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Abstract. In order to represent a line-search algorithm as a non-convergent dynamic system, we perform a
renormalisation of the uncertainty interval at each iteration. Its ergodic behaviour can then be studied, and it
happens that, for locally symmetric functions, the asymptotic performances of the algorithm suggested are far
better than those of the well-known Golden Section algorithm. A proper tuning of internal parameters is then

performed to obtain good performances for a finite number of iterations. The case of a function symmetric with

respect to its optimum is considered first. An algorithm is presented, that only uses function comparisons, with
a significant reduction of the number of comparisons required to reach a given precision when compared to the
Golden Section algorithm. The robustness of these performances with respect to non-symmetry of the function is
then checked by numerical simulations.
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1. Introduction

Algorithms that are simply convergent can be considered as dynamic systems, after a
suitable transformation is applied to each iteration. The main idea is to renormalise the
region containing the search object for instance the point where a given functiég) is
optimum, so that the target remains in a standard regiofhis means that* is no longer
fixed but moves ifR at each iteration, and follows the evolution of a dynamic system.
Methods of analysis relying on ergodic theory and chaos thus apply, see [4]. It happens that
the worst cases of the worst-case optimal algorithms often have a Lebesgue measure equal
to zero, and algorithms with a better ergodic convergence rate can thus be constructed. The
question is then: how fast do these algorithms converge for a finite number of iterations?
We consider here the minimisation of a uniextremal functfol) on some interval
[A, B] (f (-) is nonincreasing fox < x* and increasing fox > x*) using a “second-order”
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Research Council grant for the second author, and by a Visiting Fellowship from CNRS for the third author.
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Figure L Deletion rule.

algorithm, as defined by Kiefer [3]. These algorithms only compare function values, which
makes them especially useful when optimizing a function defined, e.g., by a convergent
series, for which arbitrary precise bounds can be constructed (note that algorithms using
derivative information, or simply exact function values, may have better performances).
Fix [A1, B1] 2[A, B], and an initial pointe; € [ A1, B;1]. The algorithm compares func-
tion values at two points: (1,, from the previous iteration and (B),, selected by the
algorithm at the current iteration.
DefineU, = min{E,,, E/}, Vo = maxEy, E;}, then the deletion rule is:

{(R) if f(Un) < f(Vy) delete(V;,, By] so that [An+1, Brii] = [An, Vil

(L) if fUp) > f(V) delete Py, Up) 50 that By, Brea] = [Un, Bl
Here (R) and (L) stand for right and left deletion. The deletion rule is illustrated by figure 1.
Note that at next iteration the function has already been evaluated at a p@™t.in Bn1)-
This point corresponds tBy ;.
The performance of the algorithm up to iteratioris measured by the length, =
(Bn — An). The reduction or convergence rate of thia iteration isr, = Llj“, i.e.,Lp=
Lo ]_[i”:‘o1 ri, with Lo = B — A. For instance, th&olden Section algorithm(grresponds to

[A]_, Bj_] = [A, B], SO thaﬂ’oz 1, and

Vn—An_l_Un—An_q)_\/E—l
T2

= ~ 0.61804
Bn — An Bn — An

Forn> 1, the reduction rate, is constant and equajs This algorithm is known to be
asymptotically worst-case optimalin the class of all uniextremal functions among algorithms
using function values, see [1, 3]. However, better asymptotic convergence rates can be
obtained for locally symmetric functions, even if only comparison of function values is
used [5, 7]. We shall consider here the asymptotic and finite sample behaviour of the
window algorithm discussed in [6].

The algorithm is defined by

[A1, Bl =[A—e(B—A),B+e(B- A,
E1=(A1+By)/2—w(B1— A)/2, @)
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and

. 1
En+w(Bnh— Ay if En< E(An + Bn),

E, = ®3)

En — w(B, — A,) otherwise

wheree > 0 andw > 0 are tuning parameters. The rafi, — En|/(B, — Ay), defining
the window width, is thus fixed and equals Note thatry > 1 for € > 0, the reason for
expanding the interval4, B] will be explained later, see Section 3.2. Also note that the
GS algorithm corresponds &0=0, w =2¢ — 1.

