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Abstract. In order to represent a line-search algorithm as a non-convergent dynamic system, we perform a
renormalisation of the uncertainty interval at each iteration. Its ergodic behaviour can then be studied, and it
happens that, for locally symmetric functions, the asymptotic performances of the algorithm suggested are far
better than those of the well-known Golden Section algorithm. A proper tuning of internal parameters is then
performed to obtain good performances for a finite number of iterations. The case of a function symmetric with
respect to its optimum is considered first. An algorithm is presented, that only uses function comparisons, with
a significant reduction of the number of comparisons required to reach a given precision when compared to the
Golden Section algorithm. The robustness of these performances with respect to non-symmetry of the function is
then checked by numerical simulations.
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1. Introduction

Algorithms that are simply convergent can be considered as dynamic systems, after a
suitable transformation is applied to each iteration. The main idea is to renormalise the
region containing the search objectx∗, for instance the point where a given functionf (·) is
optimum, so that the target remains in a standard regionR. This means thatx∗ is no longer
fixed but moves inR at each iteration, and follows the evolution of a dynamic system.
Methods of analysis relying on ergodic theory and chaos thus apply, see [4]. It happens that
the worst cases of the worst-case optimal algorithms often have a Lebesgue measure equal
to zero, and algorithms with a better ergodic convergence rate can thus be constructed. The
question is then: how fast do these algorithms converge for a finite number of iterations?

We consider here the minimisation of a uniextremal functionf (·) on some interval
[ A, B] ( f (·) is nonincreasing forx≤ x∗ and increasing forx> x∗) using a “second-order”
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Figure 1. Deletion rule.

algorithm, as defined by Kiefer [3]. These algorithms only compare function values, which
makes them especially useful when optimizing a function defined, e.g., by a convergent
series, for which arbitrary precise bounds can be constructed (note that algorithms using
derivative information, or simply exact function values, may have better performances).

Fix [ A1, B1]⊇ [ A, B], and an initial pointE1∈ [ A1, B1]. The algorithm compares func-
tion values at two points: (1)En, from the previous iteration and (2)E′n, selected by the
algorithm at the current iteration.

DefineUn= min{En, E′n}, Vn= max{En, E′n}, then the deletion rule is:

{
(R) if f (Un) < f (Vn) delete(Vn, Bn] so that [An+1, Bn+1] = [ An,Vn]

(L) if f (Un) ≥ f (Vn) delete [An,Un) so that [An+1, Bn+1] = [Un, Bn] .
(1)

Here (R) and (L) stand for right and left deletion. The deletion rule is illustrated by figure 1.
Note that at next iteration the function has already been evaluated at a point in(An+1, Bn+1).
This point corresponds toEn+1.

The performance of the algorithm up to iterationn is measured by the lengthLn=
(Bn− An). The reduction or convergence rate of thenth iteration isrn= Ln+1

Ln
, i.e., Ln=

L0
∏n−1

i=0 ri , with L0 = B− A. For instance, theGolden Section algorithmcorresponds to
[ A1, B1]= [ A, B], so thatr0= 1, and

Vn − An

Bn − An
= 1− Un − An

Bn − An
= ϕ =

√
5− 1

2
' 0.61804.

For n≥ 1, the reduction ratern is constant and equalsϕ. This algorithm is known to be
asymptotically worst-case optimal in the class of all uniextremal functions among algorithms
using function values, see [1, 3]. However, better asymptotic convergence rates can be
obtained for locally symmetric functions, even if only comparison of function values is
used [5, 7]. We shall consider here the asymptotic and finite sample behaviour of the
window algorithm discussed in [6].

The algorithm is defined by

[ A1, B1] = [ A− ε(B− A), B+ ε(B− A)],

E1 = (A1+ B1)/2− w(B1− A1)/2, (2)
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and

E′n =
 En + w(Bn − An) if En <

1

2
(An + Bn) ,

En − w(Bn − An) otherwise,
(3)

whereε≥ 0 andw>0 are tuning parameters. The ratio|E′n − En|/(Bn − An), defining
the window width, is thus fixed and equalsw. Note thatr0> 1 for ε >0, the reason for
expanding the interval [A, B] will be explained later, see Section 3.2. Also note that the
GS algorithm corresponds toε= 0,w= 2ϕ − 1.

