship of order h between ith vintage and final vintage. To asses this,
SSA and MSSA models were estimated using data to the end of 2000 and post-sample
forecasts are then computed for 64 observations of 2001:1-2006:3. Thus, we have 64 one
step ahead post sample forecast errors, at horizon h = 1. The number of forecast errors
available decreases as the forecast horizon increases, so that at horizons of h = 2, 3, . . . , 12
the number of forecast errors are 63, 62, . . . , 52 respectively. The value of F

(h,m−i)

vm|vi and

D
(h,m−i)

vm|vi (i = 1, . . . , 11) for each vintage and relative to single SSA are given in Table

3. The two parameters L (window length) and r (number of eigenvalues) chosen in the
decomposition and reconstruction are also presented in the table.

From Table 3, observe that there are gains to using MSSA throughout the revision
process, these being between 87% and 67% for vintage up to v = 5, reducing to 50% or
slightly less for latter vintages (according to the column labeled F

(h,m−i)

vm|vi ). This is because,

as the structure of the data matrix (17) shows, even one observation is very important in
forecasting a new vector of the data matrix (17). All results are statistically significant
at the 1% significant level.

For the direction of change results, for each preliminary vintage v, we compare the
true direction of ym

t − ym
t+v−12 with the direction of vintage v estimate yv

t − ym
t+v−12 and

the SSA estimate ŷt− ym
t+v−12. Table 3 provides the percentage of forecasts that correctly

predict the direction of change for each vintage. As the results show the percentage of
correct signs produced by MSSA are significantly higher than those given by SSA, these
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being between 55% and 45% for vintage up to v = 5, reducing to 18% for latter vintages
(according to the column labeled D

(h,m−i)

vm|vi ).
Thus, these results, without exception, confirm that there exists a SSA causal relation-

ship between each vintage and the final vintage. In fact the results strongly indicate that
there is SSA causality between ith vintage and final vintage is of order m− i. It should be
noted that here i is equal to h step ahead forecast which is the time lag difference between
ith vintage and final vintage. Here, as the results show, SSA causality holds for lower lag
order such as in the case of the exchange rate series. This confirms that SSA causality of
order m− i has consequences for other orders of causality. Note that here the problem of
interest is one-side causality as the final vintage is forecasted.

The results of Granger causality tests, also showed that there is a Granger causal
relationship between these series. This is not surprising as each column of the data
matrix is a revised version of the previous column and therefore they are high correlated.
Also, it should be noted that the results of VAR model in forecasting these series are
worse than the MSSA results.

ith Vintage L r F
(h,m−i)
vm|vi D

(h,m−i)
vm|vi

1 13 5 0.22* 0.45*
2 12 5 0.24* 0.47*
3 11 5 0.27* 0.48*
4 10 5 0.31* 0.50*
5 9 5 0.33* 0.55*
6 8 4 0.36* 0.61*
7 7 4 0.39* 0.65*
8 6 3 0.41* 0.70*
9 5 3 0.45* 0.73*
10 4 3 0.49* 0.77*
11 3 2 0.55* 0.82

Table 3: The value of F
(h,m−i)

vm|vi and D
(h,m−i)

vm|vi in forecasting of ith vintage of the index of
industrial production series.

5 Conclusion

In this paper, we developed a new approach in testing for causality between two arbi-
trary univariate time series. We introduced a family of causality tests which are based
on the singular spectrum analysis (SSA) analysis. The SSA technique accommodates,
in principle, arbitrary processes, including linear, nonlinear, stationary, non-stationary,
Gaussian, and non-Gaussian. Accordingly, we believe our approach to be superior to
the traditional criteria used in Granger causality tests, criteria that are based on autore-
gressive integrated moving average (p, d, q) or multivariate vector autoregressive (VAR)
representation of the data; the models that impose restrictive assumptions on the time
series under investigation.

Several test statistics and criteria are introduced in testing for casuality. The criteria
are based on the idea of minimizing a loss function, forecasting accuracy and predictability
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of the direction of change. We use the univariate SSA and multivariate SSA in forecasting
the value of the series and also prediction of the direction.