2. Ergodic behaviour

Consider the special case whé(x) is symmetric around* and letx, anduy,, respectively
denote the renormalised locationsxdfandU,, in the current uncertainty intervah,, By],
that is:

X* — Aq Un — Ay

Xn = , Uy= , n>1
Bn — An Bn — An

Due to the symmetry of (), the conditions for application of the right or left deletion rule
in (1) then become

(L) if Xn >up+w/2.

{(R) if Xn < Up+w/2

Renormalisation back to [01] yields the following two-dimensional dynamic process for
the window algorithm:

Xn .
if X u 2
) Un + w n<Un+w/
n+1l = Xp — Up
if Xn > U 2
1—up "= n+w/ (4)
Un )
—w ifXy <up+w/2
Un +w
Uny1 = w
i if Xp > Uy +w/2

Figure 2 presents a plot of the sequence of iterg@igsu,), n=1,...,50,000, when
w=1/8.
The sequence of reduction rates associated with the dynamical system (4) is

r_{un—i—w if Xn < uUp+w/2,
"Tlioun if X > un+w/2,
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Figure 2 Iterates of the dynamic system (4).

with ro=1 + 2¢. Obviously, aftern evaluations off (), the lengthL, of the current
uncertainty interval depends on the valuexdfthat isL,, = L, (x*).

The advantage of setting up the problem as a dynamic process is that it allows us to use
results from ergodic theory, and we can link the rate of convergence of the algorithm with
the characteristics of the dynamic process. The ergodic reduction rate is defined by

. 1 : n-t %
= dm bt = fim (Lo L)

if this limit exists for almost allx* with respect to the Lebesgue measure. Sihge-
B — A < oo ande < oo, this becomes

N N
r = dl’&(ﬂr”) ) )

The Jacobian matrix of the transformatioq, u,) — (Xn11, Uns1) IS Upper triangular and
can be written as

1 an
J (%, un)=<(’; w>, (6)

r2
A
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whereay, is given by

X .
-= if Xn < Un + w/2,
rn
on =
1-—x .
— rzn if Xq > U+ w/2.

n

The Lyapunov exponents of the dynamic system (4) are defined by, see [2],

Ai(xq, up) = lim log[ain(xs, upl, =12 (7)

wherej; n(xq, Up) is theith eigenvalue ot ™ (xy, u;), with
J™ (g, up) = I(Xn, Un) I (Xn—1, Un—1) - - - I (Xq, Uy).

Ergodic theory (Oseledec’s Theorem) guarantees that the set of peintg) for which
the limit in (7) exists and is the same has full measure. The triangular form of the Jacobian
(6) gives

(ITyri) Bn

JM (xq, ug) = ;

0 w(l_[i”=1fi)72

where g, is some number. The Lyapunov exponents of the dynamic system (4) are thus
related tor andw by A; =—logr, A, =2x; + logw. This implies that =r (x*) is the

same for almost akk* € [A, B], hence the nhame of ergodic reduction rate. In particular,
this implies

A= lim E{

n—o00

log Ln(x*)
n }

where the expectation is taken with respect to a probability measure absolutely continuous
with respect to the Lebesgue measure.

A numerical evaluation of the second Lyapunov exponent shows that it is negative for
w < 2¢ — 1, which indicates that the dynamic systé(r,, uy)} may attract to a fractal.
For instance whew = 1/8, the Lyapunov exponents are approximaggly~ 0.639,A, ~
—0.801. The Lyapunov dimension of the attractor of the corresponding dynamic system,
presented in figure 2, is then-1 %1 ~ 1,798 < 2 and the ergodic rate is~ 0.528. When
w = 0.15, the value which will be used in the algorithm of Section 3, weiget 0.630,
A2 >~ —0.636 andr ~ 0.532. This increase in the value pfpermits, however, to obtain
better performances for finitd (N < 30). More generally, for any in [1/8, 29 — 1) the
ergodic rate of the window algorithm is better than the rate ¢ = (+/5 — 1)/2 of the
Golden Section algorithm.