2. Ergodic behaviour

Consider the special case whenf (x) is symmetric aroundx∗ and letxn andun, respectively
denote the renormalised locations ofx∗ andUn in the current uncertainty interval [An, Bn],
that is:

xn = x∗ − An

Bn − An
, un = Un − An

Bn − An
, n ≥ 1.

Due to the symmetry off (·), the conditions for application of the right or left deletion rule
in (1) then become{

(R) if xn < un + w/2
(L) if xn ≥ un + w/2.

Renormalisation back to [0, 1] yields the following two-dimensional dynamic process for
the window algorithm:

xn+1 =


xn

un + w if xn < un + w/2
xn − un

1− un
if xn ≥ un + w/2

un+1 =


un

un + w − w if xn < un + w/2
w

1− un
if xn ≥ un + w/2

(4)

Figure 2 presents a plot of the sequence of iterates(xn, un), n= 1, . . . ,50,000, when
w= 1/8.

The sequence of reduction rates associated with the dynamical system (4) is

rn =
{

un + w if xn < un + w/2 ,
1− un if xn ≥ un + w/2 ,
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Figure 2. Iterates of the dynamic system (4).

with r0= 1 + 2ε. Obviously, aftern evaluations of f (·), the lengthLn of the current
uncertainty interval depends on the value ofx∗, that isLn= Ln(x∗).

The advantage of setting up the problem as a dynamic process is that it allows us to use
results from ergodic theory, and we can link the rate of convergence of the algorithm with
the characteristics of the dynamic process. The ergodic reduction rate is defined by

r = lim
N→∞

(L N)
1
N = lim

N→∞

(
L0

N−1∏
n=0

rn

) 1
N

,

if this limit exists for almost allx∗ with respect to the Lebesgue measure. SinceL0=
B− A <∞ andε <∞, this becomes

r = lim
N→∞

(
N∏

n=1

rn

) 1
N

. (5)

The Jacobian matrix of the transformation(xn, un)→ (xn+1, un+1) is upper triangular and
can be written as

J(xn, un) =
( 1

rn
αn

0 w
r 2

n

)
, (6)
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whereαn is given by

αn =


−xn

r 2
n

if xn < un + w/2,

−1− xn

r 2
n

if xn ≥ un + w/2.

The Lyapunov exponents of the dynamic system (4) are defined by, see [2],

3i (x1, u1) = lim
n→∞ log |λi,n(x1, u1)|, i = 1, 2, (7)

whereλi,n(x1, u1) is thei th eigenvalue ofJ(n)(x1, u1), with

J(n)(x1, u1) = J(xn, un)J(xn−1, un−1) · · · J(x1, u1).

Ergodic theory (Oseledec’s Theorem) guarantees that the set of points(x1, u1) for which
the limit in (7) exists and is the same has full measure. The triangular form of the Jacobian
(6) gives

J(n)(x1, u1) =
(∏n

i=1 ri
)−1

βn

0 w
(∏n

i=1 ri
)−2

 ,
whereβn is some number. The Lyapunov exponents of the dynamic system (4) are thus
related tor andw by λ1=−logr , λ2= 2λ1 + logw. This implies thatr = r (x∗) is the
same for almost allx∗ ∈ [ A, B], hence the name of ergodic reduction rate. In particular,
this implies

λ1 = lim
n→∞ E

{
log Ln(x∗)

n

}
,

where the expectation is taken with respect to a probability measure absolutely continuous
with respect to the Lebesgue measure.

A numerical evaluation of the second Lyapunov exponent shows that it is negative for
w < 2ϕ − 1, which indicates that the dynamic system{(xn, un)} may attract to a fractal.
For instance whenw = 1/8, the Lyapunov exponents are approximatelyλ1 ' 0.639,λ2 '
−0.801. The Lyapunov dimension of the attractor of the corresponding dynamic system,
presented in figure 2, is then 1− λ1

λ2
' 1.798< 2 and the ergodic rate isr ' 0.528. When

w = 0.15, the value which will be used in the algorithm of Section 3, we getλ1 ' 0.630,
λ2 ' −0.636 andr ' 0.532. This increase in the value ofr permits, however, to obtain
better performances for finiteN (N ≤ 30). More generally, for anyw in [1/8, 2ϕ − 1) the
ergodic rate of the window algorithm is better than the rater = ϕ = (√5− 1)/2 of the
Golden Section algorithm.