The performance of the proposed test was examined using the euro/dollar and the
pound/dollar daily exchange rates as well as the index of industrial production (IIP)
series for the United Kingdom. It has been shown here that the euro/dollar rate causes
the pound/dollar rate and vice versa. Moreover, it has been documented that, without
exception, there exists a SSA causal relationship between each vintage and final vintage
of the IIP data.
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Appendix A: Formal Description of SSA

Stage 1: Decomposition

1st step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time series
YT = (y1, . . . , yT ) into the multi-dimensional series X1, . . . , XK with vectors Xi =
(yi, . . . , yi+L−1)

′ ∈ RL, where K = T − L +1. Vectors Xi are called L-lagged vectors
(or, simply, lagged vectors). The single parameter of the embedding is the window length
L, an integer such that 2 ≤ L ≤ T . The result of this step is the trajectory matrix
X = [X1, . . . , XK ]:

X = (xij)
L,K
i,j=1 =




y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1
...

...
...

. . .
...

yL yL+1 yL+2 . . . yT


 . (18)

Note that the trajectory matrix X is a Hankel matrix, which means that all the elements
along the diagonal i + j = const are equal. Embedding is a standard procedure in time
series analysis. With the embedding performed, future analysis depends on the aim of
the investigation.
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2nd step: Singular Value Decomposition (SVD)

The second step, the SVD step, makes the singular value decomposition of the tra-
jectory matrix and represents it as a sum of rank-one bi-orthogonal elementary ma-
trices. Denote by λ1, . . . , λL the eigenvalues of XX

′
in decreasing order of magnitude

(λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the orthonormal system (that is, (Ui, Uj)=0 for
i 6= j (the orthogonality property) and ‖Ui‖=1 (the unit norm property)) of the eigen-
vectors of the matrix XX

′
corresponding to these eigenvalues. (Ui, Uj) is the inner

product of the vectors Ui and Uj and ‖Ui‖ is the norm of the vector Ui. Set

R = max(i, such that λi > 0) = rank X.

If we denote Vi = X
′
Ui/

√
λi, then the SVD of the trajectory matrix can be written as:

X = X1 + · · ·+ XR, (19)

where Xi =
√

λiUiVi
′
(i = 1, . . . , R). The matrices Xi have rank 1; therefore they are

elementary matrices, Ui (in SSA literature they are called ‘factor empirical orthogonal
functions’ or simply EOFs) and Vi (often called ‘principal components’) stand for the
left and right eigenvectors of the trajectory matrix. The collection (

√
λi, Ui, Vi) is called

the i-th eigentriple of the matrix X,
√

λi (i = 1, . . . , R) are the singular values of the
matrix X and the set {

√
λi} is called the spectrum of the matrix X. If all the eigenvalues

have multiplicity one, then the expansion (19) is uniquely defined.

SVD (19) is optimal in the sense that among all the matrices X(r) of rank r < R, the
matrix

∑r
i=1 Xi provides the best approximation to the trajectory matrix X, so that

‖ X−X(r) ‖ is minimum. Note that ‖ X ‖2 =
∑R

i=1 λi and ‖ Xi ‖2 = λi for i = 1, . . . , d.

Thus, we can consider the ratio λi/
∑R

i=1 λi as the characteristic of the contribution of

the matrix Xi to expansion (19). Consequently,
∑r

i=1 λi/
∑R

i=1 λi, the sum of the first
r ratios, is the characteristic of the optimal approximation of the trajectory matrix by
the matrices of rank r .

Stage 2: Reconstruction

1st step: Grouping

The grouping step corresponds to splitting the elementary matrices Xi into several
groups and summing the matrices within each group. Let I = {i1, . . . , ip} be a group
of indices i1, . . . , ip. Then the matrix XI corresponding to the group I is defined as
XI = Xi1 + · · · + Xip . The spilt of the set of indices J = 1, . . . , R into the disjoint
subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · ·+ XIm . (20)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping. For
given group I the contribution of the component XI into the expansion (1) is measured
by the share of the corresponding eigenvalues:

∑
i∈I λi/

∑R
i=1 λi.
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2nd step: Diagonal Averaging

Diagonal averaging transfers each matrix I into a time series, which is an additive
component of the initial series YT . If zij stands for an element of a matrix Z, then
the k -th term of the resulting series is obtained by averaging zij over all i, j such that
i+j = k+2. This procedure is called diagonal averaging, or Hankelization of the matrix
Z. The result of the Hankelization of a matrix Z is the Hankel matrix HZ, which is
the trajectory matrix corresponding to the series obtained as a result of the diagonal
averaging.