One can show that we cannot achieve an ergodic rate less tBdorhll x* lying in a set
of positive Lebesgue measure [4], and a theoretical algorithm achieving this optimal ergodic
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rate for a class of locally smooth functions has been found in [7]. However, this algorithm
is not efficient for reasonably small values df Other algorithms with values of less

thatey can be found in [5]. Their theoretical asymptotic properties can be investigated more
deeply than for the window algorithm presented here. However, none of them achieves the
performances of the window algorithm fof reasonably small.

3. Finite sample behaviour
3.1. Performance criteria
We investigate now the behaviour of the window algorithm for filNtand locally smooth

functions, under the assumption thdtis uniformly distributed over the initial interval
[A, B]. Various performance criteria are considered, which are functioaswfand N:

ElLny = E{Ln(X")}, MLy = S Ln(x®),

Ly = supt |Pr{Ln(X*) > t} < a},

L
PGS = PriLn(x") < Lop™ 1}, P§ =Pr{LN(X*) < }
Fnt1

whereF, is thenth term of the Fibonacci sequence, ife.= Fo =1 andF, = F,_1 + F_2,
n>2.The criteriaP,\?S andPy}, respectively, correspond to the probability that the window
algorithm converges faster than the Golden Section and the Fibonacci [3] algorithms. Other
criteria could also be considered, although they are less appealing from a practical point of
view, for instancepy, = E{—log Ln(x*)}/N, ¢ = E{(Ln(x*)¥N}.

When the functiorf () is symmetric with respect t*, the behaviour of the algorithm is
completely determined by that of the dynamic system (4). From the discussion of previous
section one then has

lim ¢y = —logr, lim ¢2 =r.
N— oo N— oo
One can also easily prove thefS and P{ tend to 1 aN tends to infinity.

3.2.  Algorithm

The ergodic characteristicdoes not depend on However, a good tuning ab for the
ergodic criteriorr, e.g.,w = 1/8, is far from being optimal for smalN for all criteria
considered here, whatever the choice oA proper tuning ok andw is thus required.

For a fixed value ofw, choosinge large enoughe> ﬁ), that is expanding the
initial interval [A, B], guarantees thag belongs to the support of the invariant measure for
Xn, see figure 2. This is of crucial importance, since it permits to obtain finite sample

characteristics close to their asymptotic values. Also, numerical investigations demonstrate
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that initial pointsx; outside the support of the invariant measurexagive bad convergence
rates in the first iterations.

The values of and w could be chosen optimally for eadd and each criterion. A
rather exhaustive analysis for reasonable valuds,df0< N < 30, which corresponds to
standard values for this type of line-search algorithms, has lead to the eheid®3772
andw = 0.15, which is close to optimality for the criteria of Section 3.1. Whigp) is
symmetric with respect ta*, andx* has a uniform distribution on4, B], these criteria
can be computed exactly as shown in Section 3.3. The rest of the paper analyses the finite
sample behaviour of the corresponding algorithm, summarized as follows.

Preliminary step. Let f () be the function to be minimised o®\[ B]. ChooseN > 2
and/ors > 0, which defines the stopping rule, see Step 3.

Step 1. Compute A1, B;] andE; as indicated in (2), withw = 0.15,¢ = 0.3772. Compute
f(Ep), setn = 1.

Step 2. ComputeE;, according to (3) and the corresponding valud)) (if E;, < A take
f(E;)) = f(A)+A—E],if E, > Btakef(E;) = f(B) + E/ — B).