One can show that we cannot achieve an ergodic rate less than 1/2 for all x∗ lying in a set
of positive Lebesgue measure [4], and a theoretical algorithm achieving this optimal ergodic
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rate for a class of locally smooth functions has been found in [7]. However, this algorithm
is not efficient for reasonably small values ofN. Other algorithms with values ofr less
thatϕ can be found in [5]. Their theoretical asymptotic properties can be investigated more
deeply than for the window algorithm presented here. However, none of them achieves the
performances of the window algorithm forN reasonably small.

3. Finite sample behaviour

3.1. Performance criteria

We investigate now the behaviour of the window algorithm for finiteN and locally smooth
functions, under the assumption thatx∗ is uniformly distributed over the initial interval
[ A, B]. Various performance criteria are considered, which are functions ofε, w andN:

ELN = E{L N(x
∗)}, MLN = max

x∗∈[ A,B]
L N(x

∗),

L1−α
N = sup{t |Pr{L N(x

∗) ≥ t} < α},

PGS
N = Pr{L N(x

∗) < L0ϕ
N−1}, PF

N = Pr

{
L N(x

∗) <
L0

FN+1

}
,

whereFn is thenth term of the Fibonacci sequence, i.e.,F1= F2= 1 andFn= Fn−1+ Fn−2,

n> 2. The criteriaPGS
N andPF

N , respectively, correspond to the probability that the window
algorithm converges faster than the Golden Section and the Fibonacci [3] algorithms. Other
criteria could also be considered, although they are less appealing from a practical point of
view, for instance:φ1

N = E{−log L N(x∗)}/N, φ2
N = E{(L N(x∗))1/N}.

When the functionf (·) is symmetric with respect tox∗, the behaviour of the algorithm is
completely determined by that of the dynamic system (4). From the discussion of previous
section one then has

lim
N→∞

φ1
N = −logr, lim

N→∞
φ2

N = r .

One can also easily prove thatPGS
N andPF

N tend to 1 asN tends to infinity.

3.2. Algorithm

The ergodic characteristicr does not depend onε. However, a good tuning ofw for the
ergodic criterionr , e.g.,w = 1/8, is far from being optimal for smallN for all criteria
considered here, whatever the choice ofε. A proper tuning ofε andw is thus required.

For a fixed value ofw, choosingε large enough (ε≥ 1−w
2(1+w) ), that is expanding the

initial interval [A, B], guarantees thatx1 belongs to the support of the invariant measure for
xn, see figure 2. This is of crucial importance, since it permits to obtain finite sample
characteristics close to their asymptotic values. Also, numerical investigations demonstrate
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that initial pointsx1 outside the support of the invariant measure forxn give bad convergence
rates in the first iterations.

The values ofε andw could be chosen optimally for eachN and each criterion. A
rather exhaustive analysis for reasonable values ofN, 10≤ N ≤ 30, which corresponds to
standard values for this type of line-search algorithms, has lead to the choiceε = 0.3772
andw= 0.15, which is close to optimality for the criteria of Section 3.1. Whenf (·) is
symmetric with respect tox∗, andx∗ has a uniform distribution on [A, B], these criteria
can be computed exactly as shown in Section 3.3. The rest of the paper analyses the finite
sample behaviour of the corresponding algorithm, summarized as follows.

Preliminary step. Let f (·) be the function to be minimised on [A, B]. ChooseN ≥ 2
and/orδ > 0, which defines the stopping rule, see Step 3.

Step 1. Compute [A1, B1] andE1 as indicated in (2), withw= 0.15,ε= 0.3772. Compute
f (E1), setn = 1.

Step 2. ComputeE′n according to (3) and the corresponding valuef (E′n) (if E′n< A take
f (E′n) = f (A)+ A− E′n, if E′n > B take f (E′n) = f (B)+ E′n − B).

If En ≤ E′n setU = En,V = E′n, fU = f (En), fV = f (E′n),
otherwise setU = E′n,V = En, fU = f (E′n), fV = f (En).

Step 3.

If fU < fV set [An+1, Bn+1] = [ An,V ],

otherwise set [An+1, Bn+1] = [U, Bn].

If (n+ 1 ≥ N and/orBn+1 − An+1≤ δ) then stop, otherwise setn+ 1→ n and go to
Step 2.