The operator H acts on an arbitrary L × K-matrix Z = (zij) with L ≤ K in the
following way: for i + j = s and N = L + K − 1 the element z̃ij of the matrix HZ is





1

s− 1

s−1∑

l=1

zl,s−l 2 ≤ s ≤ L− 1,

1

L

L∑

l=1

zl,s−l L ≤ s ≤ K + 1,

1

K + L− s + 1

L∑

l=s−K

zl,s−l K + 2 ≤ s ≤ K + L.

Note that the Hankelization is an optimal procedure in the sense that the matrix HZ
is the nearest to Z (with respect to the matrix norm) among all Hankel matrices of the
corresponding size (for more information see Golyandina et al. (2001, chap. 6, sec. 2)).
In its turn, the Hankel matrix HZ uniquely defines the series by relating the value in
the diagonals to the values in the series. By applying the Hankelization procedure to
all matrix components of (20), we obtain another expansion:

X = X̃I1 + . . . + X̃Im (21)

where X̃I1 = HX. This is equivalent to the decomposition of the initial series YT =
(y1, . . . , yT ) into a sum of m series:

yt =
m∑

k=1

ỹ
(k)
t (22)

where Ỹ
(k)
T = (ỹ

(k)
1 , . . . , ỹ

(k)
T ) corresponds to the matrix XIk

.

Selection of parameters

Here we consider a version of SSA where we split the set if indicies {1, 2, . . . , L} into
two groups only: I = {1, . . . , r} and Ī = {r + 1, . . . , L}. We associate the group I with
signal and the group Ī with noise. The SSA method requires then the selection of two
parameters, the window length L and the number of elementary matrices r. There are
specific rules for selecting these parameters; their choice depends on structure of the
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data and the analysis we want to perform. Detailed description of parameter selection
procedures is given in Golyandina et al. (2001). Here we summarize a few general rules.

The window length L is the single parameter that should be selected at the decompo-
sition stage. Selection of the proper window length depends on the problem in hand,
and on preliminary information about the time series. For the series with a complex
structure, too large window length L can produce an undesirable decomposition of
the series components of interest, which may lead, in particular, to their mixing with
other series component. Let us, for example, consider the problem of trend extraction
in GCM. Since trend is a relatively smooth curve, its separability from noise requires
small values of L. It should be noted that the values of L should not be smaller than
the true eigenvalues r. The chosen L also should results good separability between the
reconstructed series using I = {1, . . . , r} and Ī = {r+1, . . . , L}. In growth curve model
that we are dealing with only trend extraction, usually the first or second eigenvalue is
considered for reconstruction step.

The first elementary matrix X1 with the norm
√

λ1 has the highest contribution to
the norm of X in X = X1 + . . . ,XL and the last elementary matrix XL with the
norm

√
λL has the lowest contribution to the norm of X. The plot of the eigenvalues

λ1, · · · , λL gives an overall view concerning the values of the eigenvalues and is essential
in deciding where to truncate the summation of X = X1 + . . . ,XL in order to build a
good approximation of the original matrix. A slowly decreasing sequence of eigenvalues
typically indicate the presence of noise in the series.

A group of r (with 1 ≤ r < L) eigenvectors determine an r-dimensional hyperplane
in the L-dimensional space RL of vectors Xj. The distance between vectors Xj (j =
1, . . . , K) and this r-dimensional hyperplane can be rather small (it is controlled by
the choice of the eigenvalues) meaning that the projection of X into this hyperplane
is a good approximation of the original matrix X. If we choose the first r eigenvectors
U1, . . . , Ur, then the squared L2-distance between this projection and X is equal to∑L

j=r+1 λj. According to the Basic SSA algorithm, the L-dimensional data is projected
onto this r-dimensional subspace and the subsequent averaging over the diagonals allows
us to obtain an approximation to the original series.