If En < E, setU=E,V =E, fu=f(Ey, fv = f(E)),
otherwise se = E/,V = Ep, fy = f(E), fv = f(En).

Step 3.

If fu < fv  set[Ani1, Boya] = [An, VI,
otherwise sethni1, Boi1]l = [U, Byl.

If (n+ 1> N and/orB,;1 — Ani1 <3) then stop, otherwise sat+ 1 — n and go to
Step 2.

3.3. f() symmetric with respect tg*x

When f (-) is symmetric with respect tg*, the decision about the right or left deletion
in (1) only depends on the location a&f in the interval. For any fixedN, the initial
interval [A, B] can thus be partitioned into an union of disjoint subinteralt);, such
that the behaviour of the algorithm is the same up to iterabiofor all x* in 1. Note
that the cardinality of this partition grows exponentially wih(it is already 11,760 for
N =16). Letl{=[A, B],U}{ =U; = E;. Atiteration 2,1} is split into two subintervals
11=[A, (A+ B)/2), 12=[(A + B)/2, B], corresponding respectively to right and left
deletions. In the first cadd] is updated intdJ} =U{ — w(E; — Ay), in the second into
U2 = E}. Using similar arguments, we can track the path of the endpoinit§ edgether
with U}, in order to construct the partition 1| for anyn: at iterationn, each interval is
updated into either_r‘]+l or the union of two disjoint intervals, depending on the location of
U/ with respect td ..
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Table 1 Performance characteristics of the Golden Section, Fibonacci and window algoritheadj.

N ot e ELn MLy PSS Py L9se

3 0.3820 0.3333 0.6084 0.7456 0.0000  0.0000 0.7456
4 0.2361 0.2000 0.3593 0.5943 0.2135  0.0000 0.5943
5 0.1459 0.1250 0.1960 0.4825 0.1958 0.1958 0.4825
6 9.017x10°2 7.692x10°2 9.760x 1072 0.1615 0.4445  0.4445 0.1615

7 5573x102 4.762x102 5433x102 9.660x10°2 0.6887 0.5864 9.660 1072

8 3.444x102 2941x102 2.939x102 7.237x102 0.7993 0.5570 7.23%¥ 1072

9 2129x102 1.818x102 1.546x102 5.788x10°2 0.7893 0.7318 5.78810°2

10 1.316x102 1.124x102 8.326x103 1.954x102 0.7581 0.7211 1.93¥10°2
11 8.131x10° 6.944x103 4.516x103 1.495x102 0.8831 0.8831 1.15910°2
12 5.025x 103 4.292x 103 2420x103 9.271x103% 0.9619 0.9376 8.65¥ 1073
13 3.106x 103 2.653x 103 1.295x10°3 6.944x 103 0.9900 0.9254 3.04410°3
14 1.919x10° 1.639x103 6.983x10%4 2.344x10% 0.9806 0.9535 2.20910°3
15 1.186x 103 1.013x103% 3.763x10* 1.807x10% 0.9736 09572 1.30810°3
16 7.331x10% 6.261x10% 2.020x10% 1.114x103 0.9890 0.9890 8.50610°*
17 4531x10% 3.870x10* 1.085x10* 8.432x10% 0.9982 09974 3.47610°*
18 2.800x 104 2.392x10% 5.840x10°°5 2.877x10% 0.9990 0.9938 2.08410°*
19 1.731x10% 1.478x10* 3.141x10°°5 2.168x10% 0.9993 0.9934 1.39610°*
20 1.070x 104 9.136x10°° 1.688x10° 1.337x10* 0.9977 0.9966 5.59010°°
21 6.611x 105 5646x10° 9.074x10°% 1.012x10% 0.9996 0.9996 3.656 10°°
22 4.086x10°° 3.490x10° 4.881x10°% 3.477x10°° 1.0000 1.0000 2.14R10°
23  2.525x10°° 2.157x10° 2.625x10°% 2.633x10°° 0.9999 0.9998 9.92610°°
24 1561x10°° 1.333x10°° 1.411x10°% 1.623x10°° 1.0000 0.9994 5.92810°
25 9.645x 106 8.238x10°6 7.587x10°7 1.228x10°5 0.9999 0.9999 3.44% 107
26 5.961x10°% 5091x 106 4.080x10°7 4.173x10°® 1.0000 1.0000 1.64% 1076
27 3.684x 108 3.147x106 2.194x107 3.158x10® 1.0000 1.0000 9.468 107
28 2.277x108 1.945x106 1.180x107 1.947x10°® 1.0000 1.0000 5.598 107
29 1.407x108 1.202x10°6 6.342x 108 1.474x10® 1.0000 1.0000 2.908 107
30 8.697x10°7 7.428x10°7 3.410x108 5.065x107 1.0000 1.0000 1.55810°7