3.3. f(·) symmetric with respect to x∗

When f (·) is symmetric with respect tox∗, the decision about the right or left deletion
in (1) only depends on the location ofx∗ in the interval. For any fixedN, the initial
interval [A, B] can thus be partitioned into an union of disjoint subintervals∪i I i

N , such
that the behaviour of the algorithm is the same up to iterationN for all x∗ in I i

N . Note
that the cardinality of this partition grows exponentially withN (it is already 11,760 for
N= 16). Let I 1

1 = [ A, B],U1
1 =U1= E1. At iteration 2, I 1

1 is split into two subintervals
I 1
2 = [ A, (A + B)/2), I 2

2 = [(A + B)/2, B], corresponding respectively to right and left
deletions. In the first caseU1

1 is updated intoU1
2 =U1

1 − w(E′1 − A1), in the second into
U2

2 = E′1. Using similar arguments, we can track the path of the endpoints ofI i
n, together

with Ui
n, in order to construct the partition∪i I i

n for anyn: at iterationn, each intervalI i
n is

updated into eitherI i
n+1 or the union of two disjoint intervals, depending on the location of

Ui
n with respect toI i

n.
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Table 1. Performance characteristics of the Golden Section, Fibonacci and window algorithms (L0= 1).

N ϕN−1 1
FN+1

ELN MLN PGS
N PF

N L0.99
N

3 0.3820 0.3333 0.6084 0.7456 0.0000 0.0000 0.7456

4 0.2361 0.2000 0.3593 0.5943 0.2135 0.0000 0.5943

5 0.1459 0.1250 0.1960 0.4825 0.1958 0.1958 0.4825

6 9.017× 10−2 7.692× 10−2 9.760× 10−2 0.1615 0.4445 0.4445 0.1615

7 5.573× 10−2 4.762× 10−2 5.433× 10−2 9.660× 10−2 0.6887 0.5864 9.660× 10−2

8 3.444× 10−2 2.941× 10−2 2.939× 10−2 7.237× 10−2 0.7993 0.5570 7.237× 10−2

9 2.129× 10−2 1.818× 10−2 1.546× 10−2 5.788× 10−2 0.7893 0.7318 5.788× 10−2

10 1.316× 10−2 1.124× 10−2 8.326× 10−3 1.954× 10−2 0.7581 0.7211 1.937× 10−2

11 8.131× 10−3 6.944× 10−3 4.516× 10−3 1.495× 10−2 0.8831 0.8831 1.159× 10−2

12 5.025× 10−3 4.292× 10−3 2.420× 10−3 9.271× 10−3 0.9619 0.9376 8.657× 10−3

13 3.106× 10−3 2.653× 10−3 1.295× 10−3 6.944× 10−3 0.9900 0.9254 3.044× 10−3

14 1.919× 10−3 1.639× 10−3 6.983× 10−4 2.344× 10−3 0.9806 0.9535 2.209× 10−3

15 1.186× 10−3 1.013× 10−3 3.763× 10−4 1.807× 10−3 0.9736 0.9572 1.302× 10−3

16 7.331× 10−4 6.261× 10−4 2.020× 10−4 1.114× 10−3 0.9890 0.9890 8.506× 10−4

17 4.531× 10−4 3.870× 10−4 1.085× 10−4 8.432× 10−4 0.9982 0.9974 3.476× 10−4

18 2.800× 10−4 2.392× 10−4 5.840× 10−5 2.877× 10−4 0.9990 0.9938 2.084× 10−4

19 1.731× 10−4 1.478× 10−4 3.141× 10−5 2.168× 10−4 0.9993 0.9934 1.396× 10−4

20 1.070× 10−4 9.136× 10−5 1.688× 10−5 1.337× 10−4 0.9977 0.9966 5.590× 10−5

21 6.611× 10−5 5.646× 10−5 9.074× 10−6 1.012× 10−4 0.9996 0.9996 3.656× 10−5

22 4.086× 10−5 3.490× 10−5 4.881× 10−6 3.477× 10−5 1.0000 1.0000 2.140× 10−5

23 2.525× 10−5 2.157× 10−5 2.625× 10−6 2.633× 10−5 0.9999 0.9998 9.926× 10−6

24 1.561× 10−5 1.333× 10−5 1.411× 10−6 1.623× 10−5 1.0000 0.9994 5.928× 10−6

25 9.645× 10−6 8.238× 10−6 7.587× 10−7 1.228× 10−5 0.9999 0.9999 3.447× 10−6

26 5.961× 10−6 5.091× 10−6 4.080× 10−7 4.173× 10−6 1.0000 1.0000 1.646× 10−6

27 3.684× 10−6 3.147× 10−6 2.194× 10−7 3.158× 10−6 1.0000 1.0000 9.468× 10−7

28 2.277× 10−6 1.945× 10−6 1.180× 10−7 1.947× 10−6 1.0000 1.0000 5.598× 10−7

29 1.407× 10−6 1.202× 10−6 6.342× 10−8 1.474× 10−6 1.0000 1.0000 2.908× 10−7

30 8.697× 10−7 7.428× 10−7 3.410× 10−8 5.065× 10−7 1.0000 1.0000 1.558× 10−7

Whenx∗ has a uniform distribution on [A, B], the values of all criteria above can easily
be computed with any given arbitrary precision once the partition is constructed. The results