Forecasting Algorithm

Let us formally describe the forecasting algorithm under consideration (for more
information see Golyandina et al.(2001)):

Algorithm input:

(a) Time series YT = (y1, . . . , yT ).

(b) Window length L, 1 < L < T .

(c) Linear space Lr ⊂ RL of dimension r < L. It is assumed that eL /∈ Lr, where
eL = (0, 0, . . . , 1) ∈ RL.
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(d) Number M of points to forecast for.

Procedure:

(a) X = [X1, . . . , XK ] is the trajectory matrix of the time series YT .

(b) U1, . . . , Ur is an orthonormal basis in Lr.

(c) X̂ = [X̂1 : . . . : X̂K ] =
∑r

i=1 UiU
T
i X. The vector X̂i is the orthogonal projection of

Xi onto the space Lr.

(d) X̃ = HX = [X̃1 : . . . : X̃K ] is the result of the Hankellization of the matrix X̂.

(e) For any vector Y ∈ RL we denote by YM ∈ RL−1 the vector consisting of the last
L − 1 components of the vector Y , while Y O ∈ RL−1 is the vector of the first L − 1
components of the vector Y .

(f) We set v2 = π2
1 + . . . + π2

r , where πi is the last component of the vector Ui (i =
1, . . . , r).

(g) Suppose that eL /∈ Lr. (In the other words, we assume that Lr is not a vertical
space). Then v2 < 1. It can be proved that the last component yL of any vector Y =
(y1, . . . , yL)T ∈ Lr is a linear combination of the first L− 1 components (y1, . . . , yL−1):

yL = α1yL−1 + . . . + αL−1y1.

Vector A = (α1, . . . , αL−1) can be expressed as

A =
1

1− v2

r∑
i=1

πiU
O
i (23)

and does not depend on the choice of a basis U1, . . . , Ur in the linear space Lr. In the
above notations, define the time series YT+M = (y1, . . . , yT+M) by the formula

yi =

{
ỹi for i = 1, . . . , T∑L−1

j=1 αjyi−j for i = T + 1, . . . , T + M
(24)

The numbers yT+1, . . . , yT+M from the M terms of the SSA recurrent forecast. Let us
define the linear operator R(r) : Lr 7→ RL by the formula

R(r)Y =

(
YM

AT YM

)
, Y ∈ Lr

If setting

Zi =

{
X̃i for i = 1, . . . , K
R(r)Zi−1 for i = K + 1, . . . , K + M

(25)

the matrix Z = [Z1, . . . , ZK+M ] is the trajectory matrix of the series YT+M . Therefore,
(25) can be regard as the vector form of (24).

The SSA recurrent forecasting algorithm can be modified in several ways. For example,
we can base our forecast on the Toeplitz SSA or SSA with centering rather than on
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the basic SSA. Perhaps the most important modification is the so-called SSA vector
forecasting algorithm developed in Golyandina et al. (2001).

So far we considered SSA recurrent forecasting algorithm. In the following we consider
SSA vector forecasting algorithm. The SSA vector forecasting algorithm has the same
inputs and conditions as the SSA recurrent forecasting algorithm. The notation in (a)-
(g) is kept. Let us introduce some more notations. Consider the matrix

Π = V O(V O)T + (1− v2)AAT

where V O = [UO
1 , . . . , UO

r ]. The matrix Π is the matrix of the linear operator that
performs the orthogonal projection RL−1 7→ LO

r , where LO
r = span(UO

1 , . . . , UO
r ). We

define the linear operator V(v) : Lr 7→ RL by the formula

V(v)Y =

(
ΠYM
AT YM

)
, Y ∈ Lr

In the notation above we define the vectors Zi as follow:

Zi =

{
X̃i for i = 1, . . . , K
V(v)Zi−1 for i = K + 1, . . . , K + M + L− 1

By constructing the matrix Z = [Z1, . . . , ZK+M+L−1] and making its diagonal averaging
we obtain a series y1, . . . , yT+M+L−1. The numbers yT+1, . . . , yT+M form the M terms
of the SSA vector forecast.
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