Whenx* has a uniform distribution o4, B], the values of all criteria above can easily
be computed with any given arbitrary precision once the partition is constructed. The results
are summarized in Table 1. Figure 3 gives the evolution of some performance characteristics
as functions oN.

Table 2 presents the value Nfrequired for the corresponding characteristic to reach the
precision indicated. For example, the Fibonacci algorithm requires 30 function evaluations
to reduce the length of the initial interval by a factor® Lvhile the window algorithm
requires respectively 25 and 27 evaluations to achieve the same precision, on the average
and with probability 0.99.
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Table 2 Value ofN required to achieve a given precisidny(= 1).

Criterion 10! 102 1073 104 10°° 1076

N1 6 11 16 21 25 30

_— 6 11 16 20 25 30
N+1

ELn 6 10 14 18 21 25

MLy 7 12 17 22 26 30

L9e 7 12 16 20 23 27

Figure 3 Decimal logarithm of various performance characteristigs=£ 1).

3.4. f(.) locally smooth at %

Consider the class of functions satisfying
Clx —x*I? = DIx = x*|> < [ f () — f(x*)] < Clx = x*[*+ D|x — x*F,

with C > 0, which includes the class of all functions three times continuously differentiable
atx*. We assume, however, that no information about derivatives is available. Without any
restriction, one can assume thafj— B — A=1. Since the algorithm only uses function
comparisonsf (-) can be scaled down so that one can also assume&that. Figure 4
presents the graph of the functiofigs(X — x*) and fo(x — x*), with

4 if z<
= <=
fo(2) = 27D 3D

2
2+ DA if ~30 < zZ
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Figure 4  Graphs offgs(-) and f(-).

which can be considered as the worst uniextremal function in the class above with respect
to the symmetry condition, for a given valie

Numerical simulations withx* uniformly distributed in A, B] have been performed,
with the factor of non symmetrip varying from 0 to 10. Figure 5 presents the evolution of
the empirical values of the performance characterigficg andML3g as functions oD.
Note that the scales are different on figures 5(a) and (b). Figure 6 presents the evolution of
the empirical probabilityP); as a function oN for several values ob. The performances
of the window algorithm remain fairly stable while non symmetry increases. Notégliat
is already quite non symmetric wh&h= 2 as can be seen in figure 4. Performances with
functions locally symmetric at* (and not necessarily locally smooth) would be similar.

4. Conclusions

The construction of line-search algorithms with better ergodic performances than the famous
Golden Section algorithm [6, 7] was an important theoretical achievement. More important
for the practical point of view is the construction of algorithms with good performances
for finite N. We have shown that for functions symmetric with respect to the optimum,

a very simple algorithm permits to achieve any given precision with significantly less
comparisons of function values than the Golden Section algorithm. In the case of locally
smooth functions, numerical simulations have shown that the performances remain quite
robust with respect to non-symmetry of the function. This makes the algorithm suggested
a promising alternative to the Golden Section and Fibonacci algorithms.
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