are summarized in Table 1. Figure 3 gives the evolution of some performance characteristics
as functions ofN.

Table 2 presents the value ofN required for the corresponding characteristic to reach the
precision indicated. For example, the Fibonacci algorithm requires 30 function evaluations
to reduce the length of the initial interval by a factor 106, while the window algorithm
requires respectively 25 and 27 evaluations to achieve the same precision, on the average
and with probability 0.99.
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Table 2. Value ofN required to achieve a given precision (L0= 1).

Criterion 10−1 10−2 10−3 10−4 10−5 10−6

ϕN−1 6 11 16 21 25 30
1

FN+1
6 11 16 20 25 30

ELN 6 10 14 18 21 25

MLN 7 12 17 22 26 30

L0.99
N 7 12 16 20 23 27

Figure 3. Decimal logarithm of various performance characteristics (L0= 1).

3.4. f(·) locally smooth at x∗

Consider the class of functions satisfying

C|x − x∗|2− D|x − x∗|3 ≤ | f (x)− f (x∗)| ≤ C|x − x∗|2+ D|x − x∗|3,
with C > 0, which includes the class of all functions three times continuously differentiable
atx∗. We assume, however, that no information about derivatives is available. Without any
restriction, one can assume thatL0= B − A= 1. Since the algorithm only uses function
comparisons,f (·) can be scaled down so that one can also assume thatC= 1. Figure 4
presents the graph of the functionsf0.5(x − x∗) and f2(x − x∗), with

fD(z) =


4

27D2
if z≤ − 2

3D

z2+ Dz3 if − 2

3D
< z,
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Figure 4. Graphs off0.5(·) and f2(·).

which can be considered as the worst uniextremal function in the class above with respect
to the symmetry condition, for a given valueD.

Numerical simulations withx∗ uniformly distributed in [A, B] have been performed,
with the factor of non symmetryD varying from 0 to 10. Figure 5 presents the evolution of
the empirical values of the performance characteristicsEL30 andML30 as functions ofD.
Note that the scales are different on figures 5(a) and (b). Figure 6 presents the evolution of
the empirical probabilityPF

N as a function ofN for several values ofD. The performances
of the window algorithm remain fairly stable while non symmetry increases. Note thatfD(·)
is already quite non symmetric whenD = 2 as can be seen in figure 4. Performances with
functions locally symmetric atx∗ (and not necessarily locally smooth) would be similar.

4. Conclusions

The construction of line-search algorithms with better ergodic performances than the famous
Golden Section algorithm [6, 7] was an important theoretical achievement. More important
for the practical point of view is the construction of algorithms with good performances
for finite N. We have shown that for functions symmetric with respect to the optimum,
a very simple algorithm permits to achieve any given precision with significantly less
comparisons of function values than the Golden Section algorithm. In the case of locally
smooth functions, numerical simulations have shown that the performances remain quite
robust with respect to non-symmetry of the function. This makes the algorithm suggested
a promising alternative to the Golden Section and Fibonacci algorithms.
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Figure 5. Evolution ofEL30, ML30, ϕ29 and 1/F31 as functions ofD (L0= 1).

Figure 6. Evolution ofPF
N as a function ofN for different values ofD (from top to bottom:D= 0, 2, 4, 6, 8, 10).
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